1
|
Liu T, Shao Y, Zhang X, Wan J, Du G, Yang L, Ran X. A chitosan-based adhesive with high flame retardancy and superior bonding strength fabricated by interface engineering. Int J Biol Macromol 2025; 305:140984. [PMID: 39956241 DOI: 10.1016/j.ijbiomac.2025.140984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
With an emphasis on sustainable development, the wood industry faces great challenges, including studies on bio-based, aldehyde-free, high-strength and water-resistant adhesives. Here, a high-strength water-resistant chitosan-based adhesive was prepared by mixing of polyacrylic acid (PAA) and chitosan (CS) with assist of a little Ca2+. Meanwhile, bonding strength was enhanced through wood surface activation caused by wood: adhesive interfacial interaction. The dry and wet bonding strengths of the three-layer plywood were 3.28 MPa and 2.16 MPa, respectively. Bonding strength of the plywood remained 1.38 MPa after a "4 + 4 + 1" harsh test. The main reasons for the excellent performance were: 1) Covalent crosslinking and entanglement between PAA and CS significantly improved the cohesiveness of adhesive. 2) The introduction of Ca2+ formed organic-inorganic hybrid structure, which enhanced the cohesion and interfacial force of adhesive. 3) The active functional groups on wood surface were further cross-linked with adhesive, which greatly enhanced the interfacial bonding. After the adhesive was compounded with ammonium polyphosphate, the plywood exhibited excellent flame retardancy. These strategies have provided valuable ideas for studying high-performance wood adhesives and expanding the functionality of adhesives.
Collapse
Affiliation(s)
- Tongda Liu
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Yating Shao
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Xu Zhang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Jianyong Wan
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Guanben Du
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Long Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Xin Ran
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
2
|
Zhang JH, Tao J, Yao ZS. Organic Self-Healing Single Crystals. Chem Asian J 2025; 20:e202401273. [PMID: 39963923 DOI: 10.1002/asia.202401273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/23/2025] [Indexed: 03/19/2025]
Abstract
Self-healing single crystals, which possess the ability to recover from damage, represent an emerging filed within dynamic single-crystal materials. These materials not only deepen our understanding of the flexible structures inherent in single crystals but also offer a novel pathway for the development of smart materials, including soft robots, microelectronic devices, and optical devices. In this perspective, we provide a comprehensive summary of recent advancements in organic self-healing single crystals, highlighting various self-healing mechanisms, typical molecular structures, and the testing methods utilized to investigate these materials. We hope that our systematic overview of this field will significantly contribute to the advancement of self-healing single crystal materials as a new class of molecular-based functional materials, particularly in the integration of self-healing properties with innovative optoelectronic functionalities.
Collapse
Affiliation(s)
- Jia-Hui Zhang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 8 and 9 Yards, Liangxiang East Roud, Fangshan District, Beijing, China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 8 and 9 Yards, Liangxiang East Roud, Fangshan District, Beijing, China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 8 and 9 Yards, Liangxiang East Roud, Fangshan District, Beijing, China
| |
Collapse
|
3
|
Lin Y, Xiang N, Peng M, Qin Z, Su T, Ji H, Xie X. Stable, recyclable, hybrid ionic-electronic conductive hydrogels with non-covalent networks enhanced by bagasse cellulose nanofibrils for wearable sensors. Int J Biol Macromol 2025; 290:138964. [PMID: 39706418 DOI: 10.1016/j.ijbiomac.2024.138964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Conductive hydrogels are utilized in flexible sensors due to their high-water content, excellent elasticity, and shape controllability. However, the sharp increase in resistance of this material under enormous strain leads to instability in the sensing process. This study presents a straightforward method for creating a stable, recyclable, hybrid ionic-electronic conductive (HIEC) hydrogel via a simple one-pot strategy using polyvinyl alcohol (PVA), bagasse cellulose nanofibrils (CNF), and graphene(G) with sodium dodecylbenzene sulfonate (SDBS). The SDBS/G hemimicelles are formed through hydrophobic and π-π stacking interactions between SDBS and G, enhancing the dispersibility of G. Then SDBS/G hemimicelles were integrated into a non-covalent cross-linking network from CNF and PVA, which ensures recyclability and stability. The CNF-PVA-Graphene (CPG) hydrogel exhibited high and stable sensing sensitivity (average gauge factor up to 1.99), high conductivity (0.36 S/m), low graphene concentration (0.16 wt%), low detection limit (1 %), and fast response time (0.17 s). The sensor can detect large (wrist and knee) and small (pulse and laryngeal prominence) body movements. After recycling, the hydrogel sensors maintained high conductivity sensitivity (average gauge factor up to 1.01) and good tensile properties (360 % strain). This study introduces a new approach of hybrid conductive biomass-based hydrogel sensors for precisely monitoring human movements.
Collapse
Affiliation(s)
- Yuming Lin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Nian Xiang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Min Peng
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Tongming Su
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xinling Xie
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
4
|
Liu H, Dai X, Li N, Zhang L, Wang Z, Ren K, Li Y, Sun X, Wan J. Injectable Magnetic Hydrogel Incorporated with Anti-Inflammatory Peptide for Efficient Magnetothermal Treatment of Endometriosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409778. [PMID: 39373358 PMCID: PMC11600196 DOI: 10.1002/advs.202409778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Endometriosis is a prevalent gynecological condition characterized by chronic pelvic pain, dysmenorrhea, and infertility, affecting ≈176 million women of reproductive age worldwide. Current treatments, including pharmacological and surgical interventions, are often associated with significant side effects and high recurrence rates. Consequently, there is an urgent need for innovative and safer therapeutic approaches. In this study, an injectable magnetic hydrogel nanosystem is developed designed for the dual-purpose magnetothermal and anti-inflammatory treatment of endometriosis. This hydrogel incorporates Fe3O4 nanoparticles alongside an anti-inflammatory peptide. Upon magnetic activation, the Fe3O4 nanoparticles induce a localized hyperthermic response, raising the temperature of endometriotic lesions to 63.3 °C, effectively destroying endometriotic cells. Concurrently, the thermally responsive hydrogel facilitates the controlled release of the anti-inflammatory peptide, thus modulating the inflammatory milieu. The biocompatibility and complete in vivo degradability of the hydrogel further enhance its therapeutic potential. The in vivo studies demonstrated that this injectable magnetic hydrogel system achieved a 90% reduction in the volume of endometriotic lesions and significantly decreased inflammatory markers, offering a promising non-invasive treatment modality for endometriosis. By integrating precise lesion ablation with the modulation of the inflammatory microenvironment, this system represents a novel approach to the clinical management of endometriosis.
Collapse
Affiliation(s)
- Huaichao Liu
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Xiaohui Dai
- School of Chemistry and Pharmaceutical EngineeringMedical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinan250000China
| | - Na Li
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Le Zhang
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Zihan Wang
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Ke Ren
- School of Chemistry and Pharmaceutical EngineeringMedical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinan250000China
| | - Yulei Li
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Xiao Sun
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Jipeng Wan
- Department of GynecologyJi Nan Key Laboratory of Diagnosis and Treatment of Major Gynaecological DiseaseShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| |
Collapse
|
5
|
Xu J, Lu P, Zhao J, Zhao X, Tian W, Ming W, Ren L. Surprisingly fast self-healing coatings with anti-fog and antimicrobial activities via host-guest interaction. J Colloid Interface Sci 2024; 680:139-150. [PMID: 39504744 DOI: 10.1016/j.jcis.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Dual functional coatings with anti-fog and antimicrobial performances greatly enhance the safety and reliability of medical detection devices, but are prone to mechanical damage, resulting in reduced performance and a shorter service lifespan. Herein, a semi-interpenetrating polymer network (SIPN) coating, featuring hydrophobic-hydrophilic balanced copolymers as bulk chains and host-guest inclusion compounds (HGICs) as cross-linkers, is reported, which demonstrates particularly effective anti-fog and antibacterial performances, along with a surprisingly fast self-healing capability under various scenarios. This HGIC-based coating displayed remarkable anti-fog capability over a wide temperature range from -20 ℃ to 85 ℃ and exhibited reliable antibacterial activities (≥98 %) against both gram-positive and gram-negative bacteria. Also, this coating showed extremely high self-healing ability (≥92 % recovery rate) within just 20 s, significantly outperforming traditional self-healing systems. These findings support the development of functional coatings that can highly maintain rapid self-healing performance while also providing anti-fog and antibacterial properties in medical detection devices.
Collapse
Affiliation(s)
- Jingyang Xu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Pengpeng Lu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Intelligent Kitchen Appliance and 5G+ Manufacturing Technologies, Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd, Foshan 528311, China.
| | - Weijun Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, GA 30460, USA
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
6
|
Peng T, Chai M, Chen Z, Wu M, Li X, Han F, Chen S, Liao C, Yue M, Song YQ, Wu H, Tian L, An G. Exosomes from Hypoxia Preconditioned Muscle-Derived Stem Cells Enhance Cell-Free Corpus Cavernosa Angiogenesis and Reproductive Function Recovery. Adv Healthc Mater 2024; 13:e2401406. [PMID: 39007245 DOI: 10.1002/adhm.202401406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Tissue engineering for penile corpora cavernosa defects requires microvascular system reconstruction.GelMA hydrogels show promise for tissue regeneration. However, using stem cells faces challenges such as immune rejection, limited proliferation and differentiation, and biosafety concerns. Therefore, acellular tissue regeneration may avoid these issues. Exosomes are used from muscle-derived stem cells (MDSCs) to modify 3D-printed hydrogel scaffolds for acellular tissue regeneration. Hypoxia-preconditioned MDSC-derived exosomes are obtained to enhance the therapeutic effect. In contrast to normoxic exosomes (N-Exos), hypoxic exosomes (H-Exos) are found to markedly enhance the proliferation, migration, and capillary-like tube formation of human umbilical vein endothelial cells (HUVECs). High-throughput sequencing analysis of miRNAs isolated from both N-Exos and H-Exos revealed a significant upregulation of miR-21-5p in H-Exos following hypoxic preconditioning. Further validation demonstrated that the miR-21-5p/PDCD4 pathway promoted the proliferation of HUVECs. Epigallocatechin gallate (EGCG) is introduced to improve the mechanical properties and biocompatibility of GelMA hydrogels. EGCG-GelMA scaffolds loaded with different types of Exos are transplanted to repair rabbit penile corpora cavernosa defects, observed the blood flow and repair status of the defect site through color Doppler ultrasound and magnetic resonance imaging, and ultimately restored the rabbit penile erection function and successfully bred offspring. Thus, acellular hydrogel scaffolds offer an effective treatment for penile corpora cavernosa defects.
Collapse
Affiliation(s)
- Tianwen Peng
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Muyuan Chai
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhicong Chen
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Man Wu
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Xiaomin Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Feixue Han
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Shuyan Chen
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Chen Liao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Ming Yue
- School of Biomedical Sciences, AIDS Institute and Department of Microbiology, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - You-Qiang Song
- School of Biomedical Sciences, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
| | - Long Tian
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, P. R. China
| | - Geng An
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| |
Collapse
|
7
|
Liu Z, Chen YM, Shu W, Wei W, Aziz Y, Li J, Zhu X, Miyatake H, Ito Y, Gong J, Zhang HJ. Customizable hydrospongel based on chitosan microfibers. J Colloid Interface Sci 2024; 680:247-260. [PMID: 39509774 DOI: 10.1016/j.jcis.2024.10.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Customizable and viscoelastic porous biomaterials are highly desired as implant scaffold for repairing large-volume defects. Herein, we report customizable chitosan microfibers (CMFs)-based hydrospongels with mechanical properties comparable to soft tissues. The CMFs formed under high-speed shearing during crystallization of chitosan, and then they are crosslinked through covalent bond and hydrogen bond to form hydrospongels. The relatively high rigidity of CMFs provided hydrospongels with bulk elasticity at small deformation like hydrogel, and rapid reabsorb water in porous structures similar to sponge, endows excellent self-recovery property to hydrospongels after a large compression deformation. The optimized hydrospongel chemical crosslinked by glycerol triglycidyl ether (GTE) exhibits rapid recovery (1 s) owing to the synergistic effect of strong covalent and hydrogen bonds in porous structure. CMFs suspension has obvious shearing thinning property and can self-support its architecture after extrusion, realizing customizable capability to fabricate various 2D and 3D architectures. In vitro hemolysis test, cell test and CCK-8 assay demonstrate that hydrospongel has excellent hemocompatibility, cytocompatibility and non-toxicity. In vivo subcutaneous implantation of hydrospongel in rats reveal biodegradability and no inflammatory reaction. These properties provide a facile approach to fabricate green and mass-producible hydrospongel as an implant scaffold for biomedical applications.
Collapse
Affiliation(s)
- Zhenxiu Liu
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science &Technology, Xi'an, Shaanxi 710021, China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science &Technology, Xi'an, Shaanxi 710021, China.
| | - Wenjun Shu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Wei Wei
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science &Technology, Xi'an, Shaanxi 710021, China
| | - Yasir Aziz
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science &Technology, Xi'an, Shaanxi 710021, China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xulong Zhu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Mergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Mergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Jin Gong
- Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Hui Jie Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science &Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
8
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
9
|
Zhu R, Liao HY, Huang YC, Shen HL. Application of Injectable Hydrogels as Delivery Systems in Osteoarthritis and Rheumatoid Arthritis. Br J Hosp Med (Lond) 2024; 85:1-41. [PMID: 39212571 DOI: 10.12968/hmed.2024.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Osteoarthritis and rheumatoid arthritis, though etiologically distinct, are both inflammatory joint diseases that cause progressive joint injury, chronic pain, and loss of function. Therefore, long-term treatment with a focus on relieving symptoms is needed. At present, the primary treatment for arthritis is drug therapy, both oral and intravenous. Although significant progress has been achieved for these treatment methods in alleviating symptoms, certain prominent drawbacks such as the substantial side effects and limited absorption of medications call for an urgent need for improved drug delivery methods. Injected hydrogels can be used as a delivery system to deliver drugs to the joint cavity in a controlled manner and continuously release them, thereby enhancing drug retention in the joint cavity to improve therapeutic effectiveness, which is attributed to the desirable attributes of the delivery system such as low immunogenicity, good biodegradability and biocompatibility. This review summarizes the types of injectable hydrogels and analyzes their applications as delivery systems in arthritis treatment. We also explored how hydrogels counteract inflammation, bone and cartilage degradation, and oxidative stress, while promoting joint cartilage regeneration in the treatment of osteoarthritis (OA) and rheumatoid arthritis (RA). This review also highlights new approaches to developing injectable hydrogels as delivery systems for OA and RA.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yi-Chen Huang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Li Shen
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Xu W, Ping Z, Gong X, Xie F, Liu Y, Leng J. Self-Healing Polymers Coupling Shape Memory Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15957-15968. [PMID: 39039655 DOI: 10.1021/acs.langmuir.4c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In recent years, shape memory polymers (SMPs) and self-healing polymers (SHPs) have been research hotspots in the field of smart polymers owing to their unique stimulus response mechanisms. Previous research on SHPs has primarily focused on contact repair. However, in instances where substantial cracks occur during practical use, autonomous closure becomes challenging, impeding effective repair. By integration of the shape memory effect (SME) with SHPs, physical wound closure can be achieved via the SME, facilitating subsequent chemical/physical repair processes and enhancing self-healing effectiveness. This article reviews key findings from previous research on shape memory-assisted self-healing (SMASH) materials and addresses the challenges and opportunities for future investigation.
Collapse
Affiliation(s)
- Wanting Xu
- Department of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Zhongxin Ping
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xiaobo Gong
- Department of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Fang Xie
- Department of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
11
|
Chen J, Chen A, Zou C, Chen C. Synthesis of Photoresponsive Fast Self-healing Polyolefin Composites by Nickel-Catalyzed Copolymerization of Ethylene and Lignin Cluster Monomers. Angew Chem Int Ed Engl 2024; 63:e202404603. [PMID: 38764411 DOI: 10.1002/anie.202404603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/21/2024]
Abstract
Polymers may suffer from sudden mechanical damages during long-term use under various harsh operating environments. Rapid and real-time self-healing will extend their service life, which is particularly attractive in the context of circular economy. In this work, a lignin cluster polymerization strategy (LCPS) was designed to prepare a series of lignin functionalized polyolefin composites with excellent mechanical properties through nickel catalyzed copolymerization of ethylene and lignin cluster monomers. These composites can achieve rapid self-healing within 30 seconds under a variety of extreme usage environments (underwater, seawater, extremely low temperatures as low as -60 °C, organic solvents, acid/alkali solvents, etc.), which is of great significance for real-time self-healing of sudden mechanical damage. More importantly, the dynamic cross-linking network within these composites enable great re-processability and amazing sealing performances.
Collapse
Affiliation(s)
- Jiawei Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ao Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Zou
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
12
|
Zhu Y, Yu X, Liu H, Li J, Gholipourmalekabadi M, Lin K, Yuan C, Wang P. Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives. Bioact Mater 2024; 38:346-373. [PMID: 38764449 PMCID: PMC11101688 DOI: 10.1016/j.bioactmat.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Gelatin methacryloyl (GelMA) hydrogels is a widely used bioink because of its good biological properties and tunable physicochemical properties, which has been widely used in a variety of tissue engineering and tissue regeneration. However, pure GelMA is limited by the weak mechanical strength and the lack of continuous osteogenic induction environment, which is difficult to meet the needs of bone repair. Moreover, GelMA hydrogels are unable to respond to complex stimuli and therefore are unable to adapt to physiological and pathological microenvironments. This review focused on the functionalization strategies of GelMA hydrogel based bioinks for bone regeneration. The synthesis process of GelMA hydrogel was described in details, and various functional methods to meet the requirements of bone regeneration, including mechanical strength, porosity, vascularization, osteogenic differentiation, and immunoregulation for patient specific repair, etc. In addition, the response strategies of smart GelMA-based bioinks to external physical stimulation and internal pathological microenvironment stimulation, as well as the functionalization strategies of GelMA hydrogel to achieve both disease treatment and bone regeneration in the presence of various common diseases (such as inflammation, infection, tumor) are also briefly reviewed. Finally, we emphasized the current challenges and possible exploration directions of GelMA-based bioinks for bone regeneration.
Collapse
Affiliation(s)
- Yaru Zhu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
- Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Xingge Yu
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hao Liu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junjun Li
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Department of Medical Biotechnology, Faculty of Allied Medicine, Tehran, Iran
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Yang K, Yang J, Chen R, Dong Q, Zhou Y. Fast Self-Healing Hyaluronic Acid Hydrogel with a Double-Dynamic Network for Skin Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37569-37580. [PMID: 38986604 DOI: 10.1021/acsami.4c06156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Developing extracellular matrix-derived hydrogel with a fast self-healing capacity to provide a sustainable moist environment able to accelerate wound healing is highly desired for full-thickness skin wound repair. In this study, a fast self-healing hyaluronic acid hydrogel with a dual dynamic network was constructed through a primary reversible acylhydrazone bond formed between aldehyde-modified hyaluronic acid, 3,3'-dithiobis (propionyl hydrazide) (DTP), and secondary dynamic ionic interactions between κ-carrageenan (KC) and K+. Because of the presence of various dynamic covalent bonds such as the acylhydrazone bond, disulfide bond, and noncovalent bonds including hydrogen bonding and ionic interactions, as well as the notable thermoreversible nature of KC, the resultant hydrogel could be self-healed rapidly within 30 min under physiological temperature with a self-healing efficiency of 100%, which was significantly better than other hyaluronic acid hydrogels, as reported previously. Besides, the hydrogel displayed excellent cytocompatibility. According to this study, the hydrogel was administered into the wounds and achieved a superior performance of promoting full-thickness skin wound healing by increasing granulation tissue formation, deposition of collagen as well as the acceleration of re-epithelialization and neovascularization, compared to commercial products, e.g., gauze and 3 M hydrocolloid. We also anticipate that this strategy of double-dynamic network cross-linking can be adopted to fabricate self-healing materials for multiple applications.
Collapse
Affiliation(s)
- Kaidan Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Junfeng Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Ruina Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Qi Dong
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| |
Collapse
|
14
|
He M, Li J, Xu J, Wu L, Li N, Zhang S. Dynamic Recyclable High-Performance Epoxy Resins via Triazolinedione-Indole Click Reaction and Cation-π Interaction Synergistic Crosslinking. Polymers (Basel) 2024; 16:1900. [PMID: 39000754 PMCID: PMC11243886 DOI: 10.3390/polym16131900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/17/2024] Open
Abstract
Thermosetting plastics exhibit remarkable mechanical properties and high corrosion resistance, yet the permanent covalent crosslinked network renders these materials challenging for reshaping and recycling. In this study, a high-performance polymer film (EI25-TAD5-Mg) was synthesized by combining click chemistry and cation-π interactions. The internal network of the material was selectively constructed through flexible triazolinedione (TAD) and indole via a click reaction. Cation-π interactions were established between Mg2+ and electron-rich indole units, leading to network contraction and reinforcement. Dynamic non-covalent interactions improved the covalent crosslinked network, and the reversible dissociation of cation-π interactions during loading provided effective energy dissipation. Finally, the epoxy resin exhibited excellent mechanical properties (tensile strength of 91.2 MPa) and latent dynamic behavior. Additionally, the thermal reversibility of the C-N click reaction and dynamic cation-π interaction endowed the material with processability and recyclability. This strategy holds potential value in the field of modifying covalent thermosetting materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuai Zhang
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; (M.H.); (J.L.); (J.X.); (L.W.); (N.L.)
| |
Collapse
|
15
|
Liu H, Jiao Y, Forouzanfar T, Wu G, Guo R, Lin H. High-strength double-network silk fibroin based hydrogel loaded with Icariin and BMSCs to inhibit osteoclasts and promote osteogenic differentiation to enhance bone repair. BIOMATERIALS ADVANCES 2024; 160:213856. [PMID: 38640877 DOI: 10.1016/j.bioadv.2024.213856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Large bone defects cause significant clinical challenges due to the lack of optimal grafts for effective regeneration. The tissue engineering way that requires the combination of biomaterials scaffold, stem cells and proper bioactive factors is a prospective method for large bone repair. Here, we synthesized a three-arm host-guest supramolecule (HGSM) to covalently crosslinking with the naturally derived polymer methacrylated silk fibroin (SFMA). The combination of HGSM and SFMA can form a high strength double-crosslinked hydrogel HGSFMA, that serve as the hydrogel scaffold for bone marrow mesenchymal stem cells (BMSCs) growing. Icariin (ICA) loaded in the HGSFMA hydrogel can promote the osteogenesis efficiency of BMSCs and inhibit the osteoclasts differentiation. Our findings demonstrated that the HGSFMA/ICA hydrogel effectively promoted the in vitro adhesion, proliferation, and osteogenic differentiation of BMSCs. Rat femoral defects model show that this hydrogel can completely repair femoral damage within 4 weeks and significantly promote the secretion of osteogenesis-related proteins. In summary, we have prepared an effective biomimetic bone carrier, offering a novel strategy for bone regeneration and the treatment of large-scale bone defects.
Collapse
Affiliation(s)
- Huiling Liu
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre, Amsterdam, De Boelelaan 1117, the Netherlands
| | - Yang Jiao
- Department of Stomatology, the Seventh Medical Center of PLA General Hospital, No. 5, Nanmencang, Dongsishitiao Street, Dongcheng District, Beijing 100700, China
| | - T Forouzanfar
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre, Amsterdam, De Boelelaan 1117, the Netherlands
| | - Gang Wu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Gustav Mahlerlaan, 3004, Amsterdam 1081LA, the Netherlands.
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Haiyan Lin
- Department of Implantology, Hangzhou Stomatology Hospital, Hangzhou 310006, China; Savid School of Stomatology, Hangzhou Medical College, Hangzhou 311399, China; Hangzhou Stomatology Hospital, Pinghai Road, Shangcheng District, Hangzhou 310006, China.
| |
Collapse
|
16
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
17
|
Yang Y, Ma Y, Wu M, Wang X, Zhao Y, Zhong S, Gao Y, Cui X. Fe 3+-induced coordination cross-linking gallic acid-carboxymethyl cellulose self-healing hydrogel. Int J Biol Macromol 2024; 267:131626. [PMID: 38631590 DOI: 10.1016/j.ijbiomac.2024.131626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Self-healing hydrogel is a promising soft material for applications in wound dressings, drug delivery, tissue engineering, biomimetic electronic skin, and wearable electronic devices. However, it is a challenge to fabricate the self-healing hydrogels without external stimuli. Inspired by mussel, the metal-catechol complexes were introduced into the hydrogel systems to prepare the mussel-inspired hydrogels by regulating the gelation kinetics of Fe3+ crosslinkers with gallic acid (GA) in this research. The amine-functionalized carboxymethyl cellulose (CMC) was grafted with GA and then chelated with Fe3+ to form a multi-response system. The crosslinking of carboxymethyl cellulose-ethylenediamine-gallic acid (CEG) hydrogel was controlled by adjusting the pH to affect the iron coordination chemistry, which could enhance the self-healing properties and mechanical strength of hydrogels. In addition, the CEG hydrogel exhibited great antibacterial and antioxidant properties. And the CEG hydrogel could strongly adhere to the skin tissue. The adhesion strength of CEG hydrogel on pigskin was 11.44 kPa, which is higher than that of commercial wound dressings (∼5 kPa). Moreover, the thixotropy of the CEG hydrogel was confirmed with rheological test. In summary, it has great potential in the application field of wound dressing.
Collapse
Affiliation(s)
- Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ying Ma
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China
| | - Meiliang Wu
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xueping Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yuan Zhao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
18
|
Liang M, Wei D, Ren P, Xu L, Tao Y, Yang L, Jiao G, Zhang T, Serizawa T. A Visible Light Cross-Linked Underwater Hydrogel Adhesive with Biodegradation and Hemostatic Ability. Adv Healthc Mater 2024; 13:e2302538. [PMID: 38176693 DOI: 10.1002/adhm.202302538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Hydrogel adhesives with integrated functionalities are still required to match their ever-expanding practical applications in the field of tissue repair and regeneration. A simple and effective safety strategy is reported, involving an in situ injectable polymer precursor and visible light-induced cross-linking. This strategy enables the preparation of a hydrogel adhesive in a physiological environment, offering wet adhesion to tissue surfaces, molecular flexibility, biodegradability, biocompatibility, efficient hemostatic performance, and the ability to facilitate liver injury repair. The proposed one-step preparation process of this polymer precursor involves the mixing of gelatin methacryloyl (GelMA), poly(thioctic acid) [P(TA)], poly(acrylic acid)/amorphous calcium phosphate (PAAc/ACP, PA) and FDA-approved photoinitiator solution, and a subsequent visible light irradiation after in situ injection into target tissues that resulted in a chemically-physically cross-linked hybrid hydrogel adhesive. Such a combined strategy shows promise for medical scenarios, such as uncontrollable post-traumatic bleeding.
Collapse
Affiliation(s)
- Min Liang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Dandan Wei
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Pengfei Ren
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Li Xu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yinghua Tao
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liuxin Yang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Guanhua Jiao
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tianzhu Zhang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
19
|
Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D Printing of Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305537. [PMID: 37877817 DOI: 10.1002/adma.202305537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Indexed: 10/26/2023]
Abstract
This review article presents a comprehensive overview of the latest advances in the field of 3D printable structures with self-healing properties. Three-dimensional printing (3DP) is a versatile technology that enables the rapid manufacturing of complex geometric structures with precision and functionality not previously attainable. However, the application of 3DP technology is still limited by the availability of materials with customizable properties specifically designed for additive manufacturing. The addition of self-healing properties within 3D printed objects is of high interest as it can improve the performance and lifespan of structural components, and even enable the mimicking of living tissues for biomedical applications, such as organs printing. The review will discuss and analyze the most relevant results reported in recent years in the development of self-healing polymeric materials that can be processed via 3D printing. After introducing the chemical and physical self-healing mechanism that can be exploited, the literature review here reported will focus in particular on printability and repairing performances. At last, actual perspective and possible development field will be critically discussed.
Collapse
Affiliation(s)
- Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Matteo Caprioli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| |
Collapse
|
20
|
Puistola P, Miettinen S, Skottman H, Mörö A. Novel strategy for multi-material 3D bioprinting of human stem cell based corneal stroma with heterogenous design. Mater Today Bio 2024; 24:100924. [PMID: 38226015 PMCID: PMC10788621 DOI: 10.1016/j.mtbio.2023.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
Three-dimensional (3D) bioprinting offers an automated, customizable solution to manufacture highly detailed 3D tissue constructs and holds great promise for regenerative medicine to solve the severe global shortage of donor tissues and organs. However, uni-material 3D bioprinting is not sufficient for manufacturing heterogenous 3D constructs with native-like microstructures and thus, innovative multi-material solutions are required. Here, we developed a novel multi-material 3D bioprinting strategy for bioprinting human corneal stroma. The human cornea is the transparent outer layer of your eye, and vision loss due to corneal blindness has serious effects on the quality of life of individuals. One of the main reasons for corneal blindness is the damage in the detailed organization of the corneal stroma where collagen fibrils are arranged in layers perpendicular to each other and the corneal stromal cells grow along the fibrils. Donor corneas for treating corneal blindness are scarce, and the current tissue engineering (TE) technologies cannot produce artificial corneas with the complex microstructure of native corneal stroma. To address this, we developed a novel multi-material 3D bioprinting strategy to mimic detailed organization of corneal stroma. These multi-material 3D structures with heterogenous design were bioprinted by using human adipose tissue -derived stem cells (hASCs) and hyaluronic acid (HA) -based bioinks with varying stiffnesses. In our novel design of 3D models, acellular stiffer HA-bioink and cell-laden softer HA-bioink were printed in alternating filaments, and the filaments were printed perpendicularly in alternating layers. The multi-material bioprinting strategy was applied for the first time in corneal stroma 3D bioprinting to mimic the native microstructure. As a result, the soft bioink promoted cellular growth and tissue formation of hASCs in the multi-material 3D bioprinted composites, whereas the stiff bioink provided mechanical support as well as guidance of cellular organization upon culture. Interestingly, cellular growth and tissue formation altered the mechanical properties of the bioprinted composite constructs significantly. Importantly, the bioprinted composite structures showed good integration to the host tissue in ex vivo cornea organ culture model. As a conclusion, the developed multi-material bioprinting strategy provides great potential as a biofabrication solution for manufacturing organized, heterogenous microstructures of native tissues. To the best of our knowledge, this multi-material bioprinting strategy has never been applied in corneal bioprinting. Therefore, our work advances the technological achievements in additive manufacturing and brings the field of corneal TE to a new level.
Collapse
Affiliation(s)
- Paula Puistola
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, 33520 Tampere, Finland
| | - Heli Skottman
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Anni Mörö
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| |
Collapse
|
21
|
Baig MMFA, Wong LK, Zia AW, Wu H. Development of biomedical hydrogels for rheumatoid arthritis treatment. Asian J Pharm Sci 2024; 19:100887. [PMID: 38419762 PMCID: PMC10900807 DOI: 10.1016/j.ajps.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 03/02/2024] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disorder that hinders the normal functioning of bones and joints and reduces the quality of human life. Every year, millions of people are diagnosed with RA worldwide, particularly among elderly individuals and women. Therefore, there is a global need to develop new biomaterials, medicines and therapeutic methods for treating RA. This will improve the Healthcare Access and Quality Index and also relieve administrative and financial burdens on healthcare service providers at a global scale. Hydrogels are soft and cross-linked polymeric materials that can store a chunk of fluids, drugs and biomolecules for hydration and therapeutic applications. Hydrogels are biocompatible and exhibit excellent mechanical properties, such as providing elastic cushions to articulating joints by mimicking the natural synovial fluid. Hence, hydrogels create a natural biological environment within the synovial cavity to reduce autoimmune reactions and friction. Hydrogels also lubricate the articulating joint surfaces to prevent degradation of synovial surfaces of bones and cartilage, thus exhibiting high potential for treating RA. This work reviews the progress in injectable and implantable hydrogels, synthesis methods, types of drugs, advantages and challenges. Additionally, it discusses the role of hydrogels in targeted drug delivery, mechanistic behaviour and tribological performance for RA treatment.
Collapse
Affiliation(s)
| | - Lee Ki Wong
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Abdul Wasy Zia
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Hongkai Wu
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, China
| |
Collapse
|
22
|
Michalicha A, Belcarz A, Giannakoudakis DA, Staniszewska M, Barczak M. Designing Composite Stimuli-Responsive Hydrogels for Wound Healing Applications: The State-of-the-Art and Recent Discoveries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:278. [PMID: 38255446 PMCID: PMC10817689 DOI: 10.3390/ma17020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Effective wound treatment has become one of the most important challenges for healthcare as it continues to be one of the leading causes of death worldwide. Therefore, wound care technologies significantly evolved in order to provide a holistic approach based on various designs of functional wound dressings. Among them, hydrogels have been widely used for wound treatment due to their biocompatibility and similarity to the extracellular matrix. The hydrogel formula offers the control of an optimal wound moisture level due to its ability to absorb excess fluid from the wound or release moisture as needed. Additionally, hydrogels can be successfully integrated with a plethora of biologically active components (e.g., nanoparticles, pharmaceuticals, natural extracts, peptides), thus enhancing the performance of resulting composite hydrogels in wound healing applications. In this review, the-state-of-the-art discoveries related to stimuli-responsive hydrogel-based dressings have been summarized, taking into account their antimicrobial, anti-inflammatory, antioxidant, and hemostatic properties, as well as other effects (e.g., re-epithelialization, vascularization, and restoration of the tissue) resulting from their use.
Collapse
Affiliation(s)
- Anna Michalicha
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | | | - Magdalena Staniszewska
- Institute of Health Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Mariusz Barczak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin, Poland
| |
Collapse
|
23
|
Yang P, Li Z, Fang B, Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int J Biol Macromol 2023; 253:127612. [PMID: 37871725 DOI: 10.1016/j.ijbiomac.2023.127612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The complete healing of skin wounds has been a challenge in clinical treatment. Self-healing hydrogels are special hydrogels formed by distinctive physicochemically reversible bonds, and they are considered promising biomaterials in the biomedical field owing to their inherently good drug-carrying capacity as well as self-healing and repair abilities. Moreover, natural polymeric materials have received considerable attention in skin tissue engineering owing to their low cytotoxicity, low immunogenicity, and excellent biodegradation rates. In this paper, we review recent advances in the design of self-healing hydrogels based on natural polymers for skin-wound healing applications. First, we outline a variety of natural polymers that can be used to construct self-healing hydrogel systems and highlight the advantages and disadvantages of different natural polymers. We then describe the principle of self-healing hydrogels in terms of two different crosslinking mechanisms-physical and chemical-and dissect their performance characteristics based on the practical needs of skin-trauma applications. Next, we outline the biological mechanisms involved in the healing of skin wounds and describe the current application strategies for self-healing hydrogels based on these mechanisms. Finally, we analyze and summarize the challenges and prospects of natural-material-based self-healing hydrogels for skin applications.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhen Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
24
|
Tian Y, Zhang L, Li X, Yan M, Wang Y, Ma J, Wang Z. Compressible, anti-freezing, and ionic conductive cellulose/polyacrylic acid composite hydrogel prepared via AlCl 3/ZnCl 2 aqueous system as solvent and catalyst. Int J Biol Macromol 2023; 253:126550. [PMID: 37657569 DOI: 10.1016/j.ijbiomac.2023.126550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/03/2023]
Abstract
From the perspective of environmental sustainability, introducing cellulose into ionic conductive hydrogel is an inevitable trend for the development of flexible conductive materials. We report a double-network cellulose/polyacrylic acid (Cel/PAA) composite hydrogel based on the dissolving of cellulose by AlCl3/ZnCl2 aqueous system. The Cel/PAA composite hydrogel consists of rigid cellulose chains and flexible polyacrylic acid, which synergistically realize the improvement of the mechanical properties. The AlCl3/ZnCl2 aqueous system not only serves as the green solvent for cellulose, but also the Al3+ and Zn2+ metal ions can be served as a catalyst to activate the initiator for polymerization of acrylic acid. Compared with pure cellulose hydrogel, the compression strain of the Cel/PAA composite hydrogel was significantly improved to 80 %, and its conductivity increased by 28.1 %. In addition, its compression stress was enhanced over 2 times than pure PAA hydrogel. The Cel/PAA composite hydrogel exhibits excellent anti-freezing (-45 °C), weight retention (90 %), and conductivity (2.70 S/m) properties, still maintaining transparency and storage stability in the extreme environment. This work presents a facile strategy to develop an ionic conductive cellulose-based composite hydrogel with good conductivity and mechanical properties, which shows potential for the application fields of flexible sensors and 3D-printing functional materials.
Collapse
Affiliation(s)
- Yahui Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Youlong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
25
|
Liu W, Sun Z, Ren H, Wen X, Wang W, Zhang T, Xiao L, Zhang G. Research Progress of Self-Healing Polymer for Ultraviolet-Curing Three-Dimensional Printing. Polymers (Basel) 2023; 15:4646. [PMID: 38139898 PMCID: PMC10748115 DOI: 10.3390/polym15244646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Ultraviolet (UV)-curing technology as a photopolymerization technology has received widespread attention due to its advantages of high efficiency, wide adaptability, and environmental friendliness. Ultraviolet-based 3D printing technology has been widely used in the printing of thermosetting materials, but the permanent covalent cross-linked networks of thermosetting materials which are used in this method make it hard to recover the damage caused by the printing process through reprocessing, which reduces the service life of the material. Therefore, introducing dynamic bonds into UV-curable polymer materials might be a brilliant choice which can enable the material to conduct self-healing, and thus meet the needs of practical applications. The present review first introduces photosensitive resins utilizing dynamic bonds, followed by a summary of various types of dynamic bonds approaches. We also analyze the advantages/disadvantages of diverse UV-curable self-healing polymers with different polymeric structures, and outline future development trends in this field.
Collapse
Affiliation(s)
- Wenhao Liu
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.L.); (Z.S.); (H.R.); (L.X.)
| | - Zhe Sun
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.L.); (Z.S.); (H.R.); (L.X.)
| | - Hao Ren
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.L.); (Z.S.); (H.R.); (L.X.)
| | - Xiaomu Wen
- Science and Technology on Transient Impact Laboratory, No. 208 Research Institute of China Ordnance Industries, Beijing 102202, China;
| | - Wei Wang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, 58 Qinghe Road, Xiangyang 441003, China; (W.W.); (T.Z.)
| | - Tianfu Zhang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, 58 Qinghe Road, Xiangyang 441003, China; (W.W.); (T.Z.)
| | - Lei Xiao
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.L.); (Z.S.); (H.R.); (L.X.)
| | - Guangpu Zhang
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.L.); (Z.S.); (H.R.); (L.X.)
| |
Collapse
|
26
|
Wen X, Deng Z, Wang H, Shi J, Wang S, Wang H, Song Y, Du Z, Qiu J, Cheng X. High strength, self-healing sensitive ionogel sensor based on MXene/ionic liquid synergistic conductive network for human-motion detection. J Mater Chem B 2023; 11:11251-11264. [PMID: 37823270 DOI: 10.1039/d3tb01570j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Ionogels with both high strength and high conductivity for wearable strain and pressure dual-mode sensors are needed for human motion and health monitoring. Here, multiple hydrogen bonds are introduced through imidazolidinyl urea (IU) as a chain extender to provide high mechanical and self-healing properties for the water-borne polyurethane (WPU). The MXene/ionic liquids synergistic conductive network provides excellent conductivity and also reduces the relative content of ionic liquids to maintain the mechanical properties of the ionogels. The mechanical strength of this ionogel reached 1.81-2.24 MPa and elongation at break reached 570-624%. It also has excellent conductivity (22.7-37.5 mS m-1), gauge factor (GF) (as a strain sensor, GF = 1.8), sensitivity (S) (as a press sensor, S1 = 29.8 kPa-1, S2 = 1.3 kPa-1), and fast response time (as a strain sensor = 185 ms; as a press sensor = 204 ms). The ionogel also exhibits rapid photothermal self-healing capabilities due to the inherent photothermal behavior of MXene. It can maintain good elasticity and conductivity at low temperatures. In addition, this ionogel is able to stretch for 1200 cycles without significant change in the relative change of resistance. The ionogel can be assembled as a strain sensor for monitoring human motion and as a pressure sensor array for obtaining pressure magnitude and position information.
Collapse
Affiliation(s)
- Xiao Wen
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Zhipeng Deng
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Hui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Jianyang Shi
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Shuang Wang
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Haibo Wang
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Yueming Song
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Zongliang Du
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Jinghong Qiu
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Xu Cheng
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
27
|
Xu J, Zhu X, Zhao J, Ling G, Zhang P. Biomedical applications of supramolecular hydrogels with enhanced mechanical properties. Adv Colloid Interface Sci 2023; 321:103000. [PMID: 37839280 DOI: 10.1016/j.cis.2023.103000] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023]
Abstract
Supramolecular hydrogels bound by hydrogen bonding, host-guest, hydrophobic, and other non-covalent interactions are among the most attractive biomaterials available. Supramolecular hydrogels have attracted extensive attention due to their inherent dynamic reversibility, self-healing, stimuli-response, excellent biocompatibility, and near-physiological environment. However, the inherent contradiction between non-covalent interactions and mechanical strength makes the practical application of supramolecular hydrogels a great challenge. This review describes the mechanical strength of hydrogels mediated by supramolecular interactions, and focuses on the potential strategies for enhancing the mechanical strength of supramolecular hydrogels and illustrates their applications in related fields, such as flexible electronic sensors, wound dressings, and three-dimensional (3D) scaffolds. Finally, the current problems and future research prospects of supramolecular hydrogels are discussed. This review is expected to provide insights that will motivate more advanced research on supramolecular hydrogels.
Collapse
Affiliation(s)
- Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| |
Collapse
|
28
|
Luo P, Shu L, Huang Z, Huang Y, Wu C, Pan X, Hu P. Utilization of Lyotropic Liquid Crystalline Gels for Chronic Wound Management. Gels 2023; 9:738. [PMID: 37754419 PMCID: PMC10530416 DOI: 10.3390/gels9090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Management of chronic wounds is becoming a serious health problem worldwide. To treat chronic wounds, a suitable healing environment and sustained delivery of growth factors must be guaranteed. Different therapies have been applied for the treatment of chronic wounds such as debridement and photodynamic therapy. Among them, growth factors are widely used therapeutic drugs. However, at present, growth factor delivery systems cannot meet the demand of clinical practice; therefore new methods should be developed to meet the emerging need. For this reason, researchers have tried to modify hydrogels through some methods such as chemical synthesis and molecule modifications to enhance their properties. However, there are still a large number of limitations in practical use like byproduct problems, difficulty to industrialize, and instability of growth factor. Moreover, applications of new materials like lyotropic liquid crystalline (LLC) on chronic wounds have emerged as a new trend. The structure of LLC is endowed with many excellent properties including low cost, ordered structure, and excellent loading efficiency. LLC can provide a moist local environment for the wound, and its lattice structure can embed the growth factors in the water channel. Growth factor is released from the high-concentration carrier to the low-concentration release medium, which can be precisely regulated. Therefore, it can provide sustained and stable delivery of growth factors as well as a suitable healing environment for wounds, which is a promising candidate for chronic wound healing and has a broad prospective application. In conclusion, more reliable and applicable drug delivery systems should be designed and tested to improve the therapy and management of chronic wounds.
Collapse
Affiliation(s)
- Peili Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Lei Shu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China;
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| |
Collapse
|
29
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|
30
|
Shen X, Zheng H, Han M, Xu X, Li B, Guo Q. Intermolecular forces regulate in-vitro digestion of whey protein emulsion gels: Towards controlled lipid release. J Colloid Interface Sci 2023; 649:245-254. [PMID: 37348344 DOI: 10.1016/j.jcis.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
HYPOTHESIS The utilization of emulsion-filled protein hydrogels for controlled lipid release in the gastrointestinal tract (GIT) displays great potential in drug delivery and obesity treatment. However, how intermolecular interactions among protein molecules influence lipid digestion of the gels is still understudied. EXPERIMENTS Differently structured whey protein emulsion gels were fabricated by heating emulsions with blocking of disulfide bonds (the "noncovalent" gel), noncovalent interactions (the "disulfide" gel), or neither of these (the "control" gel). The intermolecular interactions-gel structure-lipid digestion relationship was investigated by characterizing structural/mechanical properties of the gels and monitoring their dynamic breakdown in a simulated GIT. FINDINGS Although the disulfide-crosslinked protein network formed thick interfacial layers around oil droplets and resisted intestinal proteolysis, the "disulfide" gel had the fastest lipolysis rate, indicating that it could not inhibit the access of lipases to oil droplets. In contrast, the "noncovalent" gel was more susceptible to in-vitro digestion than the "control" gel because of lower gel strength, resulting in a faster lipolysis rate. This demonstrated that intermolecular disulfide bonds and noncovalent interactions played distinctive roles in the digestion of the gels; they represented the structural backbone and the infill in the gel structure, respectively.
Collapse
Affiliation(s)
- Xingxing Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China; Maanshan Safety Inspection Center for Food and Drug, Maanshan Administration for Market Regulation, Maanshan 243000, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Menghan Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Xiyu Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Bingyi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Qing Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China.
| |
Collapse
|
31
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Tofacitinib combined with melanocyte protector α-MSH to treat vitiligo through dextran based hydrogel microneedles. Carbohydr Polym 2023; 305:120549. [PMID: 36737198 DOI: 10.1016/j.carbpol.2023.120549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Vitiligo can cause serious damage to the appearance of patients and affect physical and mental health, but there is currently no simple and effective treatment. According to the theory of autoimmune disorder, the separable hydrogel microneedles delivering alpha-melanocyte-stimulating hormone (α-MSH) and tofacitinib were designed to treat vitiligo. This hydrogel microneedles were formed by dextran methacrylate (DexMA) and cyclodextrin-adamantane based host-guest supramolecules (HGSM) through CC double bond polymerization and host-guest assembly. The microneedle tips formed by the double cross-linked hydrogel can pierce the stratum corneum and deliver melanocyte protector α-MSH and JAK inhibitor tofacitinib directly to the epidermis and dermis. Under the treatment of α-MSH/tofacitinib microneedles, massive deposition of melanin in epidermis and hair follicles significantly accelerated skin and hair pigmentation.
Collapse
|
33
|
Wang D, Chen C, Hu X, Ju F, Ke Y. Enhancing the Properties of Water-Soluble Copolymer Nanocomposites by Controlling the Layer Silicate Load and Exfoliated Nanolayers Adsorbed on Polymer Chains. Polymers (Basel) 2023; 15:polym15061413. [PMID: 36987194 PMCID: PMC10056508 DOI: 10.3390/polym15061413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Novel polymer nanocomposites of methacryloyloxy ethyl dimethyl hexadecyl ammonium bromide-modified montmorillonite (O-MMt) with acrylamide/sodium p-styrene sulfonate/methacryloyloxy ethyl dimethyl hexadecyl ammonium bromide (ASD/O-MMt) were synthesized via in situ polymerization. The molecular structures of the synthesized materials were confirmed using Fourier-transform infrared and 1H-nuclear magnetic resonance spectroscopy. X-ray diffractometry and transmission electron microscopy revealed well-exfoliated and dispersed nanolayers in the polymer matrix, and scanning electron microscopy images revealed that the well-exfoliated nanolayers were strongly adsorbed on the polymer chains. The O-MMt intermediate load was optimized to 1.0%, and the exfoliated nanolayers with strongly adsorbed chains were controlled. The properties of the ASD/O-MMt copolymer nanocomposite, such as its resistance to high temperature, salt, and shear, were significantly enhanced compared with those obtained under other silicate loads. ASD/1.0 wt% O-MMt enhanced oil recovery by 10.5% because the presence of well-exfoliated and dispersed nanolayers improved the comprehensive properties of the nanocomposite. The large surface area, high aspect ratio, abundant active hydroxyl groups, and charge of the exfoliated O-MMt nanolayer also provided high reactivity and facilitated strong adsorption onto the polymer chains, thereby endowing the resulting nanocomposites with outstanding properties. Thus, the as-prepared polymer nanocomposites demonstrate significant potential for oil-recovery applications.
Collapse
|
34
|
Miao Y, Chen Y, Luo J, Liu X, Yang Q, Shi X, Wang Y. Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for promoting vascularized bone regeneration. Bioact Mater 2023; 21:97-109. [PMID: 36093326 PMCID: PMC9417961 DOI: 10.1016/j.bioactmat.2022.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
The classical 3D-printed scaffolds have attracted enormous interests in bone regeneration due to the customized structural and mechanical adaptability to bone defects. However, the pristine scaffolds still suffer from the absence of dynamic and bioactive microenvironment that is analogous to natural extracellular matrix (ECM) to regulate cell behaviour and promote tissue regeneration. To address this challenge, we develop a black phosphorus nanosheets-enabled dynamic DNA hydrogel to integrate with 3D-printed scaffold to build a bioactive gel-scaffold construct to achieve enhanced angiogenesis and bone regeneration. The black phosphorus nanosheets reinforce the mechanical strength of dynamic self-healable hydrogel and endow the gel-scaffold construct with preserved protein binding to achieve sustainable delivery of growth factor. We further explore the effects of this activated construct on both human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs) as well as in a critical-sized rat cranial defect model. The results confirm that the gel-scaffold construct is able to promote the growth of mature blood vessels as well as induce osteogenesis to promote new bone formation, indicating that the strategy of nano-enabled dynamic hydrogel integrated with 3D-printed scaffold holds great promise for bone tissue engineering. Therapeutic VEGF-engineered black phosphorus nanosheets are incorporated into DNA hydrogels. Nano-enabled DNA hydrogel integrating with 3D-printed scaffold builds gel-scaffold construct. Gel-scaffold construct upregulates the expression of genes and proteins related to angiogenesis and osteogenesis. Gel-scaffold construct accelerates the formation of early vascular network and new bone tissue.
Collapse
Affiliation(s)
- Yali Miao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Jinshui Luo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiao Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Qian Yang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xuetao Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
35
|
Wang N, Yu K, Li K, Yu X. A novel triple-network hydrogel based on borate ester groups: from structural modulation to rapid wound hemostasis. J Mater Chem B 2023; 11:1232-1239. [PMID: 36647703 DOI: 10.1039/d2tb02537j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Supramolecular hydrogels have received widespread attention due to their soft texture, strong hygroscopicity, and good biocompatibility. These materials have become particularly attractive for sensing, tissue engineering, fluorescence encoding, wound healing, etc. Inspired by the assembly of G-quadruplexes, we choose the boric acid/polyvinyl alcohol/guanosine system to construct a novel triple-network supramolecular hydrogel "tri-BA@PVA/G" via non-covalent cross-linking, and the effect of the concentration of each component on the hydrogel stability was systematically revealed at the same time. Then, the biocompatibility, shape adaption and optical information storage capacity, the rapid hemostatic ability and the ability of the hydrogel to promote wound healing were confirmed both in vitro and in vivo. These results that predict the properties and reveal prospective applications in the field of wound hemostasis have a certain guiding significance for the subsequent preparation of borate-based triple network hydrogels which can be used as wound hemostatic materials.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Kangkang Yu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China. .,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu, 610039, China
| |
Collapse
|
36
|
Cadamuro F, Nicotra F, Russo L. 3D printed tissue models: From hydrogels to biomedical applications. J Control Release 2023; 354:726-745. [PMID: 36682728 DOI: 10.1016/j.jconrel.2023.01.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
The development of new advanced constructs resembling structural and functional properties of human organs and tissues requires a deep knowledge of the morphological and biochemical properties of the extracellular matrices (ECM), and the capacity to reproduce them. Manufacturing technologies like 3D printing and bioprinting represent valuable tools for this purpose. This review will describe how morphological and biochemical properties of ECM change in different tissues, organs, healthy and pathological states, and how ECM mimics with the required properties can be generated by 3D printing and bioprinting. The review describes and classifies the polymeric materials of natural and synthetic origin exploited to generate the hydrogels acting as "inks" in the 3D printing process, with particular emphasis on their functionalization allowing crosslinking and conjugation with signaling molecules to develop bio-responsive and bio-instructive ECM mimics.
Collapse
Affiliation(s)
- Francesca Cadamuro
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland.
| |
Collapse
|
37
|
Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. NANO RESEARCH 2023; 16:3475-3515. [DOI: 10.1007/s12274-022-5129-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2025]
|
38
|
Flores-Jiménez MS, Garcia-Gonzalez A, Fuentes-Aguilar RQ. Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS APPLIED BIO MATERIALS 2023; 6:1-23. [PMID: 36599046 DOI: 10.1021/acsabm.2c00740] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous scaffolds have been widely explored for tissue regeneration and engineering in vitro three-dimensional models. In this review, a comprehensive literature analysis is conducted to identify the steps involved in their generation. The advantages and disadvantages of the available techniques are discussed, highlighting the importance of considering pore geometrical parameters such as curvature and size, and summarizing the requirements to generate the porous scaffold according to the desired application. This paper considers the available design tools, mathematical models, materials, fabrication techniques, cell seeding methodologies, assessment methods, and the status of pore scaffolds in clinical applications. This review compiles the relevant research in the field in the past years. The trends, challenges, and future research directions are discussed in the search for the generation of a porous scaffold with improved mechanical and biological properties that can be reproducible, viable for long-term studies, and closer to being used in the clinical field.
Collapse
Affiliation(s)
- Mariana S Flores-Jiménez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Rita Q Fuentes-Aguilar
- Institute of Advanced Materials and Sustainable Manufacturing, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| |
Collapse
|
39
|
Karvinen J, Kellomäki M. Characterization of self-healing hydrogels for biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Mortier C, Costa D, Oliveira M, Haugen H, Lyngstadaas S, Blaker J, Mano J. Advanced hydrogels based on natural macromolecules: chemical routes to achieve mechanical versatility. MATERIALS TODAY CHEMISTRY 2022; 26:101222. [DOI: 10.1016/j.mtchem.2022.101222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Zhang A, Long J, Jia L, Gao Q, Fan H, Xiang J. Self‐healing and reprocess of crosslinked polyurethane based on dynamic oxime‐carbamate bond. J Appl Polym Sci 2022. [DOI: 10.1002/app.53478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Aiqin Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu China
| | - Jian Long
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu China
| | - Liang Jia
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu China
| | - Qiang Gao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu China
| | - Haojun Fan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Jun Xiang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu China
| |
Collapse
|
42
|
Dong C, Lu M, Fan H, Jin Z. Cooperation of Zr(IV)-N and Zr(IV)-O coordinate bonds of Zr(IV)-amide ensures the transparent and tough polyacrylamide hydrogels. J Mater Chem B 2022; 10:9258-9265. [PMID: 36326062 DOI: 10.1039/d2tb01496c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Developing advanced soft machines and tissue engineering for load-bearing cartilage or tendons requires tough hydrogels. However, the construction of double or triple crosslinked networks for these tough hydrogels, i.e., a strong network crosslinked by covalent bonds and one or two sacrificial networks built by hydrogen bonds or coordinate bonds, generally asks for multiple steps. It remains a challenge to develop hydrogels with a combination of excellent toughness and a high content of water through the time-saving one-pot process. This study demonstrates that this puzzle could be solved through engineering zirconium(IV)-amide coordinate bonds. To be specific, the combination of strong Zr(IV)-O and moderate Zr(IV)-N coordinate bonds in Zr-polyacrylamide (Zr-PAAm) hydrogels has the advantage that they are usually generated through multiple cross-linked networks. Compared to chemical crosslinked PAAm hydrogels, the highly transparent Zr-PAAm hydrogels crosslinked by Zr(NO3)4 displayed a 26-times increase in fracture stress, 4-times in fracture strain, 6-times in elastic modulus, and over 250-times in toughness. Besides, the mechanical properties of Zr-PAAm hydrogels could be altered over a wide range via changing the anion species, showing a dependence on the Hofmeister effect. The co-existence of Zr(IV)-N and Zr(IV)-O has been confirmed through XPS and FTIR characterizations. In particular, the effect of Zr(IV)-N in Zr-PAAm hydrogels has been verified by comparing the property changes of Zr-PAAm hydrogels before and after swelling in water, in which the Zr(IV)-N in the as-prepared hydrogels was replaced by Zr(IV)-O in the swollen gels. With ultra-stretchability and high transparency, the colorless Zr-PAAm hydrogels displayed rich interference colors under stretching, which brought great potential in anti-counterfeiting materials.
Collapse
Affiliation(s)
- Chenglong Dong
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Mengfan Lu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Zhaoxia Jin
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| |
Collapse
|
43
|
Dai X, Huang LB, Sun Z, Du Y, Xue B, Wong MC, Han J, Liang Q, Wu Y, Dong B, Kong J, Hao J. A phonic Braille recognition system based on a self-powered sensor with self-healing ability, temperature resistance, and stretchability. MATERIALS HORIZONS 2022; 9:2603-2612. [PMID: 35942798 DOI: 10.1039/d2mh00534d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Braille recognition is of great significance for the visually impaired and blind people to achieve convenient communication and learning. A self-powered Braille recognition sensing system with long-term survivability and phonic function could provide those people with greatly enhanced access to information and thus improve their living quality. Herein, we develop a skin-like self-powered Braille recognition sensor with self-healing, temperature-resistant and stretchable properties, which is further connected with the designed audio system to realize real-time conversion from mechanical stimulus to electrical signals and then to audio signals. The sensor is fabricated using dynamic interaction-based self-healing materials, which constitute an imine bond-based cross-linked polymer for the triboelectric layer and a hydrogen bond-based organohydrogel for the electrode layer. Moreover, the conductive organohydrogel-based electrode is provided with stretchable, anti-freezing, and non-drying properties. Consequently, minimized impact on the output performance of the sensor is found under mechanical impact, harsh environments and large deformation, enabling a long lifespan, high durability, and good stability. The self-powered sensor can be applied in a Braille recognition system, in which the Braille characters can be further decoded and read out. This work shows a reliable and flexible device with promising prospects in information technology.
Collapse
Affiliation(s)
- Xingyi Dai
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Long-Biao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Zhenhua Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yuzhang Du
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Boen Xue
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Man-Chung Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Jiancheng Han
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Qihua Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yongpeng Wu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Biqin Dong
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jie Kong
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
44
|
Jia L, Xiao J, Cui J, Hao J, Wang X. Self-reporting of damage in underwater hierarchical ionic skins via cascade reaction-regulated chemiluminescence. MATERIALS HORIZONS 2022; 9:2128-2137. [PMID: 35723220 DOI: 10.1039/d2mh00410k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-reporting of damage in underwater materials allows on-demand maintenance and, therefore, improves the reliability of materials used in aquatic environments. Here, we report a chemiluminescence-based strategy to self-report the mechanical damage (e.g., fracture or puncture) in underwater hierarchical ionic skins (HI-skins). The chemiluminescence-based self-reporting is regulated by a cascade reaction, which first occurs at the interface between water and the damage location and then spreads through the whole material. When the HI-skins were mechanically damaged underwater, the pre-embedded calcium peroxide became exposed to and reacted with water to generate hydrogen peroxide that further activated the peroxyoxalate chemiluminescence reaction for reporting the damage. The luminescence wavelength could be tuned (439, 508, or 603 nm) and the damage-induced luminescence lasted for up to 12 h. The self-reporting HI-skins also displayed high mechanical and electronic restorability (93% healing efficiency), excellent stretchability (1600%), impressive room-temperature ionic conductivity (1.7 × 10-4 S cm-1), and durable strain sensing performance (highly reproducible electrical response over 1000 uninterrupted strain cycles), making them suitable and reliable candidates for underwater soft ionotronics.
Collapse
Affiliation(s)
- Liangying Jia
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China.
| | - Jing Xiao
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China.
| | - Jiwei Cui
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China.
| | - Jingcheng Hao
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China.
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China.
| |
Collapse
|
45
|
Wang S, Ong PJ, Liu S, Thitsartarn W, Tan MJBH, Suwardi A, Zhu Q, Loh XJ. Recent advances in host-guest supramolecular hydrogels for biomedical applications. Chem Asian J 2022; 17:e202200608. [PMID: 35866560 DOI: 10.1002/asia.202200608] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Indexed: 11/09/2022]
Abstract
The recognition-directed host-guest interaction is recognized as a valuable tool for creating supramolecular polymers. Functional hydrogels constructed through the dynamic and reversible host-guest complexation are endowed with a great many appealing features, such as superior self-healing, injectability, flexibility, stimuli-responsiveness and biocompatibility, which are crucial for biological and medicinal applications. With numerous topological structures and host-guest combinations established previously, recent breakthroughs in this area mostly focus on further improvement and fine-tuning of various properties for practical utilizations. The current contribution provides a comprehensive overview of the latest developments in host-guest supramolecular hydrogels, with a particular emphasis on the innovative molecular-level design strategies and hydrogel formation methodologies targeting at a wide range of active biomedical domains, including drug delivery, 3D printing, wound healing, tissue engineering, artificial actuators, biosensors, etc. Furthermore, a brief conclusion and discussion on the steps forward to bring these smart hydrogels to clinical practice is also presented.
Collapse
Affiliation(s)
- Suxi Wang
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Pin Jin Ong
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Songlin Liu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | | | - Ady Suwardi
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, 2 Fusionopolis Way, 138634, Singapore, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| |
Collapse
|
46
|
Jiang T, Yang T, Bao Q, Sun W, Yang M, Mao C. Construction of tissue-customized hydrogels from cross-linkable materials for effective tissue regeneration. J Mater Chem B 2022; 10:4741-4758. [PMID: 34812829 DOI: 10.1039/d1tb01935j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogels are prevalent scaffolds for tissue regeneration because of their hierarchical architectures along with outstanding biocompatibility and unique rheological and mechanical properties. For decades, researchers have found that many materials (natural, synthetic, or hybrid) can form hydrogels using different cross-linking strategies. Traditional strategies for fabricating hydrogels include physical, chemical, and enzymatical cross-linking methods. However, due to the diverse characteristics of different tissues/organs to be regenerated, tissue-customized hydrogels need to be developed through precisely controlled processes, making the manufacture of hydrogels reliant on novel cross-linking strategies. Thus, hybrid cross-linkable materials are proposed to tackle this challenge through hybrid cross-linking strategies. Here, different cross-linkable materials and their associated cross-linking strategies are summarized. From the perspective of the major characteristics of the target tissues/organs, we critically analyze how different cross-linking strategies are tailored to fit the regeneration of such tissues and organs. To further advance this field, more appropriate cross-linkable materials and cross-linking strategies should be investigated. In addition, some innovative technologies, such as 3D bioprinting, the internet of medical things (IoMT), and artificial intelligence (AI), are also proposed to improve the development of hydrogels for more efficient tissue regeneration.
Collapse
Affiliation(s)
- Tongmeng Jiang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, P. R. China.
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
47
|
Ren P, Wei D, Liang M, Xu L, Zhang T, Zhang Q. Alginate/gelatin-based hybrid hydrogels with function of injecting and encapsulating cells in situ. Int J Biol Macromol 2022; 212:67-84. [PMID: 35588977 DOI: 10.1016/j.ijbiomac.2022.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 12/18/2022]
Abstract
Multi-network hydrogels with high strength and toughness have attracted increasing attention. Herein, a hybrid hydrogel consisting of alginate, gelatin, and polyacrylamide was constructed with the combination of advantages of natural and synthetic polymers. Alginate grafted with host-guest complex of βCD/Ad-AAm was first prepared, namely Alg-βCD/Ad-AAm, then further crosslink with gelatin methacryloyl (GelMA) to form hydrogel via one-step UV light initiation. The hydrogel produced by this method has more uniform and well-crosslinked networks. The hydrogels demonstrated uniform porosity, adjustable hydrophilicity (water contact angle within 32.7-91.5°), and desired mechanical properties (maximum tensile strain of 242.8%, tensile strength of 75.9 kPa, and Young's modulus of 28.5 kPa). The hydrogel also possessed self-healing ability and pH sensitivity, showing higher mechanical tensile strength at lower pH. The temperature-adjustable viscosity of pre-gel solution (sol-gel transition point of 20.4 °C) endowed it to be 3D printed as a bioink, and the printed scaffold exhibited good resilience and toughness. Moreover, HUVEC, L929, and 3T3 cells were cultured on hydrogel surfaces for 28 days and were enveloped within the hydrogels for 3D culture, indicating excellent cytocompatibility of the hydrogels. Therefore, this hybrid hydrogel system can be used potentially in 3D cell culture and tissue engineering.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dandan Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Liang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Li Xu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
48
|
Yi P, Chen J, Chang J, Wang J, Lei Y, Jing R, Liu X, Sun A, Wei L, Li Y. Self-Healable, Strong, and Tough Polyurethane Elastomer Enabled by Carbamate-Containing Chain Extenders Derived from Ethyl Carbonate. Polymers (Basel) 2022; 14:1673. [PMID: 35566842 PMCID: PMC9101531 DOI: 10.3390/polym14091673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Commercial diol chain extenders generally could only form two urethane bonds, while abundant hydrogen bonds were required to construct self-healing thermoplastic polyurethane elastomers (TPU). Herein, two diol chain extenders bis(2-hydroxyethyl) (1,3-pheny-lene-bis-(methylene)) dicarbamate (BDM) and bis(2-hydroxyethyl) (methylenebis(cyclohexane-4,1-diy-l)) dicarbamate (BDH), containing two carbamate groups were successfully synthesized through the ring-opening reaction of ethylene carbonate (EC) with 1,3-benzenedimetha-namine (MX-DA) and 4, 4'-diaminodicyclohexylmethane (HMDA). The two chain extenders were applied to successfully achieve both high strength and high self-healing ability. The BDM-1.7 and BDH-1.7 elastomers had high comprehensive self-healing efficiency (100%, 95%) after heated treatment at 60 °C, and exhibited exceptional comprehensive mechanical performances in tensile strength (20.6 ± 1.3 MPa, 37.1 ± 1.7 MPa), toughness (83.5 ± 2.0 MJ/m3, 118.8 ± 5.1 MJ/m3), puncture resistance (196.0 mJ, 626.0 mJ), and adhesion (4.6 MPa, 4.8 MPa). The peculiar mechanical and self-healing properties of TPUs originated from the coexisting short and long hard segments, strain-induced crystallization (SIC). The two elastomers with excellent properties could be applied to engineering-grade fields such as commercial sealants, adhesives, and so on.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liuhe Wei
- Zhengzhou Key Laboratory of Elastic Sealing Materials, College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China; (P.Y.); (J.C.); (J.C.); (J.W.); (Y.L.); (R.J.); (X.L.); (A.S.)
| | - Yuhan Li
- Zhengzhou Key Laboratory of Elastic Sealing Materials, College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China; (P.Y.); (J.C.); (J.C.); (J.W.); (Y.L.); (R.J.); (X.L.); (A.S.)
| |
Collapse
|
49
|
Wang Z, Zhang Y, Yin Y, Liu J, Li P, Zhao Y, Bai D, Zhao H, Han X, Chen Q. High-Strength and Injectable Supramolecular Hydrogel Self-Assembled by Monomeric Nucleoside for Tooth-Extraction Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108300. [PMID: 35066934 DOI: 10.1002/adma.202108300] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/18/2022] [Indexed: 02/05/2023]
Abstract
Hydrogels with high mechanical strength and injectability have attracted extensive attention in biomedical and tissue engineering. However, endowing a hydrogel with both properties is challenging because they are generally inversely related. In this work, by constructing a multi-hydrogen-bonding system, a high-strength and injectable supramolecular hydrogel is successfully fabricated. It is constructed by the self-assembly of a monomeric nucleoside molecular gelator (2-amino-2'-fluoro-2'-deoxyadenosine (2-FA)) with distilled water/phosphate buffered saline as solvent. Its storage modulus reaches 1 MPa at a concentration of 5.0 wt%, which is the strongest supramolecular hydrogel comprising an ultralow-molecular-weight (MW < 300) gelator. Furthermore, it exhibits excellent shear-thinning injectability, and completes the sol-gel transition in seconds after injection at 37 °C. The multi-hydrogen-bonding system is essentially based on the synergistic interactions between the double NH2 groups, water molecules, and 2'-F atoms. Furthermore, the 2-FA hydrogel exhibits excellent biocompatibility and antibacterial activity. When applied to rat molar extraction sockets, compared to natural healing and the commercial hemorrhage agent gelatin sponge, the 2-FA hydrogel exhibits faster degradation and induces less osteoclastic activity and inflammatory infiltration, resulting in more complete bone healing. In summary, this study provides ideas for proposing a multifunctional, high-strength, and injectable supramolecular hydrogel for various biomedical engineering applications.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yanan Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Peiran Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Ding Bai
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| |
Collapse
|
50
|
Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact Mater 2022; 9:198-220. [PMID: 34820566 PMCID: PMC8586021 DOI: 10.1016/j.bioactmat.2021.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The construction of biomimetic vasculatures within the artificial tissue models or organs is highly required for conveying nutrients, oxygen, and waste products, for improving the survival of engineered tissues in vitro. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular biology have enabled the creation of three-dimensional (3D) tissues and organs composed of highly complex vascular systems. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the vascularization of tissues. Initially, the significance of vascular elements and the regeneration mechanisms of vascularization, including angiogenesis and vasculogenesis, are briefly introduced. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments in fabricating vascularized tissues or organs, in terms of tunable physical properties, high similarity in physiological environments, and alternative shaping mechanisms, among others. Furthermore, we discuss the utilization of such hydrogels-based vascularized tissues in various applications, including tissue regeneration, drug screening, and organ-on-chips. Finally, we put forward the key challenges, including multifunctionalities of hydrogels, selection of suitable cell phenotype, sophisticated engineering techniques, and clinical translation behind the development of the tissues with complex vasculatures towards their future development.
Collapse
Affiliation(s)
- Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Zhilu Yang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| |
Collapse
|