1
|
Heidtmann CV, Fisker CD, Løgstrup S, Eriksen PG, Storm LH, Stærk K, Moesgaard L, Pedersen M, Madsen MJ, Yusuf A, Urup K, Højgaard IS, Ramesh J, Pihlsbech RH, Sørensen CB, Rønn TL, Larsen AB, Caspersen LR, Møller MÆ, Sixhøj CR, Frimodt-Møller N, Klitgaard JK, Andersen TE, Nielsen CU, Nielsen P. Linker and Head-Group Exploration of Anti-MRSA Triaromatic Pleuromutilins. J Med Chem 2025. [PMID: 40241444 DOI: 10.1021/acs.jmedchem.5c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Based on hit 6, a triaromatic pleuromutilin (TAP) and potent bacterial protein synthesis inhibitor, we explored the chemical space surrounding its pharmacophore by synthesizing 45 new conjugates. Herein, the adenine head was exchanged for new heterocycles, and the benzyl linker exchanged for aniline-, ether-, amide-, and hydroxybenzyl linkages, with all of them successfully engaging the pharmacophore, a result which was mirrored in a strict 3D pharmacophore model. The aniline- and amide-linked conjugates moreover demonstrated greater stability in liver microsomes, while especially conjugate 21, but also 31, 43, 45, and 55 displayed excellent potency, with MRSA activities on par with 6 or better. Docking to the ribosome suggested a shifted engagement with C2469 for 21 over 6, resulting in greater multivalency, while 43/45 likely coordinates Mg2+. Lastly, conjugate 21 displayed efficacy equal to commercial Fucidin LEO (5) in a mouse Staphylococcus aureus skin infection model, highlighting its potential as a topical antibiotic lead.
Collapse
Affiliation(s)
- Christoffer V Heidtmann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Christian Ding Fisker
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Sarah Løgstrup
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Patrick G Eriksen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Louise H Storm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Kristian Stærk
- Department of Clinical Research, Research Unit of Clinical Microbiology, University of Southern Denmark, Odense M DK-5000, Denmark
- Department of Dermatology and Allergy Centre, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Laust Moesgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Maria Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Martin J Madsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Ahmed Yusuf
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Krista Urup
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Iben S Højgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Jayappragash Ramesh
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Rasmus H Pihlsbech
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Caroline B Sørensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Tore L Rønn
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Alexander B Larsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Laurits R Caspersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Mathias Æ Møller
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Chris R Sixhøj
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Janne K Klitgaard
- Department of Clinical Research, Research Unit of Clinical Microbiology, University of Southern Denmark, Odense M DK-5000, Denmark
- Department of Biochemistry and Molecular Biology, Research Unit of Molecular Microbiology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Thomas E Andersen
- Department of Clinical Research, Research Unit of Clinical Microbiology, University of Southern Denmark, Odense M DK-5000, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense DK-5000, Denmark
| | - Carsten U Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| |
Collapse
|
2
|
Petersen EF, Rasmussen CLM, Prabhala BK, Heidtmann CV, Nielsen P, Nielsen CU. The oral bioavailability of a pleuromutilin antibiotic candidate is increased after co-administration with the CYP3A4 inhibitor ritonavir and the P-gp inhibitor zosuquidar formulated as amorphous solid dispersions. Int J Pharm 2025; 673:125397. [PMID: 40010527 DOI: 10.1016/j.ijpharm.2025.125397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
The aim of the present work was to investigate if CYP-mediated metabolism or P-gp recognition were the main limitations to developing oral formulations of the pleuromutilin drug candidate CVH-174, 16, and to subsequently increase the bioavailability through a formulation design based on amorphous solid dispersions (ASDs) containing either a CYP3A inhibitor or a P-gp inhibitor or both. ASDs were produced using HPMC-5 with ritonavir and zosuquidar as CYP3A4 and P-gp inhibitors, respectively, through freeze-drying. The ASDs were characterized using XRPD over time to assess the stability of the formulations. The oral bioavailability was investigated in Sprague-Dawley rats following either oral or intravenous (IV) dosing. The results showed that ritonavir could be supersaturated when formulated in an HPMC-5-based ASD, whereas HPMC-5-based ASDs could not increase the solubility of CVH-174 and zosuquidar. The ASD formulations remained stable for the period covering the experiments. In vivo IV dosing showed that CVH-174 was metabolized fast with a half-life of 0.15 h. The oral bioavailability of CVH-174 was low ∼ 1 % and could not be increased by co-dosing with a P-gp inhibitor alone, whereas the CYP3A4 inhibitor ritonavir did increase the bioavailability. The combined co-administration of ritonavir- and zosuquidar-containing ASDs surprisingly increased CVH-174 bioavailability to around 18 %. In conclusion, the oral bioavailability of CVH-174 can be significantly increased through a formulation design encompassing an inhibitor of the CYP3A4 enzyme, and this holds great potential for the future development of an inherent metabolic labile pleuromutilin drug class.
Collapse
Affiliation(s)
- Emilie Fynbo Petersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | - Bala Krishna Prabhala
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Christoffer Vogsen Heidtmann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
3
|
Kakumu Y, Chaudhri AA, Helfrich EJN. The role and mechanisms of canonical and non-canonical tailoring enzymes in bacterial terpenoid biosynthesis. Nat Prod Rep 2025; 42:501-539. [PMID: 39895377 DOI: 10.1039/d4np00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Covering: up to April 2024Terpenoids represent the largest and structurally most diverse class of natural products. According to textbook knowledge, this diversity arises from a two-step biosynthetic process: first, terpene cyclases generate a vast array of mono- and polycyclic hydrocarbon scaffolds with multiple stereocenters from a limited set of achiral precursors, a process extensively studied over the past two decades. Subsequently, tailoring enzymes further modify these complex scaffolds through regio- and stereocontrolled oxidation and other functionalization reactions, a topic of increasing interest in recent years. The resulting highly functionalized terpenoids exhibit a broad spectrum of unique biological activities, making them promising candidates for drug development. Recent advances in genome sequencing technologies along with the development and application of sophisticated genome mining tools have revealed bacteria as a largely untapped resource for the discovery of complex terpenoids. Functional characterization of a limited number of bacterial terpenoid biosynthetic pathways, combined with in-depth mechanistic studies of key enzymes, has begun to reveal the versatility of bacterial enzymatic processes involved in terpenoid modification. In this review, we examine the various tailoring reactions leading to complex bacterial terpenoids. We first discuss canonical terpene-modifying enzymes, that catalyze the functionalization of unactivated C-H bonds, incorporation of diverse functional groups, and oxidative and non-oxidative rearrangements. We then explore non-canonical terpene-modifying enzymes that facilitate oxidative rearrangement, cyclization, isomerization, and dimerization reactions. The increasing number of characterized tailoring enzymes that participate in terpene hydrocarbon scaffold fomation, rather than merely decorating pre-formed scaffolds suggests that a re-evaluation of the traditional two-phase model for terpenoid biosynthesis might be warranted. Finally, we address the potential and challenges of mining bacterial genomes to identify terpene biosynthetic gene clusters and expand the bacterial terpene biosynthetic and chemical space.
Collapse
Affiliation(s)
- Yuya Kakumu
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Ayesha Ahmed Chaudhri
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Eric J N Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Tian L, Qiang T, Xia J, Zhang B, Lu Q, Liu Y, Hu J, Kang K, Li J, Zhang J, Yang X, Wang Y, Zhang D, Gao H, Liang C. Kidney Targeting Smart Antibiotic Discovery: Multimechanism Pleuromutilins for Pyelonephritis Therapy. J Med Chem 2025; 68:3335-3355. [PMID: 39813601 DOI: 10.1021/acs.jmedchem.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Multidrug-resistant (MDR) bacteria pose a global health threat, underscoring the need for new antibiotics. Lefamulin, the first novel-mechanism antibiotic approved by the FDA in decades, showcases pleuromutilins' promise due to low mutation frequency. However, their clinical use is limited by poor pharmacokinetics and organ toxicity. To overcome these limitations, we modified lefamulin's C14 side chain via quaternization and incorporated rigid molecular fragments to enhance pharmacological properties. Introducing a quaternary ammonium group improved liver and kidney targeting via organic cation transporters (OCTs). Candidate 8i, a quaternized imidazo[4,5-c]pyridine pleuromutilin, demonstrated broad-spectrum activity against MDR bacteria, Mycoplasma and Chlamydophila at low doses. 8i targeted transport to infected kidneys, disrupted biofilms, damaged membranes, and inhibited protein synthesis by targeting 50S ribosomal subunit. It cleared rapidly, reducing long-term toxicity. Daily injections were an effective short-course treatment for systemic infections and pyelonephritis. This research presents a novel OCT-mediated, organ-targeted antibiotic design strategy to manage antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Juan Xia
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Boxin Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qi Lu
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuting Liu
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jinrong Hu
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Kairui Kang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jialin Li
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiayun Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiuding Yang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yongbo Wang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dezhu Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an 710025, China
| | - Hong Gao
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- Shaanxi Pioneer Biotech Co., Ltd., Xi'an 710021, China
| | - Chengyuan Liang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
5
|
Chen C, Yin Y, Lu P, Han T, Wang H, Li C. Establishing the Comprehensive Structure-Activity Relationship of the Natural Antibiotic Kibdelomycin/Amycolamicin. Angew Chem Int Ed Engl 2025; 64:e202415439. [PMID: 39344479 DOI: 10.1002/anie.202415439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/01/2024]
Abstract
Kibdelomycin (KBD) and amycolamicin (AMM) are potent natural antibiotics effective against antibiotic-resistant Gram-positive pathogens, including vancomycin-intermediate Staphylococcus aureus (S. aureus, VISA), methicillin-resistant S. aureus (MRSA), and quinolone-resistant S. aureus (QRSA). Their antibacterial activity stems from an unprecedented dual mechanism: the lower binding sites occupy the adenosine triphosphate (ATP) binding pocket of bacterial type II topoisomerases, while the upper binding sites disrupt the enzyme dimer interface. This dual action, combined with their unique chemical structures, positions KBD and AMM as promising scaffolds for developing new antibiotics. However, the structure-activity relationship (SAR) of KBD/AMM remains underexplored due to their highly complex chemical structures. In this study, we utilized total synthesis to produce KBD/AMM analogs with various site modifications and evaluated their antimicrobial activities. Our findings establish the first comprehensive SAR for KBD/AMM, paving the way for the development of novel KBD/AMM-based antibiotics.
Collapse
Affiliation(s)
- Chenglong Chen
- College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing, 100875, P.R. China
- National Institute of Biological Sciences, Beijing, 7 Science Park Road ZGC Life Science Park, Beijing, 102206, P.R. China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, P.R. China
| | - Panrui Lu
- National Institute of Biological Sciences, Beijing, 7 Science Park Road ZGC Life Science Park, Beijing, 102206, P.R. China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 7 Science Park Road ZGC Life Science Park, Beijing, 102206, P.R. China
| | - Ting Han
- National Institute of Biological Sciences, Beijing, 7 Science Park Road ZGC Life Science Park, Beijing, 102206, P.R. China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 7 Science Park Road ZGC Life Science Park, Beijing, 102206, P.R. China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, P.R. China
| | - Chao Li
- National Institute of Biological Sciences, Beijing, 7 Science Park Road ZGC Life Science Park, Beijing, 102206, P.R. China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 7 Science Park Road ZGC Life Science Park, Beijing, 102206, P.R. China
| |
Collapse
|
6
|
Luo X, Wu G, Feng J, Zhang J, Fu H, Yu H, Han Z, Nie W, Zhu Z, Liu B, Pan W, Li B, Wang Y, Zhang C, Li T, Zhang W, Wu S. Novel pleuromutilin derivatives conjugated with phenyl-sulfide and boron-containing moieties as potent antibacterial agents against antibiotic-resistant bacteria. Eur J Med Chem 2024; 277:116745. [PMID: 39106659 DOI: 10.1016/j.ejmech.2024.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
In response to the escalating threat of microbial resistance, a series of novel pleuromutilin derivatives, conjugated with phenyl-sulfide and boron-containing moieties, were designed and synthesized. Most derivatives, especially 14b and 16b, demonstrated significant efficacy against Gram-positive bacteria, including multidrug-resistant strains, as well as pleuromutilin-resistant strains. Compound 16b showed high stability in the liver microsomes of rats and humans, along with acceptable tolerance in vitro and in vivo. Additionally, compound 16b exhibited promising efficacy in MRSA-infected mouse models. Our data highlight the potential of conjugated pleuromutilin derivatives as valuable agents against drug-resistant bacteria.
Collapse
Affiliation(s)
- Xinyu Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guangxu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Jing Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jie Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hengjian Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zunsheng Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wansen Nie
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, China
| | - Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Bo Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tianlei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
7
|
Hainsworth K, Cadelis MM, Rouvier F, Brunel JM, Copp BR. Synthesis and Antibacterial Activity of Alkylamine-Linked Pleuromutilin Derivatives. Antibiotics (Basel) 2024; 13:1018. [PMID: 39596713 PMCID: PMC11591448 DOI: 10.3390/antibiotics13111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
In an effort to expand the spectrum of the antibacterial activity of pleuromutilin, a series of amine- and polyamine-linked analogues were prepared and evaluated for activities against a panel of microorganisms. Simple C-22-substituted amino esters or diamines 16, 17, 18, and 22, as well as two unusual amine-linked bis-pleuromutilin examples 20 and 23, displayed variable levels of activity towards Staphylococcus aureus ATCC 25923 and methicillin-resistant S. aureus, but with no detectable activities towards Gram-negative bacteria. Fortunately, the incorporation of a longer-chain triamine or polyamine (spermine) at C-22 did afford analogues (30, 31) that exhibited activity towards both S. aureus ATCC 25923 and Escherichia coli ATCC 25922 with MIC 6.1-13.4 µM. Spermine-pleuromutilin analogue 31 was also able to enhance the action of doxycycline towards Pseudomonas aeruginosa ATCC 27853 by eight-fold, highlighting it as a useful scaffold for the development of new antibacterial pleuromutilin analogues that exhibit a broader spectrum of activity.
Collapse
Affiliation(s)
- Kerrin Hainsworth
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand (M.M.C.)
| | - Melissa M. Cadelis
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand (M.M.C.)
- School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Florent Rouvier
- Membranes et Cibles Thérapeutiques, SSA, INSERM, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France (J.M.B.)
| | - Jean Michel Brunel
- Membranes et Cibles Thérapeutiques, SSA, INSERM, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France (J.M.B.)
| | - Brent R. Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand (M.M.C.)
| |
Collapse
|
8
|
Zhou X, Zhang H, Zhou Y, Yi Y, Yuan R, Pu W, Wang S, Shang R. Antimicrobial activity, safety and pharmacokinetics evaluation of PMTM: A novel pleuromutilin candidate. Biomed Pharmacother 2024; 179:117378. [PMID: 39241564 DOI: 10.1016/j.biopha.2024.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
The prevalence of infections by methicillin-resistant Staphylococcus aureus (MRSA) has led to dramatically increased mortality and threated the public health worldwide. Pleuromutilin compound 14-O-[(4-(pyrrolidine-1-yl)-6-methylpyrimidine-2-yl) thioacetyl] mutilin (PMTM) is a new antibacterial agent with excellent antibacterial efficacy against Gram positive bacteria. For further developing PMTM as a potential drug against MRSA infections, the in vitro antibacterial efficacy and preclinical safety were explored in this study. The results revealed that PMTM presented the higher anti-MRSA activity, increasing post-antibiotic effect (PAE) and limited potential to develop resistance. In safety evaluation, PMTM demonstrated low cytotoxicity, poor hemolytic activity, tolerable oral acute toxic effects in rats, devoid of mutagenic response and weak inhibitory potential on CYP3A4, but displayed moderate potential hERG K+ channel inhibition. Furthermore, two salts of PMTM with sulfuric acid and hydrochloric acid were prepared and confirmed. The sulfate salt of PMTM exhibited the highest solubility based on powder dissolution experiments and was chosen to evaluate pharmacokinetics properties, in which it displayed improved mouse pharmacokinetics parameters and oral bioavailability. The present study successfully provides a good foundation of PMTM for new antibacterial drug development.
Collapse
Affiliation(s)
- Xingqian Zhou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Yuhang Zhou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong 250023, China
| | - Ruili Yuan
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| |
Collapse
|
9
|
Mihara Y, Kadoya H, Kakihana S, Kotoku N. Concise and Stereospecific Total Synthesis of Arenastatin A and Its Segment B Analogs. Molecules 2024; 29:4058. [PMID: 39274905 PMCID: PMC11396571 DOI: 10.3390/molecules29174058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
A novel and concise synthetic method for arenastatin A, a cytotoxic cyclic depsipeptide of marine origin, was developed in this study. The convergent assembly of the four segments, including the cross-metathesis reaction, gave a cyclization precursor, and Fmoc deprotection caused simultaneous macrocyclization. The Corey-Chaykovsky reaction using a chiral sulfur ylide afforded arenastatin A with complete stereoselectivity in the longest linear sequence of seven reaction steps from the known compound. Using this synthetic method, some analogs of segment B were prepared through a late-stage diversification strategy. The simple SN2 reaction of the thiolate toward the tosylate precursor, prepared using almost the same synthetic method as described above, provided the desired sulfide analogs.
Collapse
Affiliation(s)
| | | | | | - Naoyuki Kotoku
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan; (Y.M.); (H.K.); (S.K.)
| |
Collapse
|
10
|
Zheng Y, Ye S, Huang S, Cheng Y, Zhang Y, Leng Y, He M, Wu E, Chen J, Kong L, Zhang H. Lefamulin Overcomes Acquired Drug Resistance via Regulating Mitochondrial Homeostasis by Targeting ILF3 in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401789. [PMID: 38874478 PMCID: PMC11321631 DOI: 10.1002/advs.202401789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Acquired resistance represents a critical clinical challenge to molecular targeted therapies such as tyrosine kinase inhibitors (TKIs) treatment in hepatocellular carcinoma (HCC). Therefore, it is urgent to explore new mechanisms and therapeutics that can overcome or delay resistance. Here, a US Food and Drug Administration (FDA)-approved pleuromutilin antibiotic is identified that overcomes sorafenib resistance in HCC cell lines, cell line-derived xenograft (CDX) and hydrodynamic injection mouse models. It is demonstrated that lefamulin targets interleukin enhancer-binding factor 3 (ILF3) to increase the sorafenib susceptibility of HCC via impairing mitochondrial function. Mechanistically, lefamulin directly binds to the Alanine-99 site of ILF3 protein and interferes with acetyltransferase general control non-depressible 5 (GCN5) and CREB binding protein (CBP) mediated acetylation of Lysine-100 site, which disrupts the ILF3-mediated transcription of mitochondrial ribosomal protein L12 (MRPL12) and subsequent mitochondrial biogenesis. Clinical data further confirm that high ILF3 or MRPL12 expression is associated with poor survival and targeted therapy efficacy in HCC. Conclusively, this findings suggest that ILF3 is a potential therapeutic target for overcoming resistance to TKIs, and lefamulin may be a novel combination therapy strategy for HCC treatment with sorafenib and regorafenib.
Collapse
Affiliation(s)
- Ying Zheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Shengtao Ye
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Shiyu Huang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Yang Cheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Yanqiu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Yingrong Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Mengmeng He
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Enyi Wu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Junxin Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural MedicinesSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
11
|
Jiang C, Hu L, Shen S, Zhang J, Wang X, Ma D, Lu G, Xu T. Type I [4σ+4π] versus [4σ+4π-1] Cycloaddition To Access Medium-Sized Carbocycles and Discovery of a Liver X Receptor β-Selective Ligand. Angew Chem Int Ed Engl 2024; 63:e202405838. [PMID: 38647574 DOI: 10.1002/anie.202405838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Transition-metal-catalyzed [4+4] cycloaddition leading to cyclooctanoids has centered on dimerization between 1,3-diene-type substrates. Herein, we describe a [4σ+4π-1] and [4σ+4π] cycloaddition strategy to access 7/8-membered fused carbocycles through rhodium-catalyzed coupling between the 4σ-donor (benzocyclobutenones) and pendant diene (4π) motifs. The two pathways can be controlled by adjusting the solvated CO concentration. A broad range (>40 examples) of 5-6-7 and 5-6-8 polyfused carbocycles was obtained in good yields (up to 90 %). DFT calculations, kinetic monitoring and 13C-labeling experiments were carried out, suggesting a plausible mechanism. Notably, one 5-6-7 tricycle was found to be a very rare, potent, and selective ligand for the liver X receptor β (KD=0.64 μM), which is a potential therapeutic target for cholesterol-metabolism-related fatal diseases.
Collapse
Affiliation(s)
- Cheng Jiang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Laboratory for Marine Drugs and Bioproducts of Marine Natural Products, Ocean University of China, 5 Yushan road, Qingdao, 266003, China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 Shandanan road, Jinan, 250100, China
| | - Shuna Shen
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Laboratory for Marine Drugs and Bioproducts of Marine Natural Products, Ocean University of China, 5 Yushan road, Qingdao, 266003, China
| | - Jianyu Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Laboratory for Marine Drugs and Bioproducts of Marine Natural Products, Ocean University of China, 5 Yushan road, Qingdao, 266003, China
| | - Xi Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Laboratory for Marine Drugs and Bioproducts of Marine Natural Products, Ocean University of China, 5 Yushan road, Qingdao, 266003, China
| | - Dongxu Ma
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Laboratory for Marine Drugs and Bioproducts of Marine Natural Products, Ocean University of China, 5 Yushan road, Qingdao, 266003, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 Shandanan road, Jinan, 250100, China
| | - Tao Xu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Laboratory for Marine Drugs and Bioproducts of Marine Natural Products, Ocean University of China, 5 Yushan road, Qingdao, 266003, China
| |
Collapse
|
12
|
Abstract
Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jia-Hua Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Ralhan K, Iyer KA, Diaz LL, Bird R, Maind A, Zhou QA. Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies. ACS Infect Dis 2024; 10:1483-1519. [PMID: 38691668 PMCID: PMC11091902 DOI: 10.1021/acsinfecdis.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The development of effective antibacterial solutions has become paramount in maintaining global health in this era of increasing bacterial threats and rampant antibiotic resistance. Traditional antibiotics have played a significant role in combating bacterial infections throughout history. However, the emergence of novel resistant strains necessitates constant innovation in antibacterial research. We have analyzed the data on antibacterials from the CAS Content Collection, the largest human-curated collection of published scientific knowledge, which has proven valuable for quantitative analysis of global scientific knowledge. Our analysis focuses on mining the CAS Content Collection data for recent publications (since 2012). This article aims to explore the intricate landscape of antibacterial research while reviewing the advancement from traditional antibiotics to novel and emerging antibacterial strategies. By delving into the resistance mechanisms, this paper highlights the need to find alternate strategies to address the growing concern.
Collapse
Affiliation(s)
| | | | - Leilani Lotti Diaz
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
14
|
Liu Y, Zhou Q, Huo Y, Sun X, Hu J. Recent advances in developing modified C14 side chain pleuromutilins as novel antibacterial agents. Eur J Med Chem 2024; 269:116313. [PMID: 38503168 DOI: 10.1016/j.ejmech.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Owing to the increasing resistance to most existing antimicrobial drugs, research has shifted towards developing novel antimicrobial agents with mechanisms of action distinct from those of current clinical options. Pleuromutilins are antibiotics known for their distinct mechanism of action, inhibiting bacterial protein synthesis by binding to the peptidyl transferase center of the ribosome. Recent studies have revealed that pleuromutilin derivatives can disrupt bacterial cell membranes, thereby enhancing antibacterial efficacy. Both marketed pleuromutilin derivatives and those in clinical trials have been developed by structurally modifying the pleuromutilin C14 side chain to improve their antimicrobial activity. Therefore, this review aims to review advancement in the chemical structural characteristics, antibacterial activities, and structure-activity relationship studies of pleuromutilins, specifically focusing on modifications made to the C14 side chain in recent years. These findings provide a valuable reference for future research and development of pleuromutilins.
Collapse
Affiliation(s)
- Yue Liu
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Qinjiang Zhou
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yiwen Huo
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Xiujuan Sun
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Jinxing Hu
- Shandong Second Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| |
Collapse
|
15
|
Heidtmann CV, Fejer AR, Stærk K, Pedersen M, Asmussen MG, Hertz FB, Prabhala BK, Frimodt-Møller N, Klitgaard JK, Andersen TE, Nielsen CU, Nielsen P. Hit-to-Lead Identification and Validation of a Triaromatic Pleuromutilin Antibiotic Candidate. J Med Chem 2024; 67:3692-3710. [PMID: 38385364 DOI: 10.1021/acs.jmedchem.3c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Herein, we report the hit-to-lead identification of a drug-like pleuromutilin conjugate 16, based on a triaromatic hit reported in 2020. The lead arose as the clear candidate from a hit-optimization campaign in which Gram-positive antibacterial activity, solubility, and P-gp affinity were optimized. Conjugate 16 was extensively evaluated for its in vitro ADMET performance which, apart from solubility, was overall on par with lefamulin. This evaluation included Caco-2 cell permeability, plasma protein binding, hERG inhibition, cytotoxicity, metabolism in microsomes and CYP3A4, resistance induction, and time-kill kinetics. Intravenous pharmacokinetics of 16 proved satisfactory in both mice and pigs; however, oral bioavailability was limited likely due to insufficient solubility. The in vivo efficacy was evaluated in mice, systemically infected with Staphylococcus aureus, where 16 showed rapid reduction in blood bacteriaemia. Through our comprehensive studies, lead 16 has emerged as a highly promising and safe antibiotic candidate for the treatment of Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Christoffer V Heidtmann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Andreas R Fejer
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Kristian Stærk
- Department of Clinical Research, Research Unit of Clinical Microbiology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Maria Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Marco G Asmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Frederik B Hertz
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Bala K Prabhala
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Janne K Klitgaard
- Department of Clinical Research, Research Unit of Clinical Microbiology, University of Southern Denmark, DK-5230 Odense M, Denmark
- Department of Biochemistry and Molecular Biology, Research Unit of Molecular Microbiology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Thomas E Andersen
- Department of Clinical Research, Research Unit of Clinical Microbiology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Carsten U Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
16
|
Zhang J, Liu Q, Zhao H, Li G, Yi Y, Shang R. Design and Synthesis of Pleuromutilin Derivatives as Antibacterial Agents Using Quantitative Structure-Activity Relationship Model. Int J Mol Sci 2024; 25:2256. [PMID: 38396934 PMCID: PMC10888563 DOI: 10.3390/ijms25042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The quantitative structure-activity relationship (QSAR) is one of the most popular methods for the virtual screening of new drug leads and optimization. Herein, we collected a dataset of 955 MIC values of pleuromutilin derivatives to construct a 2D-QSAR model with an accuracy of 80% and a 3D-QSAR model with a non-cross-validated correlation coefficient (r2) of 0.9836 and a cross-validated correlation coefficient (q2) of 0.7986. Based on the obtained QSAR models, we designed and synthesized pleuromutilin compounds 1 and 2 with thiol-functionalized side chains. Compound 1 displayed the highest antimicrobial activity against both Staphylococcus aureus ATCC 29213 (S. aureus) and Methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentrations (MICs) < 0.0625 μg/mL. These experimental results confirmed that the 2D and 3D-QSAR models displayed a high accuracy of the prediction function for the discovery of lead compounds from pleuromutilin derivatives.
Collapse
Affiliation(s)
- Jiaming Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Qinqin Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Haoxia Zhao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Guiyu Li
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| |
Collapse
|
17
|
Kim SH, Hind CK, Fernandes GFS, Wu J, Semenya D, Clifford M, Marsh C, Anselmi S, Mason AJ, Bruce KD, Sutton JM, Castagnolo D. Development of Novel Membrane Disrupting Lipoguanidine Compounds Sensitizing Gram-Negative Bacteria to Antibiotics. ACS Med Chem Lett 2024; 15:239-249. [PMID: 38352828 PMCID: PMC10860194 DOI: 10.1021/acsmedchemlett.3c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
A new class of amphiphilic molecules, the lipoguanidines, designed as hybrids of guanidine and fatty acid compounds, has been synthesized and developed. The new molecules present both a guanidine polar head and a lipophilic tail that allow them to disrupt bacterial membranes and to sensitize Gram-negative bacteria to the action of the narrow-spectrum antibiotics rifampicin and novobiocin. The lipoguanidine 5g sensitizes Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli to rifampicin, thereby reducing the antibiotic minimum inhibitory concentrations (MIC) up to 256-fold. Similarly, 5g is able to potentiate novobiocin up to 64-fold, thereby showing a broad spectrum of antibiotic potentiating activity. Toxicity and mechanism studies revealed the potential of 5g to work synergistically with rifampicin through the disruption of bacterial membranes without affecting eukaryotic cells.
Collapse
Affiliation(s)
- Seong-Heun Kim
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Charlotte K. Hind
- Antimicrobial
Discovery, Development and Diagnostics, Vaccine Development and Evaluation
Centre, UKHSA Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Guilherme F. S. Fernandes
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Jingyue Wu
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Dorothy Semenya
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Melanie Clifford
- Antimicrobial
Discovery, Development and Diagnostics, Vaccine Development and Evaluation
Centre, UKHSA Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Caleb Marsh
- Antimicrobial
Discovery, Development and Diagnostics, Vaccine Development and Evaluation
Centre, UKHSA Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Silvia Anselmi
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - A. James Mason
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Kenneth D. Bruce
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - J. Mark Sutton
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
- Antimicrobial
Discovery, Development and Diagnostics, Vaccine Development and Evaluation
Centre, UKHSA Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Daniele Castagnolo
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
18
|
Nazli A, Tao W, You H, He X, He Y. Treatment of MRSA Infection: Where are We? Curr Med Chem 2024; 31:4425-4460. [PMID: 38310393 DOI: 10.2174/0109298673249381231130111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 02/05/2024]
Abstract
Staphylococcus aureus is a leading cause of septicemia, endocarditis, pneumonia, skin and soft tissue infections, bone and joint infections, and hospital-acquired infections. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality, and continues to be a major public health problem. The emergence of multidrug-resistant MRSA strains along with the wide consumption of antibiotics has made anti-MRSA treatment a huge challenge. Novel treatment strategies (e.g., novel antimicrobials and new administrations) against MRSA are urgently needed. In the past decade, pharmaceutical companies have invested more in the research and development (R&D) of new antimicrobials and strategies, spurred by favorable policies. All research articles were collected from authentic online databases, including Google Scholar, PubMed, Scopus, and Web of Science, by using different combinations of keywords, including 'anti-MRSA', 'antibiotic', 'antimicrobial', 'clinical trial', 'clinical phase', clinical studies', and 'pipeline'. The information extracted from articles was compared to information provided on the drug manufacturer's website and Clinical Trials.gov (https://clinicaltrials.gov/) to confirm the latest development phase of anti-MRSA agents. The present review focuses on the current development status of new anti-MRSA strategies concerning chemistry, pharmacological target(s), indications, route of administration, efficacy and safety, pharmacokinetics, and pharmacodynamics, and aims to discuss the challenges and opportunities in developing drugs for anti-MRSA infections.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wenlan Tao
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Hengyao You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoli He
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
19
|
Liu Q, Zhang H, Yi Y, Wang P, Pu W, Wang S, Shang R. Synthesis and evaluation of novel pleuromutilin derivatives targeting the 50S ribosomal subunit for antibacterial ability. Eur J Med Chem 2023; 262:115882. [PMID: 37879170 DOI: 10.1016/j.ejmech.2023.115882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Multidrug-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus, have become a major global public health concern. Therefore, developing new antibiotics that do not possess cross-resistance for the currently available antibiotics is critical. Herein, we synthesized a novel class of pleuromutilin derivatives containing substituted triazine with improved antibacterial activity. Among these derivatives, 6d, which contains 4-dimethylamino-1,3,5-triazine in the side chain of pleuromutilin, exhibited highly promising antimicrobial activity and mitigated antibiotic resistance. The high antibacterial potency of 6d was further supported by docking model analysis and green fluorescent protein inhibition assay. Additionally, cytotoxicity and acute oral toxicity evaluation and in vivo mouse systemic infection experiments revealed that 6d possessed tolerable toxicity and promising therapeutic efficacy.
Collapse
Affiliation(s)
- Qinqin Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - YunPeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, 202 Gongyebeilu, Jinan, 250023, Shandong, China
| | - Panpan Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| |
Collapse
|
20
|
Huang Z, Wang X, Jin Y, Wang Z, Yu ZX. Rhodium-Catalyzed [7 + 1] Cycloaddition of Exocyclic 1,3-Dienylcyclopropanes and Carbon Monoxide. Org Lett 2023. [PMID: 38051213 DOI: 10.1021/acs.orglett.3c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A rhodium-catalyzed [7 + 1] reaction of exocyclic 1,3-dienylcyclopropanes and carbon monoxide has been developed to synthesize eight-membered carbocycle-embedded bicyclic and tricyclic molecules. In addition, ab initio calculations were conducted to reveal the reaction mechanism.
Collapse
Affiliation(s)
- Zhiqiang Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yi Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zuwei Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
21
|
Li M, Li J, Li J, Zhang J, Zhao Y, Li W, Zhang Y, Hu J, Xie X, Zhang D, Li H, Zhao Q, Gao H, Liang C. Design, synthesis, and evaluation of novel pleuromutilin aryl acrylate derivatives as promising broad-spectrum antibiotics especially for combatting multi-drug resistant gram-negative bacteria. Eur J Med Chem 2023; 259:115653. [PMID: 37531743 DOI: 10.1016/j.ejmech.2023.115653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
The emergence of drug-resistant strains presents a grave challenge for traditional antibiotics, underscoring the exigency of exploring novel antibacterial drugs. To address this, the present study endeavors to design and synthesize a collection of pleuromutilin aromatic acrylate derivatives, guided by combination principles. The antibacterial activity and structure-activity relationship of these derivatives were evaluated, and most of the derivatives displayed moderate to excellent antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria. Among these derivatives, 5g exhibited the strongest antibacterial activity, with MIC (minimum inhibitory concentration) values ranging from 1-32 μg/mL, and a MIC value against clinically isolated drug-resistant strains of 4-64 μg/mL. Additionally, 5g exhibited negligible cytotoxicity, superior anti-mycoplasma activity, and a greater propensity to perturb bacterial cell membranes. Notably, the administration of 5g resulted in an increased survival rate of MRSA (Methicillin-resistant Staphylococcus aureus)-infected mice, with an ED50 (median effective dose) value of 9.04 mg/kg. These results indicated the potential of 5g to be further developed as an antibacterial drug for the clinical treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Min Li
- College of Pharmacy, Xinjiang Medical University, No.567 Shangde North Road, Urumqi, Xinjiang, 830001, PR China.
| | - Jialin Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jingyi Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jie Zhang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuqing Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Wenying Li
- College of Pharmacy, Xinjiang Medical University, No.567 Shangde North Road, Urumqi, Xinjiang, 830001, PR China
| | - Yunfei Zhang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jinrong Hu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Han Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qianqian Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Hong Gao
- Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710021, PR China
| | - Chengyuan Liang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
22
|
Zhou Y, Yi Y, Yang J, Zhang H, Liu Q, Wang S, Pu W, Shang R. Anti-methicillin-resistant Staphylococcus aureus activity and safety evaluation of 14-O-[(5-ethoxycarbonyl-4,6-dimethylpyrimidine-2-yl) thioacetyl] mutilin (EDT). Sci Rep 2023; 13:15267. [PMID: 37709940 PMCID: PMC10502144 DOI: 10.1038/s41598-023-42621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have threated the public health worldwide, which emphasizes the urgent need for new drugs with novel mechanism of actions. 14-O-[(5-ethoxycarbonyl-4,6-dimethylpyrimidine-2-yl) thioacetyl] mutilin (EDT) is a pleuromutilin compound with high activity against several Gram-positive bacteria in vitro and in vivo. This study aimed to verifying the potential anti-MRSA activity and evaluating the safety of EDT. In in vitro antibacterial activity assays, EDT exhibited potent antibacterial activity against MRSA isolated from clinic (minimum inhibitory concentration = 0.0313-0.125 μg/mL), increased post-antibiotic effect (PAE) values and limited potential for the development of resistance. Docking model and green fluorescent protein (GFP) inhibition assay further elucidated the higher antibacterial activities of EDT via mechanism of action. In safety evaluation, EDT exhibited low cytotoxic effect and acute oral toxicity in mice and avoided to significantly increase the number of revertant colonies of six tested strains in the Ames study. Furthermore, EDT displayed a moderate inhibitory effect on CYP3A4 and moderate stability in mouse and human liver microsomes, providing a promising agent for the development of new antimicrobial candidate.
Collapse
Affiliation(s)
- Yuhang Zhou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, 250023, People's Republic of China
| | - Jing Yang
- Gansu Analysis and Research Center, Lanzhou, 730000, People's Republic of China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Qinqin Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, No. 335, Qilihe District, Lanzhou, 730050, People's Republic of China.
| |
Collapse
|
23
|
Wang J, Hu YH, Zhou KX, Wang W, Li F, Li K, Zhang GY, Tang YZ. Design, Synthesis and Biological Evaluation of Novel Pleuromutilin Derivatives Containing 6-Chloro-1-R-1 H-pyrazolo[3,4- d]pyrimidine-4-amino Side Chain. Molecules 2023; 28:molecules28093975. [PMID: 37175382 PMCID: PMC10180054 DOI: 10.3390/molecules28093975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Two series of pleuromutilin derivatives were designed and synthesized as inhibitors against Staphylococcus aureus (S. aureus). 6-chloro-4-amino-1-R-1H-pyrazolo[3,4-d]pyrimidine or 4-(6-chloro-1-R-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-phenylthiol were connected to pleuromutilin. A diverse array of substituents was introduced at the N-1 position of the pyrazole ring. The in vitro antibacterial activities of these semisynthetic derivatives were evaluated against two standard strains, Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Staphylococcus aureus (S. aureus), ATCC 29213 and two clinical S. aureus strains (144, AD3) using the broth dilution method. Compounds 12c, 19c and 22c (MIC = 0.25 μg/mL) manifested good in vitro antibacterial ability against MRSA which was similar to that of tiamulin (MIC = 0.5 μg/mL). Among them, compound 22c killed MRSA in a time-dependent manner and performed faster bactericidal kinetics than tiamulin in time-kill curves. In addition, compound 22c exhibited longer PAE than tiamulin, and showed no significant inhibition on the cell viability of RAW 264.7, Caco-2 and 16-HBE cells at high doses (≤8 μg/mL). The neutropenic murine thigh infection model study revealed that compound 22c displayed more effective in vivo bactericidal activity than tiamulin in reducing MRSA load. The molecular docking studies indicated that compound 22c was successfully localized inside the binding pocket of 50S ribosomal, and four hydrogen bonds played important roles in the binding of them.
Collapse
Affiliation(s)
- Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Yu-Han Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ke-Xin Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Fei Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ke Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
24
|
Wu Z, Zhu X, Hong A, He G, Wang Z, Xu Q, Hu Z, Wu X, Wang Y, Chen Q, Zhao X, Li L, Deng X. Discovery of urea-based pleuromutilin derivatives as potent gram-positive antibacterial agents. Bioorg Chem 2023; 136:106547. [PMID: 37105000 DOI: 10.1016/j.bioorg.2023.106547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
There is an urgent need to discover new antibacterial drugs and provide new treatment options for clinical antimicrobial resistance (AMR) pathogen infections. Inspired by the structural insights from analyzing the co-crystal structure of lefamulin with the ribosomes of S. aureus, a series of novel pleuromutilin derivatives of phenylene sulfide incorporated with urea moiety were designed and synthesized. The structure-activity relationship (SAR) study revealed that derivatives with urea in the meta position of phenylene sulfide had optimal antibacterial activities in vitro. Among them, 21h was the most potent one against Methicillin-resistant Staphylococcus aureus (MRSA) and clinical AMR Gram-positive bacteria with minimum inhibitory concentrations (MICs) in the range of 0.00195-0.250 μg/mL. And it possessed low resistance frequency, prolonged Post-Antibiotic Effect and the capability to overcome lefamulin-induced resistance. Furthermore, 21h exhibited potent antibacterial activity in vivo in both the thigh infection model and trauma infection model, representing a promising lead for the development of new antibiotics against Gram-positive pathogens, especially for AMR bacteria.
Collapse
Affiliation(s)
- Zhenhua Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoli Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Anjin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Guanghui He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Zheng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiyu Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaobing Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuezhou Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiufang Chen
- Women and Children's Hospital, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China.
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
25
|
Wang LN, Huang Z, Yu ZX. Synthesis of Polycyclic n/5/8 and n/5/5/5 Skeletons Using Rhodium-Catalyzed [5 + 2 + 1] Cycloaddition of Exocyclic-ene-vinylcyclopropanes and Carbon Monoxide. Org Lett 2023; 25:1732-1736. [PMID: 36881539 DOI: 10.1021/acs.orglett.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
A rhodium-catalyzed [5 + 2 + 1] reaction of exocyclic-ene-vinylcyclopropanes (exo-ene-VCPs) and CO has been realized to access challenging tricyclic n/5/8 skeletons (n = 5, 6, 7), some of which are found in natural products. This reaction can be used to build tetracyclic n/5/5/5 skeletons (n = 5, 6), which are also found in natural products. In addition, 0.2 atm CO can be replaced by (CH2O)n as the CO surrogate to achieve the [5 + 2 + 1] reaction with similar efficiency.
Collapse
Affiliation(s)
- Lu-Ning Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhiqiang Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
26
|
Xia J, Xin L, Li J, Tian L, Wu K, Zhang S, Yan W, Li H, Zhao Q, Liang C. Discovery of Quaternized Pyridine-Thiazole-Pleuromutilin Derivatives with Broad-Spectrum Antibacterial and Potent Anti-MRSA Activity. J Med Chem 2023; 66:5061-5078. [PMID: 37051724 DOI: 10.1021/acs.jmedchem.2c02135] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The quaternization of compounds has emerged as a promising molecular design strategy for the development of antibiotics. Herein, we report the design, synthesis, antibacterial activities, and structure-activity relationships of a series of novel pleuromutilin derivatives containing a quaternary amine C-14 side chain. Most of these derivatives exhibited broad-spectrum antibacterial activity against the tested bacteria. 10b was the most effective antibacterial agent that displayed excellent antibacterial activity against five clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates, remarkable antimycoplasma activity, rapid bactericidal effects, and a strong ability to damage bacterial biofilms. Further mechanistic studies indicated that 10b destroyed bacterial cell membranes to exert its antibacterial effects. Moreover, 10b exhibited high survival protection and potent in vivo antibacterial efficacy (ED50 = 4.94 mg/kg) in a mouse model of systemic MRSA infection. These findings suggest that 10b is a promising candidate for the treatment of multi-drug-resistant infectious diseases, especially MRSA infections.
Collapse
Affiliation(s)
- Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Liang Xin
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Jingyi Li
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Lei Tian
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Kangxiong Wu
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Shaojun Zhang
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Wenjing Yan
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Han Li
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Qianqian Zhao
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Chengyuan Liang
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| |
Collapse
|
27
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem 2022; 244:114888. [DOI: 10.1016/j.ejmech.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022]
|
28
|
Wang Q, Liu J, Zhou ZD, Zhou KX, Li F, Zhang QW, Wang SK, Wang W, Jin Z, Tang YZ. Design, synthesis, biological evaluation and molecular docking studies of novel pleuromutilin derivatives containing nitrogen heterocycle and alkylamine groups. J Enzyme Inhib Med Chem 2022; 37:2078-2091. [PMID: 35875944 PMCID: PMC9318235 DOI: 10.1080/14756366.2022.2104267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A series of pleuromutilin derivatives containing alkylamine and nitrogen heterocycle groups were designed and synthesised under mild conditions. The in vitro antibacterial activity of these semisynthetic derivatives against four strains of Staphylococcus aureus (MRSA ATCC 43300, S.aureus ATCC 29213, S.aureus AD3, and S.aureus 144) were evaluated by the broth dilution method. Compound 13 was found to have excellent antibacterial activity against MRSA (MIC = 0.0625 μg/mL). Furthermore, compound 13 was further studied by the time-killing kinetics and the post-antibiotic effect approach. In the mouse thigh infection model, compound 13 exhibited superior antibacterial efficacy than that of tiamulin. Meanwhile, compound 13 showed a lower inhibitory effect than that of tiamulin on RAW264.7 and 16HBE cells at the concentration of 10 μg/mL. Molecular docking study revealed that compound 13 can effectively bind to the active site of the 50S ribosome (the binding free energy = −9.66 kcal/mol).
Collapse
Affiliation(s)
- Qi Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zi-Dan Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ke-Xin Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fei Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi-Wen Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shou-Kai Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
29
|
Goethe O, DiBello M, Herzon SB. Total synthesis of structurally diverse pleuromutilin antibiotics. Nat Chem 2022; 14:1270-1277. [PMID: 36163267 PMCID: PMC9633427 DOI: 10.1038/s41557-022-01027-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
The emergence of drug-resistant bacterial pathogens has placed renewed emphasis on the total chemical synthesis of novel antibacterials. Tetracyclines, macrolides, streptogramins and lincosamides are now accessible through flexible and general synthetic routes. Pleuromutilins (antibiotics based on the fungal metabolite pleuromutilin) have remained resistant to this approach, in large part due to the difficulties encountered in the de novo construction of the decahydro-3a,9-propanocyclopenta[8]annulene skeleton. Here we present a platform for the total synthesis of pleuromutilins that provides access to diverse derivatives bearing alterations at previously inaccessible skeletal and peripheral positions. The synthesis is enabled by the serendipitous discovery of a vinylogous Wolff rearrangement, which serves to establish the C9 quaternary centre in the targets, and the development of a highly diastereoselective butynylation of an α-quaternary aldehyde, which forms the C14 secondary alcohol. The versatility of the route is demonstrated through the synthesis of seventeen structurally distinct derivatives, with many possessing potent antibacterial activity.
Collapse
Affiliation(s)
- Olivia Goethe
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Mikaela DiBello
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
Janin YL. On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein J Org Chem 2022; 18:1355-1378. [PMID: 36247982 PMCID: PMC9531561 DOI: 10.3762/bjoc.18.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
This perspective is an attempt to document the problems that medicinal chemists are facing in drug discovery. It is also trying to identify relevant/possible, research areas in which academics can have an impact and should thus be the subject of grant calls. Accordingly, it describes how hit discovery happens, how compounds to be screened are selected from available chemicals and the possible reasons for the recurrent paucity of useful/exploitable results reported. This is followed by the successful hit to lead stories leading to recent and original antibacterials which are, or about to be, used in human medicine. Then, illustrated considerations and suggestions are made on the possible inputs of academic medicinal chemists. This starts with the observation that discovering a "good" hit in the course of a screening campaign still rely on a lot of luck - which is within the reach of academics -, that the hit to lead process requires a lot of chemistry and that if public-private partnerships can be important throughout these stages, they are absolute requirements for clinical trials. Concerning suggestions to improve the current hit success rate, one academic input in organic chemistry would be to identify new and pertinent chemical space, design synthetic accesses to reach these and prepare the corresponding chemical libraries. Concerning hit to lead programs on a given target, if no new hits are available, previously reported leads along with new structural data can be pertinent starting points to design, prepare and assay original analogues. In conclusion, this text is an actual plea illustrating that, in many countries, academic research in medicinal chemistry should be more funded, especially in the therapeutic area neglected by the industry. At the least, such funds would provide the intensive to secure series of hopefully relevant chemical entities which appears to often lack when considering the results of academic as well as industrial screening campaigns.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| |
Collapse
|
31
|
Chai F, Wang J, Zhou KX, Wang SK, Liu YH, Jin Z, Tang YZ. Design, synthesis and biological evaluation of novel pleuromutilin derivatives possessing 4-aminothiophenol linker as promising antibacterial agents. Bioorg Chem 2022; 126:105859. [PMID: 35605553 DOI: 10.1016/j.bioorg.2022.105859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022]
Abstract
A series of novel pleuromutilin derivatives containing 4-aminothiophenol moieties have been designed and synthesized as promising antibacterial agents against Methicillin-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these semisynthetic derivatives against 4 strains of S. aureus (MRSA ATCC 43300, S. aureus ATCC 29213, S. aureus 144 and S. aureus AD3) was evaluated by the broth dilution method. Most of the synthesized derivatives displayed prominent in vitro activity (MIC ≤ 0.5 µg/mL). 12 Compounds possessed superior antibacterial activity against MRSA compared with valnemulin and retapamulin (MIC = 0.0625 µg/mL). Compounds 12, 16a, 16c and 19 exhibited the most effective antibacterial effect against MRSA (MIC = 0.015 µg/mL). Furthermore, the time-kill curves showed compounds 12 and 19 had a certain inhibitory effect against MRSA in vitro. Compounds 12 and 19 possessed longer PAE time (2.74 h and 3.11 h, respectively) than tiamulin (PAE = 2.04 h) against MRSA after exposure at 4 × MIC concentration for 2 h. Compounds 12 and 19 also displayed superior in vivo antibacterial efficacy (-1.20 log10 CFU/mL and -1.21 log10 CFU/mL, respectively) than tiamulin (-0.75 log10 CFU/mL) in reducing MRSA load in the mice thigh infection model. In addition, compound 19 had barely inhibitory effect on RAW 264.7 and 16HBE cells at 8 µg/mL. In molecular docking study, upon docking into the 50S ribosomal subunit, the binding free energy (ΔGb) of compound 12 and 19 was calculated to be -9.02 kcal/mol and -9.89 kcal/mol, respectively.
Collapse
Affiliation(s)
- Fei Chai
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ke-Xin Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shou-Kai Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
32
|
Chen H, Li Z, Shao P, Yuan H, Chen SC, Luo T. Total Synthesis of (+)-Mutilin: A Transannular [2+2] Cycloaddition/Fragmentation Approach. J Am Chem Soc 2022; 144:15462-15467. [DOI: 10.1021/jacs.2c06934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Han Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zesheng Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng Shao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Haosen Yuan
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
33
|
Hu Y, Chen F, Zhou K, Zhang Z, Li F, Zhang J, Tang Y, Jin Z. In Vitro and In Vivo Antibacterial Activity, Toxicity and Resistance Analysis of Pleuromutilin Derivative Z33 against Methicillin-Resistant Staphylococcus aureus. Molecules 2022; 27:molecules27154939. [PMID: 35956888 PMCID: PMC9370166 DOI: 10.3390/molecules27154939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 12/10/2022] Open
Abstract
The novel pleuromutilin derivative, which showed excellent in vitro antibacterial activity against MRSA, 22-(2-(2-(4-((4-(4-nitrophenyl)piperazin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)acetamido)phenyl)thioacety-l-yl-22-deoxypleuromutilin (Z33), was synthesized and characterized in our previous work. In this study, the preliminary pharmacodynamics and safety of Z33 were further evaluated. In in vitro antibacterial activity assays, Z33 was found to be a potent bactericidal antibiotic against MRSA that induced dose-dependent growth inhibition and long-term post-antibiotic effect (PAE). The drug-resistance test demonstrated that Z33 possessed a narrow mutant selection window and lower propensities to select resistance than that of tiamulin. Cytochrome P450 (CYP450) inhibition assay determined that the inhibitory effect of Z33 was similar to that of tiamulin against the activity of CYP3A4, and was lower than that of tiamulin on the activity of CYP2E1. Toxicity determination showed that both Z33 and tiamulin displayed low cytotoxicity of RAW264.7 cells. Furthermore, Z33 was found to be a high-security compound with a 50% lethal dose (LD50) above 5000 mg/kg in the acute oral toxicity test in mice. In an in vivo antibacterial activity test, Z33 displayed better therapeutic effectiveness than tiamulin in the neutropenic mouse thigh infection model. In summary, Z33 was worthy of further development as a highly effective and safe antibiotic agent against MRSA infection.
Collapse
Affiliation(s)
- Yuhan Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Kexin Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Fei Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Jianfeng Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Youzhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Y.T.); (Z.J.); Fax: +86-20-85280665 (Y.T.)
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Y.T.); (Z.J.); Fax: +86-20-85280665 (Y.T.)
| |
Collapse
|
34
|
Ding R, Wang X, Fu J, Chang Y, Li Y, Liu Y, Liu Y, Ma J, Hu J. Design, synthesis and antibacterial activity of novel pleuromutilin derivatives with thieno[2,3-d]pyrimidine substitution. Eur J Med Chem 2022; 237:114398. [PMID: 35468515 DOI: 10.1016/j.ejmech.2022.114398] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
A series of novel pleuromutilin derivatives with substituted thienopyrimidines were designed, synthesized, and evaluated for antibacterial act ivity. In this study, the activities of these compounds were investigated using the inhibition circle test, the minimum inhibitory concentration (MIC) test, real-time growth curves, time-kill kinetic assays, cytotoxicity assays, and molecular docking. Most of the tested compounds exhibited moderate antibacterial activity against Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli. Compound A11 was the most active and displayed bacteriostatic activities against methicillin-resistant S. aureus, with MIC values as low as 0.00191 μg/mL, which is 162 and 32 times lower than that of the marketed antibiotics tiamulin and retapamulin, respectively. Furthermore, the mechanism of action of A11 was confirmed by molecular docking studies.
Collapse
Affiliation(s)
- Rongcai Ding
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Xiaoxia Wang
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Jianfang Fu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yaoyao Chang
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yingxue Li
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yue Liu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Jinlong Ma
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| | - Jinxing Hu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| |
Collapse
|
35
|
Zhou Y, Yi Y, Wang J, Yang Z, Liu Q, Pu W, Shang R. Discovery of novel pleuromutilin derivatives as potent antibacterial agents. Eur J Med Chem 2022; 237:114403. [PMID: 35472849 DOI: 10.1016/j.ejmech.2022.114403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022]
Abstract
Novel pleuromutilin derivatives with 3,4-dihydropyrimidin and pyrimidine moieties were designed, synthesized, and evaluated for their antibacterial activities. Most of the synthesized derivatives, especially the compounds bearing the pyrimidine moieties, exhibited potent antibacterial activities against methicillin-resistant Staphylococcus aureus BNCC 337371 (MRSA-337371), Staphylococcus aureus ATCC 25923 (S. aureus-25923) and methicillin-resistant Staphylococcus epidermidis ATCC 51625 (MRSE-51625). Compounds 5a, 5g and 5h exerted the excellent antibacterial activities and selected to evaluate their bacterial killing kinetics. Compound 5h displayed the highest antibacterial activities with bacteriostatic activities against MRSA and further evaluated its efficacy in mouse systemic infection. The results showed that compound 5h exhibited potent in vivo antibacterial effects to significantly improve the survival rate of mice (ED50 = 16.14 mg/kg), reduce the bacterial load and alleviate the pathological changes in the lungs of the affected mice. Furthermore, molecular docking studies revealed that the selected compounds successfully localized in the pocket of 50S ribosomal subunit and the formed hydrogen bonds were the main interaction.
Collapse
Affiliation(s)
- Yuhang Zhou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, 202 Gongyebeilu Jinan, 250023, Shandong, China.
| | - Jiangkun Wang
- School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Zheng Yang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Qinqin Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| |
Collapse
|
36
|
Wang X, Wang R, Zhang ZS, Zhang GY, Jin Z, Shen R, Du D, Tang YZ. Semisynthetic pleuromutilin antimicrobials with therapeutic potential against methicillin-resistant Staphylococcus aureus by targeting 50S ribosomal subunit. Eur J Med Chem 2022; 237:114341. [PMID: 35430480 DOI: 10.1016/j.ejmech.2022.114341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
Abstract
A series of pleuromutilin analogs with a substituted 1,2,4-triazole were designed, synthesized and assessed for their in vitro and in vivo antibacterial activity. Initially, the MIC of the synthesized derivatives against five strains of Staphylococcus aureus (MRSA ATCC 43300, S. aureus ATCC 29213, clinical isolation of S. aureus AD3, S. aureus 144 and S. aureus SA17) were tested by the broth dilution method. Compounds 30a, 31b and 32a were the most active antibacterial agents in vitro against MRSA (MIC = 0.0625 μg/mL). The results of the time-kill curves showed that compounds 30a and 32a could reduce the amount of MRSA in vitro quickly (-7.70 log10 CFU/mL and -7.10 log10 CFU/mL reduction). In the experiment to further evaluate the in vivo antibacterial activity of compound 30a against MRSA, compound 30a (-1.71 log10 CFU/g) was effective in reducing MRSA load in thigh infected mice. Compound 30a (survival rate was 50%) displayed superior in vivo efficacy to that of tiamulin (survival rate was 30%) in the mouse systemic model. The results of further pharmacokinetic studies on compound 30a showed that the half-life (t1/2), clearance rate (Cl) and the area under the plasma concentration time curve (AUC0→∞) of compound 30a were 0.37 h, 5.43 L/h/kg and 1.84 μg h/mL, respectively. After affinity measurement by surface plasmon resonance (SPR), compound 30a exhibited high affinity with the 50S ribosome, with KD value of 1.95 × 10-6 M. Furthermore, the results of molecular docking studies revealed that compound 30a was successfully localized inside the binding pocket of 50S ribosomal subunit (ΔGb = -9.40 kcal/mol). Meanwhile, most of these compounds had no significant inhibitory effect on RAW 264.7 cells and 16HBE cells at the concentration of 8 μg/mL. The obtained outcomes showed that compound 30a could be utilized as an encouraging perspective in the development of a new therapeutic candidate for bacterial infection.
Collapse
Affiliation(s)
- Xiao Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Cancer Research Center, Department of Stomatology, School of Medicine, Xiamen University, Xiamen, Fujian, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Rui Wang
- Cancer Research Center, Department of Stomatology, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhao-Sheng Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Rong Shen
- Cancer Research Center, Department of Stomatology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Dan Du
- Cancer Research Center, Department of Stomatology, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
37
|
Abstract
Synthesis of a potent inhibitor of bacterial protein synthesis, pleuromutilin, is described. Assembly of the critical cyclooctane fragment relies on an oxidative ring-expansion, and complete stereochemical relay in the synthetic sequence is enabled by the judicious choice of tactics. The requisite connectivity pattern of the perhydroindanone motif is rapidly established in a sequence of cycloaddition and radical cyclization events. Application of this strategy allows for preparation of the target natural product in 16 steps from commercially available material.
Collapse
Affiliation(s)
- Nicholas J Foy
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sergey V Pronin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
38
|
Cellnik T, Healy AR. Sulfonyl Chlorides as Thiol Surrogates for Carbon-Sulfur Bond Formation: One-Pot Synthesis of Thioethers and Thioesters. J Org Chem 2022; 87:6454-6458. [PMID: 35388690 DOI: 10.1021/acs.joc.2c00330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method to synthesize thioethers and thioesters directly from readily available sulfonyl chlorides is reported. We demonstrate that a transient intermediate formed during phosphine-mediated deoxygenation of sulfonyl chlorides can be trapped in situ by activated alcohols or carboxylic acids to effect carbon-sulfur bond formation. The method is operationally simple and tolerates a broad range of functional groups. Special attention has been focused on the late-stage diversification of densely functionalized natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Torsten Cellnik
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island 129188, United Arab Emirates (UAE)
| | - Alan R Healy
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island 129188, United Arab Emirates (UAE)
| |
Collapse
|
39
|
Leowattana W, Leowattana P, Leowattana T. Pleuromutilin and its Derivatives: Promising Novel Anti-Infective Agents. ANTI-INFECTIVE AGENTS 2022; 20. [DOI: 10.2174/2211352519666211130111723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/12/2021] [Accepted: 09/18/2021] [Indexed: 02/05/2023]
Abstract
:
Due to the emergence and spread of the drug resistance to numerous antibiotics, global
research attempts focus on new classes of antibiotics with different mechanisms of action from currently
used drugs. Pleuromutilin was first identified as a natural antibiotic in 1951 from the New
York Botanical Garden and Columbia University. The substance was isolated from Pleurotus mutilus
and Pleurotus passeckerianus. Nevertheless, pleuromutilin was first launched in 1979 (tiamulin)
for use in veterinarians. However, antibiotics with new targets or employing a different action
mechanism are always attractive because they conquered recognized resistance by the bacteria
and were not resisted against approved antibiotic classes. Pleuromutilin has a unique antibacterial
activity that binds to the peptidyl transferase at the central area of the bacteria's 50S ribosome to inhibit
protein synthesis. Pleuromutilin antibiotics have antimicrobial activity against Gram-positive
pathogens. Besides, they cover some fastidious Gram-negative bacteria. As Gram-positive bacteria
increased resistance against currently approved antibiotics, the pleuromutilin antibiotic was investigated
to develop a systemically antibacterial drug to be used in humans. In 2006, lefamulin was developed
and started to encounter studying for systemic infection in humans. Lefamulin is a semisynthetic
pleuromutilin antibiotic, and the US FDA approved it for community-acquired bacterial
pneumonia (CABP) treatment in August 2019. This review will focus on this antibiotic's critical issues,
the relevant bacterial spectrum activity, preclinical and clinical information, and potentially
therapeutic properties of pleuromutilin antibiotic.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajavithi road,
Rachatawee, Bangkok10400, Thailand
| | | | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 23, Wattana District,
Bangkok10110, Thailand
| |
Collapse
|
40
|
Wu G, Zhu Z, Li J, Luo X, Zhu W, Liao G, Xia J, Zhang W, Pan W, Li T, Wu S. Design, synthesis and antibacterial evaluation of pleuromutilin derivatives. Bioorg Med Chem 2022; 59:116676. [PMID: 35220163 DOI: 10.1016/j.bmc.2022.116676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
Abstract
We report herein the design, synthesis, and structure-activity relationship studies of pleuromutilin derivatives containing urea/thiourea functionalities. The antibacterial activities of these new pleuromutilin derivatives were evaluated in vitro against Gram-positive pathogens (GPPs) (Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium) and Mycoplasma pneumoniae by the broth dilution method. Most of the targeted compounds exhibit good potency in inhibiting the growth of pathogens including Methicillin-susceptible S. aureus (MSSA, ATCC29213, MIC: 0.0625-16 μg/mL), Methicillin-resistant S. aureus (MRSA, ATCC43300, MIC: 0.125-16 μg/mL) and M. pneumoniae (ATCC15531 MIC: 0.125-1 μg/mL, ATCC29342 MIC: 0.0625-0.25 μg/mL and drug resistant strain MIC: 0.5-2 μg/mL). In particular, the compounds 6m and 6n containing phenyl-urea group showed excellent activity with the MIC value less than 0.0625 μg/mL against S. aureus ATCC29213. The compound 6h exhibited better activity than tiamulin against Methicillin-resistant S. aureus ATCC43300.
Collapse
Affiliation(s)
- Guangxu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jishun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xinyu Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wenyong Zhu
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming 650031, Chin
| | - Guoyang Liao
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming 650031, Chin
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Tianlei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
41
|
Tsai K, Stojković V, Noda-Garcia L, Young ID, Myasnikov AG, Kleinman J, Palla A, Floor SN, Frost A, Fraser JS, Tawfik DS, Fujimori DG. Directed evolution of the rRNA methylating enzyme Cfr reveals molecular basis of antibiotic resistance. eLife 2022; 11:e70017. [PMID: 35015630 PMCID: PMC8752094 DOI: 10.7554/elife.70017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Alteration of antibiotic binding sites through modification of ribosomal RNA (rRNA) is a common form of resistance to ribosome-targeting antibiotics. The rRNA-modifying enzyme Cfr methylates an adenosine nucleotide within the peptidyl transferase center, resulting in the C-8 methylation of A2503 (m8A2503). Acquisition of cfr results in resistance to eight classes of ribosome-targeting antibiotics. Despite the prevalence of this resistance mechanism, it is poorly understood whether and how bacteria modulate Cfr methylation to adapt to antibiotic pressure. Moreover, direct evidence for how m8A2503 alters antibiotic binding sites within the ribosome is lacking. In this study, we performed directed evolution of Cfr under antibiotic selection to generate Cfr variants that confer increased resistance by enhancing methylation of A2503 in cells. Increased rRNA methylation is achieved by improved expression and stability of Cfr through transcriptional and post-transcriptional mechanisms, which may be exploited by pathogens under antibiotic stress as suggested by natural isolates. Using a variant that achieves near-stoichiometric methylation of rRNA, we determined a 2.2 Å cryo-electron microscopy structure of the Cfr-modified ribosome. Our structure reveals the molecular basis for broad resistance to antibiotics and will inform the design of new antibiotics that overcome resistance mediated by Cfr.
Collapse
Affiliation(s)
- Kaitlyn Tsai
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Vanja Stojković
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Lianet Noda-Garcia
- Department of Biomolecular Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Iris D Young
- Department of Bioengineering and Therapeutic Sciences, University of California San FranciscoSan FranciscoUnited States
| | - Alexander G Myasnikov
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
| | - Jordan Kleinman
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Ali Palla
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Stephen N Floor
- Helen Diller Family Comprehensive Cancer Center, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
- Department of Pharmaceutical Chemistry, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
42
|
Yu SJ, Ye JL, Hong YC, Huang PQ. Tf 2O-Mediated Cyclization of 7-Enamides: Bioinspired Construction of Fused Eight-Membered Carbocyclic Enimines and Enones. J Org Chem 2021; 86:16926-16939. [PMID: 34752091 DOI: 10.1021/acs.joc.1c02098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this paper, we document the construction of functionalized and fused eight-membered carbocycles by the triflic anhydride-mediated cyclization of 7-enamides. Taking advantage of the high electrophilicity of the nitrilium ion intermediates, generated in situ from secondary N-(2,6-dimethyl)anilides, the nonactivated, trisubstituted alkene-nitrilium cyclization reactions proceeded smoothly to afford nonconjugated β,γ-enimines (for fused 6/6/8 ring systems), conjugated α,β-enimines (for 6/5/8), or fused 5/8 ring systems in good yields. When the cyclization reactions were followed by one-pot acidic hydrolysis, the reaction led directly to the corresponding α,β-enones. For some substrates, the reaction afford an efficient access to pendent cyclic β,γ-enimines/enones.
Collapse
Affiliation(s)
- Si-Jia Yu
- Department of Chemical Biology and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Jian-Liang Ye
- Department of Chemical Biology and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Ya-Cheng Hong
- Department of Chemical Biology and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Pei-Qiang Huang
- Department of Chemical Biology and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
43
|
Zhang Z, Zhang ZS, Wang X, Xi GL, Jin Z, Tang YZ. A click chemistry approach to pleuromutilin derivatives, evaluation of anti-MRSA activity and elucidation of binding mode by surface plasmon resonance and molecular docking. J Enzyme Inhib Med Chem 2021; 36:2087-2103. [PMID: 34823417 PMCID: PMC8635623 DOI: 10.1080/14756366.2021.1977931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 10/29/2022] Open
Abstract
Novel series of pleuromutilin analogs containing substituted 1,2,3-triazole moieties were designed, synthesised and assessed for their in vitro antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA). Initially, the in vitro antibacterial activities of these derivatives against 4 strains of S. aureus (MRSA ATCC 43300, ATCC 29213, AD3, and 144) were tested by the broth dilution method. Most of the synthesised pleuromutilin analogs displayed potent activities. Among them, compounds 50, 62, and 64 (MIC = 0.5∼1 µg/mL) showed the most effective antibacterial activity and their anti-MRSA activity were further studied by the time-killing kinetics approach. Binding mode investigations by surface plasmon resonance (SPR) with 50S ribosome revealed that the selected compounds all showed obvious affinity for 50S ribosome (KD = 2.32 × 10-8∼5.10 × 10-5 M). Subsequently, the binding of compounds 50 and 64 to the 50S ribosome was further investigated by molecular modelling. Compound 50 had a superior docking mode with 50S ribosome, and the binding free energy of compound 50 was calculated to be -12.0 kcal/mol.
Collapse
Affiliation(s)
- Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhao-Sheng Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gao-Lei Xi
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
44
|
The Very First Modification of Pleuromutilin and Lefamulin by Photoinitiated Radical Addition Reactions-Synthesis and Antibacterial Studies. Pharmaceutics 2021; 13:pharmaceutics13122028. [PMID: 34959310 PMCID: PMC8704873 DOI: 10.3390/pharmaceutics13122028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Pleuromutilin is a fungal diterpene natural product with antimicrobial properties, semisynthetic derivatives of which are used in veterinary and human medicine. The development of bacterial resistance to pleuromutilins is known to be very slow, which makes the tricyclic diterpene skeleton of pleuromutilin a very attractive starting structure for the development of new antibiotic derivatives that are unlikely to induce resistance. Here, we report the very first synthetic modifications of pleuromutilin and lefamulin at alkene position C19–C20, by two different photoinduced addition reactions, the radical thiol-ene coupling reaction, and the atom transfer radical additions (ATRAs) of perfluoroalkyl iodides. Pleuromutilin were modified with the addition of several alkyl- and aryl-thiols, thiol-containing amino acids and nucleoside and carbohydrate thiols, as well as perfluoroalkylated side chains. The antibacterial properties of the novel semisynthetic pleuromutilin derivatives were investigated on a panel of bacterial strains, including susceptible and multiresistant pathogens and normal flora members. We have identified some novel semisynthetic pleuromutilin and lefamulin derivatives with promising antimicrobial properties.
Collapse
|
45
|
Fu Y, Yang Z, Zhang H, Liu Y, Hao B, Shang R. 14-O-[(4,6-Diamino-pyrimidine-2-yl) thioacetyl] mutilin inhibits α-hemolysin and protects Raw264.7 cells from injury induced by methicillin-resistant S. aureus. Microb Pathog 2021; 161:105229. [PMID: 34624494 DOI: 10.1016/j.micpath.2021.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
A new pleuromutilin derivative, 14-O-[(4,6-Diaminopyrimidine-2-yl) thioacetyl] mutilin (DPTM), has been synthesized and proven to be a potent agent against Gram-positive pathogens, especially for Staphylococcus aureus (S. aureus). However, its pharmacological activities against α-hemolysin (Hla), a major virulence factor produced by S. aureus, and inflammations related to S. aureus are still unknown. In the present study, we investigated the DPTM inhibition activities against methicillin-resistant S. aureus (MRSA) Hla and protective efficacy of Raw264.7 cells from injury induced by MRSA. The results showed that DPTM with sub-inhibitory concentrations significantly inhibited Hla on the hemolysis of rabbit erythrocytes and down-regulated the gene expressions of Hla and agrA with a dose-dependent fashion. In Raw264.7 cells infected with MRSA, DPTM efficiently attenuated the productions of lactate dehydrogenase (LDH), nitric oxide (NO) and pro-inflammatory cytokines, as well as the express levels of nuclear factor-kappaB (NF-κB), nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, DPTM inhibited the translocation of p-65 to nucleus in RAW264.7 cells infected by MRSA.
Collapse
Affiliation(s)
- Yunxing Fu
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China; College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046, Zhengzhou, PR China.
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China.
| |
Collapse
|
46
|
Wang A, You X, Liu H, Zhou J, Chen Y, Zhang C, Ma K, Liu Y, Ding P, Qi Y, Zhang G. Development of a label free electrochemical sensor based on a sensitive monoclonal antibody for the detection of tiamulin. Food Chem 2021; 366:130573. [PMID: 34311232 DOI: 10.1016/j.foodchem.2021.130573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 11/04/2022]
Abstract
Based on a murine monoclonal antibody (mAb) against tiamulin (TML), an electrochemical immunosensor was proposed using silver-graphene oxide (Ag-GO) nanocomposites and gold nanocomposites (AuNPs) to detect tiamulin (TML). Due to the synergetic properties of Ag-GO nanocomposites and AuNPs, the conductivity of the immunosensor was significantly enhanced. On account of the specific mAb and conductive nanocomposites, the proposed electrochemical immunosensor exhibited a low LOD of 0.003 ng mL-1 for the detection of TML in a wide linear range of 0.01 to 1000 ng mL-1. In addition, the immunosensor did not involve additional redox species. Furthermore, the efficient and simple electrochemical immunosensor was employed to detect TML in real samples with high accuracy, suggesting a potential detection platform for other veterinary antibiotics in animal derived foods.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojuan You
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Chenyang Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaikai Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
47
|
Gahlawat G, Tesfaye W, Bushell M, Abrha S, Peterson GM, Mathew C, Sinnollareddy M, McMillan F, Samarawickrema I, Calma T, Chang AY, Engelman D, Steer A, Thomas J. Emerging Treatment Strategies for Impetigo in Endemic and Nonendemic Settings: A Systematic Review. Clin Ther 2021; 43:986-1006. [PMID: 34053699 DOI: 10.1016/j.clinthera.2021.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Impetigo affects approximately 162 million children worldwide at any given time. Lack of consensus on the most effective treatment strategy for impetigo and increasing antibiotic resistance continue to drive research into newer and alternative treatment options. We conducted a systematic review to assess the effectiveness of new treatments for impetigo in endemic and nonendemic settings. METHODS We searched PubMed, MEDLINE, CINAHL, Web of Science, and Embase via Scopus for studies that explored treatments for bullous, nonbullous, primary, and secondary impetigo published between August 1, 2011, and February 29, 2020. We also searched online trial registries and hand-searched the reference lists of the included studies. We used the revised Cochrane risk of bias (version 2.0) tool for randomized trials and the National Heart, Lung, and Blood Institute for nonrandomized uncontrolled studies to assess the risk of bias. FINDINGS We included 10 studies that involved 6651 participants and reported on 9 treatments in the final analysis. Most clinical trials targeted nonbullous impetigo or did not specify this. The risk of bias varied among the studies. In nonendemic settings, ozenoxacin 1% cream appeared to have the strongest evidence base compared with retapamulin and a new minocycline formulation. In endemic settings, oral co-trimoxazole and benzathine benzylpenicillin G injection were equally effective in the treatment of severe impetigo. Mass drug administration intervention emerged as a promising public health strategy to reduce the prevalence of impetigo in endemic settings. IMPLICATIONS This review highlights the limited research into new drugs used for the treatment of impetigo in endemic and nonendemic settings. Limited recent evidence supports the use of topical ozenoxacin or retapamulin for impetigo treatment in nonendemic settings, whereas systemic antibiotics and the mass drug administration strategy have evidence for use in endemic settings. Given the troubling increase in resistance to existing treatments, there is a clear need to ensure the judicious use of antibiotics and to develop new treatments and alternative strategies; this is particularly important in endemic settings. PROSPERO identifier: CRD42020173042.
Collapse
Affiliation(s)
- Garima Gahlawat
- Faculty of Health, University of Canberra, Canberra, Australia
| | - Wubshet Tesfaye
- Faculty of Health, University of Canberra, Canberra, Australia
| | - Mary Bushell
- Faculty of Health, University of Canberra, Canberra, Australia
| | - Solomon Abrha
- Faculty of Health, University of Canberra, Canberra, Australia; Mekelle University, Mekelle, Ethiopia
| | - Gregory M Peterson
- Faculty of Health, University of Canberra, Canberra, Australia; University of Tasmania, Hobart, Tasmania, Australia
| | - Cynthia Mathew
- Faculty of Health, University of Canberra, Canberra, Australia
| | | | - Faye McMillan
- School of Nursing, Midwifery and Indigenous Health, Charles Sturt University, Bathurst, Australia
| | | | - Tom Calma
- Faculty of Health, University of Canberra, Canberra, Australia
| | | | - Daniel Engelman
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Andrew Steer
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Jackson Thomas
- Faculty of Health, University of Canberra, Canberra, Australia.
| |
Collapse
|
48
|
Huang SY, Wang X, Shen DY, Chen F, Zhang GY, Zhang Z, Li K, Jin Z, Du D, Tang YZ. Design, synthesis and biological evaluation of novel pleuromutilin derivatives as potent anti-MRSA agents targeting the 50S ribosome. Bioorg Med Chem 2021; 38:116138. [PMID: 33857737 DOI: 10.1016/j.bmc.2021.116138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
A series of novel pleuromutilin derivatives were designed and synthesized with 1,2,4-triazole as the linker connected to benzoyl chloride analogues under mild conditions. The in vitro antibacterial activities of the synthesized derivatives against four strains of Staphylococcus aureus (MRSA ATCC 43300, ATCC 29213, AD3 and 144) were tested by the broth dilution method. Most of the synthesized derivatives displayed potent activities, and 22-(3-amino-2-(4-methyl-benzoyl)-1,2,4-triazole-5-yl)-thioacetyl)-22-deoxypleuromutilin (compound 12) was found to be the most active antibacterial derivative against MRSA (MIC = 0.125 μg/mL). Furthermore, the time-kill curves showed compound 12 had a certain inhibitory effect against MRSA in vitro. The in vivo antibacterial activity of compound 12 was further evaluated using MRSA infected murine thigh model. Compound 12 exhibited superior antibacterial efficacy than tiamulin. It was also found that compound 12 had no significant inhibitory effect on the proliferation of RAW264.7 cells. Compound 12 was further evaluated in CYP450 inhibition assay and showed moderate inhibitory effect on CYP3A4 (IC50 = 3.95 μM). Moreover, seven candidate compounds showed different affinities with the 50S ribosome by SPR measurement. Subsequently, binding of compound 12 and 20 to the 50S ribosome was further investigated by molecular modeling. Three strong hydrogen bonds were formed through the interaction of compound 12 and 20 with 50S ribosome. The binding free energy of compound 12 and 20 with the ribosome was calculated to be -10.7 kcal/mol and -11.66 kcal/mol, respectively.
Collapse
Affiliation(s)
- Si-Yu Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ding-Yi Shen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Dan Du
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
49
|
Li L, Turnbull WL, McDonald R, West FG. Lithium Hydroxide Assisted
Endo
‐Selective [4+4]‐Photocycloaddition of Pyran‐2‐ones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Li
- Department of Chemistry University of Alberta E3-43 Gunning-Lemieux Chemistry Centre Edmonton AB T6G 2G2 Canada
| | - William L. Turnbull
- Department of Chemistry University of Alberta E3-43 Gunning-Lemieux Chemistry Centre Edmonton AB T6G 2G2 Canada
| | - Robert McDonald
- X-Ray Crystallography Laboratory Department of Chemistry University of Alberta E3-43 Gunning-Lemieux Chemistry Centre Edmonton AB T6G 2G2 Canada
| | - F. G. West
- Department of Chemistry University of Alberta E3-43 Gunning-Lemieux Chemistry Centre Edmonton AB T6G 2G2 Canada
| |
Collapse
|
50
|
Heidtmann CV, Voukia F, Hansen LN, Sørensen SH, Urlund B, Nielsen S, Pedersen M, Kelawi N, Andersen BN, Pedersen M, Reinholdt P, Kongsted J, Nielsen CU, Klitgaard JK, Nielsen P. Discovery of a Potent Adenine-Benzyltriazolo-Pleuromutilin Conjugate with Pronounced Antibacterial Activity against MRSA. J Med Chem 2020; 63:15693-15708. [PMID: 33325700 DOI: 10.1021/acs.jmedchem.0c01328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conjugation of pleuromutilin is an attractive strategy for the development of novel antibiotics and the fight against multiresistant bacteria as the class is associated with low rates of resistance and cross-resistance development. Herein, the preparation of 35 novel (+)-pleuromutilin conjugates is reported. Their design was based on a synthetically more efficient benzyl adaption of a potent lead but still relied on the Cu(I)-catalyzed alkyne-azide [3 + 2] cycloaddition for conjugation onto pleuromutilin. Their antibacterial activity was evaluated against the multiresistant Staphylococcus aureus strain USA300 for which they displayed moderate to excellent activity. Compound 35, bearing a para-benzyladenine substituent, proved particularly potent against USA300 and additional strains of MRSA and displayed as importantly no cytotoxicity in four mammalian cell lines. Structure-activity relationship analysis revealed that the purine 6-amino is essential for high potency, likely because of strong hydrogen bonding with the RNA backbone of C2469, as suggested by a molecular model based on the MM-GBSA approach.
Collapse
Affiliation(s)
- Christoffer V Heidtmann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Faidra Voukia
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Louise N Hansen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Stine H Sørensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Brian Urlund
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Salli Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Mona Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Noor Kelawi
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Brian N Andersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Maria Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Carsten U Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Janne K Klitgaard
- Department of Biochemistry and Molecular Biology, Research Unit of Molecular Microbiology, University of Southern Denmark, 5230 Odense M, Denmark
- Institute of Clinical Research, Research Unit of Clinical Microbiology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|