1
|
Dang F, Li C, Nunes LM, Tang R, Wang J, Dong S, Peijnenburg WJGM, Wang W, Xing B, Lam SS, Sonne C. Trophic transfer of silver nanoparticles shifts metabolism in snails and reduces food safety. ENVIRONMENT INTERNATIONAL 2023; 176:107990. [PMID: 37247467 DOI: 10.1016/j.envint.2023.107990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/14/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Food security and sustainable development of agriculture has been a key challenge for decades. To support this, nanotechnology in the agricultural sectors increases productivity and food security, while leaving complex environmental negative impacts including pollution of the human food chains by nanoparticles. Here we model the effects of silver nanoparticles (Ag-NPs) in a food chain consisting of soil-grown lettuce Lactuca sativa and snail Achatina fulica. Soil-grown lettuce were exposed to sulfurized Ag-NPs via root or metallic Ag-NPs via leaves before fed to snails. We discover an important biomagnification of silver in snails sourced from plant root uptake, with trophic transfer factors of 2.0-5.9 in soft tissues. NPs shifts from original size (55-68 nm) toward much smaller size (17-26 nm) in snails. Trophic transfer of Ag-NPs reprograms the global metabolic profile by down-regulating or up-regulating metabolites for up to 0.25- or 4.20- fold, respectively, relative to the control. These metabolites control osmoregulation, phospholipid, energy, and amino acid metabolism in snails, reflecting molecular pathways of biomagnification and pontential adverse biological effects on lower trophic levels. Consumption of these Ag-NP contaminated snails causes non-carcinogenic effects on human health. Global public health risks decrease by 72% under foliar Ag-NP application in agriculture or through a reduction in the consumption of snails sourced from root application. The latter strategy is at the expense of domestic economic losses in food security of $177.3 and $58.3 million annually for countries such as Nigeria and Cameroon. Foliar Ag-NP application in nano-agriculture has lower hazard quotient risks on public health than root application to ensure global food safety, as brought forward by the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Stockbridge School of Agriculture, University of Massachusetts, 161 Holdsworth Way, Amherst, MA 01003, United States
| | - Chengcheng Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Luís M Nunes
- University of Algarve, Civil Engineering Research and Innovation for Sustainability Center, Faro, Portugal
| | - Ronggui Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shuofei Dong
- Agilent Technologies Co. Ltd (China), No.3, Wang Jing Bei Road, Chao Yang District, Beijing 100102, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, the Netherlands
| | - Wenxiong Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, 161 Holdsworth Way, Amherst, MA 01003, United States
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Christian Sonne
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
2
|
Wang T, Liu W. Emerging investigator series: metal nanoparticles in freshwater: transformation, bioavailability and effects on invertebrates. ENVIRONMENTAL SCIENCE: NANO 2022; 9:2237-2263. [PMID: 35923327 PMCID: PMC9282172 DOI: 10.1039/d2en00052k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
MNPs may undergo different environmental transformations in aquatic systems, consequently changing their mobility, bioavailability and toxicity to freshwater invertebrates.
Collapse
Affiliation(s)
- Ting Wang
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| | - Wei Liu
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Reagen S, Wu Y, Liu X, Shahni R, Bogenschuetz J, Wu X, Chu QR, Oncel N, Zhang J, Hou X, Combs C, Vasquez A, Zhao JX. Synthesis of Highly Near-Infrared Fluorescent Graphene Quantum Dots Using Biomass-Derived Materials for In Vitro Cell Imaging and Metal Ion Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43952-43962. [PMID: 34495635 DOI: 10.1021/acsami.1c10533] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene quantum dots (GQDs) are a subset of fluorescent nanomaterials that have gained recent interest due to their photoluminescence properties and low toxicity and biocompatibility features for bioanalysis and bioimaging. However, it is still a challenge to prepare highly near-infrared (NIR) fluorescent GQDs using a facile pathway. In this study, NIR GQDs were synthesized from the biomass-derived organic molecule cis-cyclobutane-1,2-dicarboxylic acid via one-step pyrolysis. The resulting GQDs were then characterized by various analytical methods such as UV-Vis absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Moreover, the photostability and stability over a wide pH range were also investigated, which indicated the excellent stability of the prepared GQDs. Most importantly, two peaks were found in the fluorescence emission spectra of the GQDs, one of which was located in the NIR region of about 860 nm. Finally, the GQDs were applied for cell imaging with human breast cancer cell line, MCF-7, and cytotoxicity analysis with mouse macrophage cell line, RAW 246.7. The results showed that the GQDs entered the cells through endocytosis on the fluorescence images and were not toxic to the cells up to a concentration of 200 μg/mL. Thus, the developed GQDs could be a potential effective fluorescent bioimaging agent. Finally, the GQDs depicted fluorescence quenching when treated with mercury metal ions, indicating that the GQDs could be used for mercury detection in biological samples as well.
Collapse
Affiliation(s)
- Sarah Reagen
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Yingfen Wu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xiao Liu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Rahul Shahni
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jacob Bogenschuetz
- Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xu Wu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Qianli R Chu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Nuri Oncel
- Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jin Zhang
- Institute for Energy Studies, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xiaodong Hou
- Institute for Energy Studies, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Colin Combs
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Antonio Vasquez
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
4
|
Zhao J, Wang X, Hoang SA, Bolan NS, Kirkham MB, Liu J, Xia X, Li Y. Silver nanoparticles in aquatic sediments: Occurrence, chemical transformations, toxicity, and analytical methods. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126368. [PMID: 34329024 DOI: 10.1016/j.jhazmat.2021.126368] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Sediments represent the major sink for released silver nanoparticles (AgNPs) in aquatic environments. It is well known that the environmental behavior and toxicity of AgNPs in sediments are governed by their specific chemical species instead of their total concentration. This review focuses on various chemical transformations of AgNPs in sediments, which have not been well outlined before. We first outline the concentrations of AgNPs in sediments. The predicted concentrations are 1-5 µg kg-1 in most model studies. Once enter sediments, AgNPs are transformed to different species (e.g., Ag2S, Ag-humic substance complexes, AgCl, and Ag+) during multiple chemical transformations, such as oxidative dissolution, sulfidation, chlorination, and complexation. Those chemical behaviors mitigate the toxicity of AgNPs by reducing their availability and decreasing Ag+ release. Benthic invertebrates and microbes are prone to be affected by AgNPs. AgNPs are found to be accumulated in sediment-dwelling organisms and transferred to higher trophic levels along the food web. Besides X-ray absorption spectroscopy, reliable separation procedures coupled with detection techniques, are powerful tools that characterize the speciation of AgNPs in sediments. More research is needed to investigate diverse chemical transformations in various sediments through development of novel techniques and mathematical models.
Collapse
Affiliation(s)
- Jian Zhao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinjie Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Son A Hoang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen 56000, Viet Nam
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, United States
| | - Jingnan Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China.
| |
Collapse
|
5
|
Eid SM. Indirect Nano-sensing approach: A universal potentiometric silver ion selective sensor for inline quantitative profiling of the kinetics and thermodynamics of formation and decay of silver nanoparticles. Talanta 2020; 218:121135. [PMID: 32797892 DOI: 10.1016/j.talanta.2020.121135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 11/27/2022]
Abstract
Indirect Nano-sensing are indispensable chemical sensory points that make use of the unique properties of nanoparticles to derive information about it to our macroscopic world. Precious Silver nanoparticles have become more attractive in many areas of healthcare and life sciences leading to massive industrial production and increase of environmental exposure which may lead to Nanotoxicity accompanied by the release of Ag+ ions. A reversible silver selective screen-printed electrode was fabricated, optimized, and validated. A wide linearity range of 1 × 10-6 - 1 × 10-2 M was obtained, with a LOD that reaches 1.5 × 10-7 M and a typical slope of monovalent cationic compounds of 59.6 mV/decade. It showed high selectivity towards the cationic Ag+ ion activity in presence of the negatively charged citrate capped silver nanoparticles (Cit-AgNPs). The fabricated sensor has been used for tracking the decrease of Ag+ activity during the reduction of AgNO3 with tri-sodium citrate during the Bottom-up synthesis of Cit-AgNPs at different temperature (60, 70 and 80 °C). The kinetic parameters (Activation energy (Ea) and Reaction rate (K)) and the thermodynamic characteristics (free activation energy (ΔG), entropy (ΔS), enthalpy (ΔH)) have been calculated. Furthermore, it has been used for tracking the release of Ag+ during the spontaneous and stimulated decay of Cit-AgNPs. The present work could be a junction between nanotechnology and recent advances in design of a reproducible, portable real-time analyzer for in-process monitoring of the production of Cit-AgNPs and its environmental hazards with many advantages in comparison to the reported techniques in terms of portability, simplicity, cost-efficient, fast inline tracking, no sampling, real-time profiles at high temperatures and it does not need professional operators.
Collapse
Affiliation(s)
- Sherif M Eid
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt.
| |
Collapse
|
6
|
Suhendra E, Chang CH, Hou WC, Hsieh YC. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters. Int J Mol Sci 2020; 21:ijms21124554. [PMID: 32604975 PMCID: PMC7349326 DOI: 10.3390/ijms21124554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Exposure assessment is a key component in the risk assessment of engineered nanomaterials (ENMs). While direct and quantitative measurements of ENMs in complex environmental matrices remain challenging, environmental fate models (EFMs) can be used alternatively for estimating ENMs' distributions in the environment. This review describes and assesses the development and capability of EFMs, focusing on surface waters. Our review finds that current engineered nanomaterial (ENM) exposure models can be largely classified into three types: material flow analysis models (MFAMs), multimedia compartmental models (MCMs), and spatial river/watershed models (SRWMs). MFAMs, which is already used to derive predicted environmental concentrations (PECs), can be used to estimate the releases of ENMs as inputs to EFMs. Both MCMs and SRWMs belong to EFMs. MCMs are spatially and/or temporally averaged models, which describe ENM fate processes as intermedia transfer of well-mixed environmental compartments. SRWMs are spatiotemporally resolved models, which consider the variability in watershed and/or stream hydrology, morphology, and sediment transport of river networks. As the foundation of EFMs, we also review the existing and emerging ENM fate processes and their inclusion in recent EFMs. We find that while ENM fate processes, such as heteroaggregation and dissolution, are commonly included in current EFMs, few models consider photoreaction and sulfidation, evaluation of the relative importance of fate processes, and the fate of weathered/transformed ENMs. We conclude the review by identifying the opportunities and challenges in using EFMs for ENMs.
Collapse
|
7
|
Lieb HC, Nguyen BD, Ramsayer ER, Mullaugh KM. A voltammetric investigation of the sulfidation of silver nanoparticles by zinc sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137685. [PMID: 32325601 DOI: 10.1016/j.scitotenv.2020.137685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Accepted: 03/01/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (Ag NPs) are among the most common forms of nanoparticles in consumer products, yet the environmental implications of their widespread use remain unclear due to uncertainties about their fate. Because sulfidation of Ag NPs results in the formation of a stable silver sulfide (Ag2S) product, it is likely an important removal mechanism of bioavailable silver in natural waters. In addition to sulfide, the complete conversion of Ag NPs to Ag2S will require dissolved oxygen or some other oxidant so dispersed metal sulfides may be an important pool of reactive sulfide for such reactions in oxygenated systems. The reaction of Ag NPs with zinc sulfide (ZnS) was investigated using a voltammetric method, anodic stripping voltammetry (ASV). ASV provided sensitive, in situ measurements of the release of zinc (Zn2+) cations resulting from the cation exchange reaction between Ag NPs and ZnS. The effects of Ag NP size and surface coatings on the initial rates of sulfidation by ZnS were examined. Sulfidation of smaller Ag NPs generally occurred faster and to a greater extent due to their larger relative surface areas. Sulfidation of Ag NPs capped by citrate and lipoic acid occurred more rapidly relative to polyvinylpyrrolidone (PVP) and branched polyethylene (BPEI). This study demonstrates the utility of voltammetry for such investigations and provides insights into important factors controlling Ag NP sulfidation such as availability of dissolved oxygen, Ag NP size and Ag NP surface coating. Furthermore, this work demonstrates the importance of cation exchange reactions between silver and metal sulfides, and how the environmental release of Ag NPs could alter the speciation of other metals of environmental significance.
Collapse
Affiliation(s)
- Heather C Lieb
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA
| | - Bach D Nguyen
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA
| | - Emily R Ramsayer
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA
| | - Katherine M Mullaugh
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA.
| |
Collapse
|
8
|
Yin T, Han T, Li C, Qin W, Bobacka J. Real-time monitoring of the dissolution of silver nanoparticles by using a solid-contact Ag+-selective electrode. Anal Chim Acta 2020; 1101:50-57. [DOI: 10.1016/j.aca.2019.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 01/19/2023]
|
9
|
Zhang F, Allen AJ, Johnston-Peck AC, Liu J, Pettibone JM. Transformation of engineered nanomaterials through the prism of silver sulfidation. NANOSCALE ADVANCES 2019; 1:241-253. [PMID: 31276100 PMCID: PMC6605090 DOI: 10.1039/c8na00103k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 05/27/2023]
Abstract
Understanding the structure transformation of engineered nanomaterials (ENMs) is a grand measurement challenge, which impacts many aspects of ENMs applications, such as their efficacy, safety, and environmental consequence. To address the significant knowledge gap regarding the fundamental kinetic rate and extent of ENM transformation in the environment, we present a comprehensive and mechanistic structural investigation of the transformation, aggregation, and dissolution behavior of a polyvinylpyrrolidone-coated silver nanoparticle (AgNP) suspension upon sulfidation in moderately reduced hard water with fulvic acid and dissolved Na2S. This reaction is among the most prevalent and industrially and environmentally relevant ENMs transformation. Using ex situ transmission electron microscopy (TEM) and both in situ and ex situ synchrotron-based small angle X-ray scattering (SAXS) and X-ray diffraction (XRD), we find that sulfidation of faceted AgNPs strongly depends on the crystallographic orientation of the facets, with nanometer-scale passivation layers developed on {111} and {100} facets and continuous nucleation and growth on {110} facets. Nanobeam electron diffraction and atomic resolution imaging show Ag and Ag2S domains both possess a high degree of crystalline order, contradicting amorphous structures as previously reported. In situ SAXS/XRD allowed simultaneous determination of the morphological changes and extent of sulfidation of AgNPs. SAXS/XRD results strongly indicate sulfidation follows first-order reaction kinetics without any aggregation. Aided by their size monodispersity, for the first time, using direct, in situ morphology and atomic-structure probes whose results mutually corroborate, we unequivocally determined the sulfidation rate constant of AgNPs under an environmentally relevant condition (~0.013 min-1 for 68 nm diameter AgNPs). A rigorous analysis of the long-term sulfidation product of the AgNPs under different S/Ag ratios using ex situ SAXS/XRD clearly demonstrates that the silver mass in the original AgNP and transformed Ag/Ag2S NP is preserved. This result has important environmental implications, strongly suggesting that Ag+ ions, a known highly effective antimicrobial agent, are not leached into the solution during sulfidation of AgNPs. The combined nondestructive methodology can be extended to unfold the structure transformation pathway and kinetics in a broad range of ENM systems.
Collapse
Affiliation(s)
- Fan Zhang
- Materials Measurement Science Division, National Institute of Standards and TechnologyGaithersburgMD 20899USA
| | - Andrew J. Allen
- Materials Measurement Science Division, National Institute of Standards and TechnologyGaithersburgMD 20899USA
| | - Aaron C. Johnston-Peck
- Materials Measurement Science Division, National Institute of Standards and TechnologyGaithersburgMD 20899USA
| | - Jingyu Liu
- Materials Measurement Science Division, National Institute of Standards and TechnologyGaithersburgMD 20899USA
| | - John M. Pettibone
- Materials Measurement Science Division, National Institute of Standards and TechnologyGaithersburgMD 20899USA
| |
Collapse
|