1
|
K D, Singh AK. Fabrication and characterization of Sb 2O 3-MoS 2nanocomposites for high performance supercapacitor applications. NANOTECHNOLOGY 2024; 35:435402. [PMID: 39084237 DOI: 10.1088/1361-6528/ad6995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Binary nanocomposite-based electrodes have been studied extensively in recent times owing to their multiple oxidation states, excellent physico-chemical features, and combined morphology, which are suitable for increasing the electrochemical performance of supercapacitors. The present work deals with Sb2O3-MoS2nanocomposites electrode for supercapacitor applications. The x-ray diffraction (XRD), Raman, scanning electron microscope (SEM), energy dispersive x-ray (EDX), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and x-ray photoelectron spectroscopy (XPS) characterizations have been studied to analyze the phase formation, vibrational modes, morphology, elemental composition and binding energies of the prepared Sb2O3-MoS2nanocomposites electrode material, as well as their electrochemical measurements such as cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) have been analyzed. The developed Sb2O3-MoS2nanocomposites electrode provides a high specific capacitance of 454.3 F g-1at the current density of 1 A g-1. Further, the hybrid supercapacitor device has been constructed which shows 104.04 F g-1of specific capacitance at 2 A g-1and manifests a good energy density of 24.42 Wh kg-1at a power density of 1299.89 W kg-1. Additionally, the hybrid device Sb2O3-MoS2//AC exhibits a good capacitive retention of 90.6% and a coulombic efficiency of 100.45% at 10 A g-1over 8000 cycles.
Collapse
Affiliation(s)
- Dhamodharan K
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Abhishek Kumar Singh
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
2
|
Li J, Wrzesińska-Lashkova A, Deconinck M, Göbel M, Vaynzof Y, Lesnyak V, Eychmüller A. Facile and Scalable Colloidal Synthesis of Transition Metal Dichalcogenide Nanoparticles with High-Performance Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36315-36321. [PMID: 38968249 DOI: 10.1021/acsami.4c04968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Transition metal dichalcogenides (TMDs) have garnered significant attention as efficient electrocatalysts for the hydrogen evolution reaction (HER) due to their high activity, stability, and cost-effectiveness. However, the development of a convenient and economical approach for large-scale HER applications remains a persistent challenge. In this study, we present the successful synthesis of TMD nanoparticles (including MoS2, RuS2, ReS2, MoSe2, RuSe2, and ReSe2) using a general colloidal method at room temperature. Notably, the ReSe2 nanoparticles synthesized in this study exhibit superior HER performance compared with previously reported nanostructured TMDs. Importantly, the synthesis of these TMD nanoparticles can readily be scaled up to gram quantities while preserving their exceptional HER performance. These findings highlight the potential of colloidal synthesis as a versatile and scalable approach for producing TMD nanomaterials with outstanding electrocatalytic properties for water splitting.
Collapse
Affiliation(s)
- Jing Li
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Angelika Wrzesińska-Lashkova
- Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
- Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Marielle Deconinck
- Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
- Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Markus Göbel
- Electrochemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Yana Vaynzof
- Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
- Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Vladimir Lesnyak
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | | |
Collapse
|
3
|
Mir RA, Hoseini AHA, Hansen EJ, Tao L, Zhang Y, Liu J. Molybdenum Sulfide Nanoflowers as Electrodes for Efficient and Scalable Lithium-Ion Capacitors. Chemistry 2024; 30:e202400907. [PMID: 38649319 DOI: 10.1002/chem.202400907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Hybrid supercapacitors (HSCs) bridge the unique advantages of batteries and capacitors and are considered promising energy storage devices for hybrid vehicles and other electronic gadgets. Lithium-ion capacitors (LICs) have attained particular interest due to their higher energy and power density than traditional supercapacitor devices. The limited voltage window and the deterioration of anode materials upsurged the demand for efficient and stable electrode materials. Two-dimensional (2D) molybdenum sulfide (MoS2) is a promising candidate for developing efficient and durable LICs due to its wide lithiation potential and unique layer structure, enhancing charge storage efficiency. Modifying the extrinsic features, such as the dimensions and shape at the nanoscale, serves as a potential path to overcome the sluggish kinetics observed in the LICs. Herein, the MoS2 nanoflowers have been synthesized through a hydrothermal route. The developed LIC exhibited a specific capacitance of 202.4 F g-1 at 0.25 A g-1 and capacitance retention of >90 % over 5,000 cycles. Using an ether electrolyte improved the voltage window (2.0 V) and enhanced the stability performance. The ex-situ material characterization after the stability test reveals that the storage mechanism in MoS2-LICs is not diffusion-controlled. Instead, the fast surface redox reactions, especially intercalation/deintercalation of ions, are more prominent for charge storage.
Collapse
Affiliation(s)
- Rameez Ahmad Mir
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Amir Hosein Ahmadian Hoseini
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Evan J Hansen
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Li Tao
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Yue Zhang
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Jian Liu
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
4
|
Shabir A, Khan F, Hor AA, Hashmi SA, Julien CM, Islam SS. Optimizing graphene content in scaffolds for evenly distributed crumpled MoS 2paper wads as anodes for high-performance Li-ion batteries. NANOTECHNOLOGY 2024; 35:375402. [PMID: 38861936 DOI: 10.1088/1361-6528/ad5686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Lithium-ion batteries (LIBs) have revolutionized portable electronics, yet their conventional graphite anodes face capacity limitations. Integrating graphene and 3D molybdenum disulfide (MoS2) offers a promising solution. Ensuring a uniform distribution of 3D MoS2nanostructures within a graphene matrix is crucial for optimizing battery performance and preventing issues like agglomeration and capacity degradation. This study focuses on synthesizing a uniformly distributed paper wad structure by optimizing a composite of reduced graphene oxide RGO@MoS2through structural and morphological analyses. Three composites with varying graphene content were synthesized, revealing that the optimized sample containing 30 mg RGO demonstrates beneficial synergy between MoS2and RGO. The interconnected RGO network enhances reactivity and conductivity, addressing MoS2aggregation. Experimental results exhibit an initially superior capacity of 911 mAh g-1, retained at 851 mAh g-1even after 100 cycles at 0.1 A g-1current density, showcasing improved rate efficiency and long-term stability. This research underscores the pivotal role of graphene content in customizing RGO@MoS2composites for enhanced LIB performance.
Collapse
Affiliation(s)
- Abgeena Shabir
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Firoz Khan
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Abbas Ali Hor
- Department of Physics & Astrophysics, Delhi University, Delhi 110007, India
| | - S A Hashmi
- Department of Physics & Astrophysics, Delhi University, Delhi 110007, India
| | - C M Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS-UMR 7590, 4 place Jussieu, F-75252 Paris, France
| | - S S Islam
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
5
|
Xu B, Yu D, Xu C, Gao Y, Sun H, Liu L, Yang Y, Qi D, Wu J. Study on synergistic mechanism of molybdenum disulfide/sodium carboxymethyl cellulose composite nanofiber mats for photothermal/photodynamic antibacterial treatment. Int J Biol Macromol 2024; 266:130838. [PMID: 38521322 DOI: 10.1016/j.ijbiomac.2024.130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Innovative antibacterial therapies using nanomaterials, such as photothermal (PTT) and photodynamic (PDT) treatments, have been developed for treating wound infections. However, creating secure wound dressings with these therapies faces challenges. The primary focus of this study is to prepare an antibacterial nanofiber dressing that effectively incorporates stable loads of functional nanoparticles and demonstrates an efficient synergistic effect between PTT and PDT. Herein, a composite nanofiber mat was fabricated, integrating spherical molybdenum disulfide (MoS2) nanoparticles. MoS2 was deposited onto polylactic acid (PLA) nanofiber mats using vacuum filtration, which was further stabilized by sodium carboxymethyl cellulose (CMC) adhesion and glutaraldehyde (GA) cross-linking. The composite nanofibers demonstrated synergistic antibacterial effects under NIR light irradiation, and the underlying mechanism was explored. They induce bacterial membrane permeability, protein leakage, and intracellular reactive oxygen species (ROS) elevation, ultimately leading to >95 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which is higher than that of single thermotherapy (almost no antibacterial activity) or ROS therapy (about 80 %). In addition, the composite nanofiber mats exhibited promotion effects on infected wound healing in vivo. This study demonstrates the great prospects of composite nanofiber dressings in clinical treatment of bacterial-infected wounds.
Collapse
Affiliation(s)
- Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenlu Xu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hengqiu Sun
- Department of Pediatric Surgery, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318000, China.
| | - Lei Liu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Yang
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China.
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China.
| |
Collapse
|
6
|
Varatharajan P, Shameem Banu IB, Mamat MH, Vasimalai N. Electrochemical analysis of asymmetric supercapacitors based on BiCoO 3@g-C 3N 4 nanocomposites. Dalton Trans 2023; 52:13704-13715. [PMID: 37706529 DOI: 10.1039/d3dt01758c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Supercapacitors are gaining popularity these days because of their good cycle stability, superior specific capacitance, high power density, and energy density. Herein, we report the synthesis of bismuth cobalt oxide (BiCoO3) combined with graphitic carbon nitride (g-C3N4) by the hydrothermal method. The BiCoO3@g-C3N4 nanocomposite was well characterized using XRD, FE-SEM, FT-IR, and DRS-UV techniques. The supercapacitor properties of the BiCoO3@g-C3N4 nanocomposite were then studied using cyclic voltammetry, galvanic charging-discharging, and impedance spectroscopy techniques. Due to the synergistic effect, BiCoO3@g-C3N4 showed a high specific capacitance value of 341 F g-1 at a current density of 1 A g-1 and excellent retention of specific capacitance (98.82%) after 1000 cycles and a high power density of 1125 W kg-1. Using the impedance spectroscopy technique, the charge transfer resistance of BiCoO3, g-C3N4, and BiCoO3@g-C3N4 was measured. BiCoO3@g-C3N4 showed a low charge transfer resistance compared with BiCoO3 and g-C3N4. The asymmetric supercapacitor (ASC) device was prepared using activated carbon (negative side) and BiCoO3@g-C3N4 (positive side) electrodes. It showed a specific capacitance of 129 F g-1 at 1 A g-1, power density 2800 W kg-1 and energy density 35 W h kg-1. Finally, we conclude that, due to the high specific capacitance, good cycle retention, fast redox activity, and low charge transfer resistance BiCoO3@g-C3N4 is a good electrode material for energy storage applications.
Collapse
Affiliation(s)
- Pandiaraja Varatharajan
- Department of Physics, B.S. Abdur Rahman Crescent Institute of Science & Technology, Vandalur, Chennai-600 048, India.
| | - I B Shameem Banu
- Department of Physics, B.S. Abdur Rahman Crescent Institute of Science & Technology, Vandalur, Chennai-600 048, India.
| | - Mohamad Hafiz Mamat
- NANO-ElecTronic Centre (NET), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Nagamalai Vasimalai
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science & Technology, Vandalur, Chennai-600 048, India.
| |
Collapse
|
7
|
Arya N, Chandran Y, Luhar B, Kajal P, Powar S, Balakrishnan V. Porosity-Engineered CNT-MoS 2 Hybrid Nanostructures for Bipolar Supercapacitor Applications. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433087 DOI: 10.1021/acsami.3c05098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Bipolar supercapacitors that can store many fold higher capacitance in negative voltage compared to positive voltage are of great importance if they can be engineered for practical applications. The electrode material encompassing high surface area, better electrochemical stability, high conductivity, moderate distribution of pore size, and their interaction with suitable electrolytes is imperative to enable bipolar supercapacitor performance. Apropos of the aforementioned aspects, the intent of this work is to ascertain the effect of ionic properties of different electrolytes on the electrochemical properties and performance of a porous CNT-MoS2 hybrid microstructure toward bipolar supercapacitor applications. The electrochemical assessment reveals that the CNT-MoS2 hybrid electrode exhibited a two- to threefold higher areal capacitance value of 122.3 mF cm-2 at 100 μA cm-2 in 1 M aqueous Na2SO4 and 42.13 mF cm-2 at 0.30 mA cm-2 in PVA-Na2SO4 gel electrolyte in the negative potential window in comparison to the positive potential window. The CNT-MoS2 hybrid demonstrates a splendid Coulombic efficiency of ∼102.5% and outstanding stability with capacitance retention showing a change from 100% to ∼180% over 7000 repeated charging-discharging cycles.
Collapse
Affiliation(s)
- Nitika Arya
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Yadu Chandran
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Bhumit Luhar
- School of Physical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Priyanka Kajal
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Satvasheel Powar
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
- School of Technology and Business Studies, Energy Technology, Högskolan Dalarna, Falun 791 31, Sweden
| | - Viswanath Balakrishnan
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
8
|
R. R, Prasannakumar AT, Mohan RR, V. M, Varma SJ. Advances in 2D Molybdenum Disulfide‐Based Functional Materials for Supercapacitor Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202203068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rohith. R.
- Materials for Energy Storage and Optoelectronic Devices Group Department of Physics Sanatana Dharma College University of Kerala Alappuzha Kerala 688003 India
- Research Centre University of Kerala Thiruvananthapuram Kerala 695034 India
| | - Anandhu Thejas Prasannakumar
- Materials for Energy Storage and Optoelectronic Devices Group Department of Physics Sanatana Dharma College University of Kerala Alappuzha Kerala 688003 India
- Research Centre University of Kerala Thiruvananthapuram Kerala 695034 India
| | - Ranjini R. Mohan
- Division for Research in Advanced Materials Department of Physics Cochin University of Science and Technology Kochi Kerala 688022 India
| | - Manju. V.
- Materials for Energy Storage and Optoelectronic Devices Group Department of Physics Sanatana Dharma College University of Kerala Alappuzha Kerala 688003 India
- Research Centre University of Kerala Thiruvananthapuram Kerala 695034 India
| | - Sreekanth J. Varma
- Materials for Energy Storage and Optoelectronic Devices Group Department of Physics Sanatana Dharma College University of Kerala Alappuzha Kerala 688003 India
- Research Centre University of Kerala Thiruvananthapuram Kerala 695034 India
| |
Collapse
|
9
|
Vidhya M, Selvakumari T, Marnadu R, Ashraf I, Shkir M. Impact of temperature on the properties of MoS2 nanoflakes synthesized by facile hydrothermal method for electrochemical supercapacitor applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Effect of synthesis route on electrocatalytic water-splitting activity of MoS2/UiO-66 hybrid. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ganesha H, Veeresh S, Nagaraju YS, Vandana M, Basappa M, Vijeth H, Devendrappa H. 2-Dimensional layered molybdenum disulfide nanosheets and CTAB-assisted molybdenum disulfide nanoflower for high performance supercapacitor application. NANOSCALE ADVANCES 2022; 4:521-531. [PMID: 36132690 PMCID: PMC9419562 DOI: 10.1039/d1na00664a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 06/16/2023]
Abstract
In this study, the supercapacitor performance of the hydrothermal synthesized molybdenum disulfide (MoS2) nanosheets and the cetyltrimethylammonium bromide (CTAB)-assisted MoS2 nanoflower morphology have been investigated. The as-synthesized MoS2 nanoflower and nanosheet morphology structures were investigated via field emission scanning electron microscopy (FESEM), and the internal microstructure was examined via high resolution-transmission electron microscopy (HR-TEM) technique. The Fourier transform infrared (FT-IR) spectra were obtained to identify the chemical interaction and the functional groups present in the material. The shifting of the binding energy, oxidation states, and elemental identification were conducted by X-ray photon spectroscopy (XPS). The MoS2 nanoflower possesses surface defects, which produce numerous active sites. The MoS2 nanoflower and nanosheet electrodes demonstrate the high specific capacitance (C sp) values of 516 F g-1 and 438 F g-1, respectively, at a current density of 1 A g-1. However, the MoS2 nanoflower shows high C sp due to the large surface area with active edges, making them store more energy in the electrode.
Collapse
Affiliation(s)
- H Ganesha
- Department of Physics, Mangalore University Mangalagangothri 574199 India
| | - S Veeresh
- Department of Physics, Mangalore University Mangalagangothri 574199 India
| | - Y S Nagaraju
- Department of Physics, Mangalore University Mangalagangothri 574199 India
| | - M Vandana
- Department of Physics, Mangalore University Mangalagangothri 574199 India
| | - M Basappa
- Department of Physics, Mangalore University Mangalagangothri 574199 India
| | - H Vijeth
- Department of Physics, Mangalore Institution of Technology and Engineering Badaga Mijar, Moodbidri 574225 Karnataka India
| | - H Devendrappa
- Department of Physics, Mangalore University Mangalagangothri 574199 India
| |
Collapse
|
12
|
Amadi EV, Venkataraman A, Papadopoulos C. Nanoscale self-assembly: concepts, applications and challenges. NANOTECHNOLOGY 2022; 33. [PMID: 34874297 DOI: 10.1088/1361-6528/ac3f54] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/02/2021] [Indexed: 05/09/2023]
Abstract
Self-assembly offers unique possibilities for fabricating nanostructures, with different morphologies and properties, typically from vapour or liquid phase precursors. Molecular units, nanoparticles, biological molecules and other discrete elements can spontaneously organise or form via interactions at the nanoscale. Currently, nanoscale self-assembly finds applications in a wide variety of areas including carbon nanomaterials and semiconductor nanowires, semiconductor heterojunctions and superlattices, the deposition of quantum dots, drug delivery, such as mRNA-based vaccines, and modern integrated circuits and nanoelectronics, to name a few. Recent advancements in drug delivery, silicon nanoelectronics, lasers and nanotechnology in general, owing to nanoscale self-assembly, coupled with its versatility, simplicity and scalability, have highlighted its importance and potential for fabricating more complex nanostructures with advanced functionalities in the future. This review aims to provide readers with concise information about the basic concepts of nanoscale self-assembly, its applications to date, and future outlook. First, an overview of various self-assembly techniques such as vapour deposition, colloidal growth, molecular self-assembly and directed self-assembly/hybrid approaches are discussed. Applications in diverse fields involving specific examples of nanoscale self-assembly then highlight the state of the art and finally, the future outlook for nanoscale self-assembly and potential for more complex nanomaterial assemblies in the future as technological functionality increases.
Collapse
Affiliation(s)
- Eberechukwu Victoria Amadi
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Anusha Venkataraman
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Chris Papadopoulos
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
13
|
Kajana T, Pirashanthan A, Velauthapillai D, Yuvapragasam A, Yohi S, Ravirajan P, Senthilnanthanan M. Potential transition and post-transition metal sulfides as efficient electrodes for energy storage applications: review. RSC Adv 2022; 12:18041-18062. [PMID: 35800326 PMCID: PMC9208027 DOI: 10.1039/d2ra01574a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/29/2022] [Indexed: 12/25/2022] Open
Abstract
Electrochemical energy storage has attracted much attention due to the common recognition of sustainable energy development. Transition metal sulfides and post-transition metal sulfides have been intensively been focused on due to their potential as electrode materials for energy storage applications in different types of capacitors such as supercapacitors and pseudocapacitors, which have high power density and long cycle life. Herein, the physicochemical properties of transition and post-transition metal sulfides, their typical synthesis, structural characterization, and electrochemical energy storage applications are reviewed. Various perspectives on the design and fabrication of transition and post-transition metal sulfides-based electrode materials having capacitive applications are discussed. This review further discusses various strategies to develop transition and/or post-transition metal sulfide heterostructured electrode-based self-powered photocapacitors with high energy storage efficiencies. Electrochemical energy storage has attracted much attention due to the common recognition of sustainable energy development.![]()
Collapse
Affiliation(s)
- Thirunavukarasu Kajana
- Clean Energy Research Laboratory, Department of Physics, University of Jaffna, Jaffna, Sri Lanka
- Department of Chemistry, University of Jaffna, Jaffna, Sri Lanka
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Arumugam Pirashanthan
- Clean Energy Research Laboratory, Department of Physics, University of Jaffna, Jaffna, Sri Lanka
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Akila Yuvapragasam
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | | | - Punniamoorthy Ravirajan
- Clean Energy Research Laboratory, Department of Physics, University of Jaffna, Jaffna, Sri Lanka
| | | |
Collapse
|
14
|
Murugesan RA, Raja KCN. A comparative study on the electrochemical capacitor performance of 1T/2H hybridized phase and 2H pure phase of MoS 2nanoflowers. NANOTECHNOLOGY 2021; 33:035402. [PMID: 34624877 DOI: 10.1088/1361-6528/ac2e24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
The 1T/2H hybridized and 2H pure phases of MoS2nanoflowers were synthesized in a one-step hydrothermal process with the molybdenum source as sodium molybdate dihydrate and the sulfur source as thiourea. The as-prepared 1T/2H hybridized and 2H pure phases of MoS2were investigated using a thermogravimetry\differential thermal analysis, powder x-ray diffraction, field emission scanning electron microscopy, and energy-dispersive x-ray spectroscopy. The obtained 1T/2H hybridized phases of MoS2were confirmed by the Raman spectroscopy. The electrochemical characteristics of MoS2electrodes were examined using cycle voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The electrodes are based on the 1T/2H hybridized phases MoS2with specific capacitance (Cp) of 555.4 F g-1at current densities (Cd) of 0.5 A g-1, capacity retention ratio of 85% after 10 000 cycles were observed that could be a strong potential electrode material for supercapacitors application.
Collapse
Affiliation(s)
- Ramesh Aravind Murugesan
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India
| | | |
Collapse
|
15
|
Abstract
In the present study, the removal of valsartan (VLS), an antihypertensive agent, under simulated solar radiation with the use of molybdenum sulfide-bismuth oxychloride composites (MoS2/BiOCl), of variable MoS2 content (0.1–10.0 wt.%) was investigated. The physicochemical properties of the photocatalysts were examined by XRD, DRS, BET and TEM/HRTEM. Preliminary tests were conducted to examine the photocatalytic efficiency of the synthesized MoS2/BiOCl composites towards VLS degradation in ultrapure water (UPW). It was found that the activity of pure BiOCl is improved with the addition of MoS2. The degradation rate was maximized with the use of the catalyst containing 0.25 wt.% MoS2. It was also found that the increase in catalyst concentration (50–1000 mg/L) enhances VLS degradation. It was found that VLS removal decreased by increasing VLS concentration. The effect of the water matrix on VLS removal was studied by carrying out experiments in real and synthetic water matrices. VLS degradation in UPW was faster than in bottled water (BW) and wastewater (WW), mainly due to the existence of organic matter in real aqueous media. Lastly, 0.25 wt.% MoS2/BiOCl showed great stability after 360 min of irradiation, serving as a promising catalyst for water remediation of emerging contaminants under solar irradiation.
Collapse
|
16
|
Abstract
Molybdenum disulfide (MoS2) is one of the compounds discussed nowadays due to its outstanding properties that allowed its usage in different applications. Its band gap and its distinctive structure make it a promising material to substitute graphene and other semiconductor devices. It has different applications in electronics especially sensors like optical sensors, biosensors, electrochemical biosensors that play an important role in the detection of various diseases’ like cancer and Alzheimer. It has a wide range of energy applications in batteries, solar cells, microwave, and Terahertz applications. It is a promising material on a nanoscale level, with favorable characteristics in spintronics and magnetoresistance. In this review, we will discuss MoS2 properties, structure and synthesis techniques with a focus on its applications and future challenges.
Collapse
|
17
|
Vasudevan M, Tai MJ, Perumal V, Gopinath SC, Murthe SS, Ovinis M, Mohamed NM, Joshi N. Cellulose acetate-MoS2 nanopetal hybrid: A highly sensitive and selective electrochemical aptasensor of Troponin I for the early diagnosis of Acute Myocardial Infarction. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Gupta D, Chauhan V, Kumar R. A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108200] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Joseph N, A. CB. Construction of few layered metallic MoS2 microspheres using glucose induced carbon spheres and its application in symmetric supercapacitor device. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Sulfonated Poly(ether sulfone) based sulfonated molybdenum sulfide composite membranes and their applications in salt removal and alkali recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Sundaram MM, Appadoo D. Traditional salt-in-water electrolyte vs. water-in-salt electrolyte with binary metal oxide for symmetric supercapacitors: capacitive vs. faradaic. Dalton Trans 2020; 49:11743-11755. [PMID: 32797136 DOI: 10.1039/d0dt01871f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The electrochemical energy storage of lithium and sodium ions from aqueous solutions in binary metal oxides is of great interest for renewable energy storage applications. Binary metal oxides are of interest for aqueous energy storage due to their better structural stability and electronic conductivity and tunability of redox potentials. They have also been widely studied as novel electrodes for supercapacitors. The interactions between water and lithium/sodium ions, and water and binary metal oxide surface determine the electrochemical reactions and their long-term stability. Our results indicate that the aqueous sodium electrolyte has a stronger influence on the capacitance and cycling stability of the binary (Ca and Mo) metal oxide electrode than its lithium cousin. The symmetric cell in a two-electrode configuration was assembled with the proposed binary metal oxide, which shows an average discharge voltage of 1.2 V, delivering a specific capacitance of 72 F g-1 at a specific energy density of 32 W h kg-1 based on the total mass of the active materials. The development of highly concentrated aqueous electrolytes such as the "water-in-salt" electrolyte showed a larger electrochemical (voltage) window with enhanced storage capacitance for increasing the salt concentrations has also been discussed.
Collapse
Affiliation(s)
| | - Dominique Appadoo
- THz-Far Infrared Beamline, ANSTO-Australian Synchrotron, Clayton, Victoria 3168, Australia
| |
Collapse
|
22
|
Liu X, Liu L, Wu Y, Wang Y, Yang J, Wang Z. Rosette-like MoS2 nanoflowers as highly active and stable electrodes for hydrogen evolution reactions and supercapacitors. RSC Adv 2019; 9:13820-13828. [PMID: 35519544 PMCID: PMC9066155 DOI: 10.1039/c9ra01111k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/28/2019] [Indexed: 12/02/2022] Open
Abstract
MoS2 is regarded as one of the cost-effective materials for many important applications. In this work, we report a simple one-step hydrothermal method for the directed synthesis of a rosette-like MoS2 nanoflower modified electrode without using adhesion agents. Interestingly, owing to the hierarchical structures, the as-prepared MoS2-based electrode exhibits significantly enhanced performance for both the hydrogen evolution reaction in acidic environments and supercapacitors. When used in the hydrogen evolution reaction, the electrode shows a low overpotential of ∼0.25 V at 10 mA cm−2, a Tafel slope of ∼71.2 mV per decade, and long-term durability over 20 h of hydrogen evolution reaction operation at 10 mV cm−2. In addition, as a supercapacitor electrode, it exhibits a good capacity of 137 mF cm−2 at a current density of 10 mA cm−2 and excellent stability in 1 M H2SO4 at a scan rate of 50 mV s−1. The outstanding performances of the as-prepared materials may be ascribed to the unique 3D architectures of the rosette-like MoS2 nanoflowers. This work could provide a strategy to explore low-cost and highly efficient electrocatalysts with desired nanostructures for the hydrogen evolution reaction and supercapacitors applications. A simple strategy to synthesize interlayer spacing-enlarged rosette-like MoS2 nanoflowers for both the hydrogen evolution reaction and supercapacitive energy storage.![]()
Collapse
Affiliation(s)
- Xuexia Liu
- School of Chemistry and Chemical Engineering
- Jinggangshan University
- Ji'an
- PR China
| | - Limin Liu
- School of Chemistry and Chemical Engineering
- Jinggangshan University
- Ji'an
- PR China
| | - Ying Wu
- School of Chemistry and Chemical Engineering
- Jinggangshan University
- Ji'an
- PR China
| | - Yinfeng Wang
- School of Chemistry and Chemical Engineering
- Jinggangshan University
- Ji'an
- PR China
| | - Jinhu Yang
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- PR China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering
- Jinggangshan University
- Ji'an
- PR China
| |
Collapse
|