1
|
Woo J, Zeqiri T, Christian AH, Ryan MC, Levin MD. Carbon-Atom Scavengers Enable Divergent, Selective Carbon Deletion of Azaarenes. J Am Chem Soc 2025. [PMID: 40425518 DOI: 10.1021/jacs.5c06577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Divergent synthesis is a powerful strategy that provides simultaneous access to multiple derivatives of a given substrate. However, the emerging developments in skeletal editing have largely delivered methods that lack this potential for diversification. Herein, we report the serendipitous discovery of reagent-controlled selective deletion of C3 or C2 carbon atoms of quinolines, affording indoles. An initial observation that an impurity in commercial samples of DBU promoted cyclization of a benzoxazepine-derived imidate led to the identification of indoline and aminoethanol as C3- and C2-selective carbon-atom scavengers, respectively. These two methods successfully convert a broad scope of quinolines and related azaarenes to the corresponding indoles and azaindoles, enabling divergent carbon deletion. In-depth mechanistic studies support the HFIP-promoted ring opening of 3,1-benzoxazepines to amidine intermediates as a rate-determining step, while providing insights into the selectivity afforded by indoline. These methods and their associated mechanisms offer a blueprint for the rational design of reagent-controlled, divergent skeletal edits.
Collapse
Affiliation(s)
- Jisoo Woo
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Tergitë Zeqiri
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Alec H Christian
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Michael C Ryan
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Mark D Levin
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Pal S, Nandi R, Manna AS, Bag D, Rahaman R, Maiti DK. Cu(I)-Catalyzed C(sp 3)-H Functionalization of Amino Acids with Benzimidate and Reactive Oxygen Species (ROS) To Synthesize Triazines and 2-Pyrrolidinones. Org Lett 2024. [PMID: 39526848 DOI: 10.1021/acs.orglett.4c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An easily accessible Cu(I)-catalyzed regioselective oxidative C-N/C-O cross-coupling organic transformation has been disclosed for the syntheses of variably functionalized triazines and N-benzoylpyrrolidin-2-ones through the involvement of C(sp3)-H bond functionalization, which is unknown in the literature. This general synthetic method is extended for decarboxylative oxidation of amino acids to install carbonyl functionality. It facilitates the formation of 2-3 new bonds through the cross-coupling strategy involving benzimidates, amino acids, and in situ-generated reactive oxygen species (ROS) from the aerial O2 as the sole oxidant. The key utilities of the new reactions are demonstrated by its operational simplicity, regioselectivity, robustness, and broad substrate scope with high yields.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Debanjana Bag
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| |
Collapse
|
3
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Bisoyi A, Tripathy AR, Behera A, Yatham VR. α-C(sp 3)-H (Hetero)Arylation of Thioethers Enabled by Photoexcited Triplet Ketone Catalysis. J Org Chem 2024; 89:12540-12546. [PMID: 39163310 DOI: 10.1021/acs.joc.4c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
We report herein α-C(sp3)-H (hetero)arylation of thioethers enabled by dual nickel and photoexcited triplet ketone catalysis. The mild reaction conditions of this protocol tolerate a variety of functional groups and further facilitate the late-stage functionalization of biologically relevant molecules to afford corresponding products in moderate to good yields. Preliminary mechanistic studies suggest that the generation of the α-thioalkyl radical takes place through a hydrogen atom transfer (HAT) event, which is involved in the rate-limiting step and in the nickel cycle, the reaction of the α-thioalkyl radical with Ni(0)Ln catalyst followed by oxidative addition of aryl bromide is the dominating pathway. Furthermore, the heteroaromatic benzylic thioethers can also be achieved from the corresponding reduced 4-cyano pyridine derivatives in the presence of a ketone catalyst through a radical-radical coupling reaction without metal. The increased yield of the products in the presence of DABCO might indicate a higher rate of α-thioalkyl radical formation from thioethers through the HAT event by DABCO radical cation.
Collapse
Affiliation(s)
- Akash Bisoyi
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Amit Behera
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
5
|
Venkat Shivaji Ramarao EV, Solanke JN, Chatterjee R, Gat S, Dhayalan V, Dandela R. Metal-free efficient synthesis of aryl sulfonamides from N-hydroxy sulfonamide and amines. Org Biomol Chem 2024; 22:5918-5923. [PMID: 38994682 DOI: 10.1039/d4ob00878b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A simple and novel approach has been developed for the synthesis of sulfonamides from N-hydroxy sulfonamide. Notably, the iodine-tert-butyl hydroperoxide (TBHP) system efficiently promoted the sulfonylation reactions of N-hydroxy sulfonamides and amines via the oxidative cleavage of an S-N bond. A variety of aryl sulfonamides were prepared in moderate to good yields using readily available starting materials and the biomass-derived 2-MeTHF solvent. The present method has the advantages of using metal-free reagents, an eco-friendly medium, cost-effective reagents, wide substrate scope, and mild conditions.
Collapse
Affiliation(s)
- E V Venkat Shivaji Ramarao
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Jayshree Nandkumar Solanke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| | - Rana Chatterjee
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| | - Savita Gat
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| | - Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609, Union Territory Puducherry, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| |
Collapse
|
6
|
Mendas I, Gastaldi S, Suppo JS. Strategies for Accessing cis-1-Amino-2-Indanol. Molecules 2024; 29:2442. [PMID: 38893318 PMCID: PMC11173559 DOI: 10.3390/molecules29112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
cis-1-amino-2-indanol is an important building block in many areas of chemistry. Indeed, this molecule is currently used as skeleton in many ligands (BOX, PyBOX…), catalysts and chiral auxiliaries. Moreover, it has been incorporated in numerous bioactive structures. The major issues during its synthesis are the control of cis-selectivity, for which various strategies have been devised, and the enantioselectivity of the reaction. This review highlights the various methodologies implemented over the last few decades to access cis-1-amino-2-indanol in racemic and enantioselective manners. In addition, the various substitution patterns on the aromatic ring and their preparations are listed.
Collapse
|
7
|
Pal S, Nandi R, Manna AS, Aich S, Maiti DK. Cu I-Catalyzed Radical Reaction of Benzimidates to Form Valuable 4,5-Dihydrooxazoles through Regioselective Aerobic Oxidative Cross-Coupling. J Org Chem 2024; 89:2703-2717. [PMID: 38295826 DOI: 10.1021/acs.joc.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A straightforward Cu(I)-catalyzed oxidative cross-coupled organic transformation has been developed under mild conditions for the construction of functionalized 4,5-dihydrooxazoles through a four-bond-forming regiocontrolled C-C/C-N/C-O coupling strategy emerging benzimidates, paraformaldehyde, and 1,3-diketo analogues using eco-friendly O2 as the sole oxidant. The fundamental features of these designed approaches involve operational simplicity, selectivity, generality, and a broad substrate scope with high yields under the same reaction conditions.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
8
|
Akulov AA, Varaksin MV, Nelyubina AA, Tsmokaluk AN, Mazhukin DG, Tikhonov AY, Charushin VN, Chupakhin ON. Iodine-Catalyzed Radical C-H Amination of Nonaromatic Imidazole Oxides: Access to Cyclic α-Aminonitrones. J Org Chem 2024; 89:463-473. [PMID: 38092669 DOI: 10.1021/acs.joc.3c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A straightforward cross-dehydrogenative coupling approach to incorporate alicyclic amino residues into the structure of model cyclic aldonitrones, 2H-imidazole oxides, is reported. The elaborated C(sp2)-H functionalization is achieved by employing cyclic amines in the presence of the I2-tert-butyl hydroperoxide (TBHP) reagent system. As a result, a series of 19 novel heterocyclic derivatives were obtained in yields of up to 97%. A mechanistic study involving electron paramagnetic resonance spectroscopic experiments allowed the radical nature of the reaction to be confirmed. In particular, the envisioned mechanistic rationale comprises N-iodination of a cyclic amine, followed by N-I bond homolysis of the resulting intermediate and subsequent amination of the nitrone moiety via the newly generated nitrogen-centered radical.
Collapse
Affiliation(s)
- Alexey A Akulov
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
| | - Mikhail V Varaksin
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
- I.Ya. Postovsky Institute of Organic Synthesis, 22 S. Kovaleskoy Street, Ekaterinburg 620991, Russian Federation
| | - Anna A Nelyubina
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
| | - Anton N Tsmokaluk
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
| | - Dmitrii G Mazhukin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 Akademika Lavrentieva Avenue, Novosibirsk 630090, Russian Federation
| | - Alexsei Y Tikhonov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 Akademika Lavrentieva Avenue, Novosibirsk 630090, Russian Federation
| | - Valery N Charushin
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
- I.Ya. Postovsky Institute of Organic Synthesis, 22 S. Kovaleskoy Street, Ekaterinburg 620991, Russian Federation
| | - Oleg N Chupakhin
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
- I.Ya. Postovsky Institute of Organic Synthesis, 22 S. Kovaleskoy Street, Ekaterinburg 620991, Russian Federation
| |
Collapse
|
9
|
Tanaka N, Zhu JL, Valencia OL, Schull CR, Scheidt KA. Cooperative Carbene Photocatalysis for β-Amino Ester Synthesis. J Am Chem Soc 2023. [PMID: 37906227 DOI: 10.1021/jacs.3c09875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
β-Amino acids are useful building blocks of bioactive molecules, including peptidomimetics and pharmaceutical compounds. The current limited accessibility to β2,2-type amino acids which bear an α-quaternary center has limited their use in chemical synthesis and biological investigations. Disclosed herein is the development of a new N-heterocyclic carbene/photocatalyzed aminocarboxylation of olefins, affording β2,2-amino esters with high regioselectivity. The generation of nitrogen-centered radicals derived from simple imides via a sequence of deprotonation and single-electron oxidation allows for the subsequent addition to geminal-disubstituted olefins regioselectively. The intermediate tertiary radicals then cross-couple with a stabilized azolium-based radical generated in situ to efficiently construct the quaternary centers. Mechanistic studies, including Stern-Volmer fluorescence quenching experiments, support the proposed catalytic cycle.
Collapse
Affiliation(s)
- Nao Tanaka
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joshua L Zhu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Oniya L Valencia
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cullen R Schull
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
11
|
Ito Y, Mizuno K, Sumise S, Kimura A, Noguchi N, Fuchi Y, Hari Y. Generation of 4'-Carbon Radicals via 1,5-Hydrogen Atom Transfer for the Synthesis of Bridged Nucleosides. Org Lett 2022; 24:7696-7700. [PMID: 36214750 DOI: 10.1021/acs.orglett.2c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid and facile generation of 4'-carbon radicals from oxime imidates of nucleosides via 1,5-hydrogen atom transfer induced by iminyl radicals was developed. The cyclization of 4'-carbon radicals with olefins, followed by the hydrolysis of imidate residues, provided various 2'-O,4'-C- and 3'-O,4'-C-bridged nucleosides. This operationally simple approach can be applied to the few-step syntheses of 6'S-methyl-2'-O,4'-C-ethylene-bridged 5-methyluridine (6'S-Me-ENA-T) and S-constrained ethyl-bridged 5-methyluridine (S-cEt-T).
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Koichi Mizuno
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Sanae Sumise
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Airi Kimura
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Nozomi Noguchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yasufumi Fuchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
12
|
Babu MH, Sim J. Radical‐Mediated C‐H Alkylation of Glycine Derivatives: A Straightforward Strategy for Diverse α‐Unnatural Amino Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Madala Hari Babu
- Chungnam National University College of Pharmacy KOREA, REPUBLIC OF
| | - Jaehoon Sim
- Chungnam National University College of Pharmacy College of Pharmacy 99 Daehak-ro, Yuseong-guW6 College of Pharmacy 34134 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
13
|
Herbort JH, Bednar TN, Chen AD, RajanBabu TV, Nagib DA. γ C-H Functionalization of Amines via Triple H-Atom Transfer of a Vinyl Sulfonyl Radical Chaperone. J Am Chem Soc 2022; 144:13366-13373. [PMID: 35820104 PMCID: PMC9405708 DOI: 10.1021/jacs.2c05266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A selective, remote desaturation has been developed to rapidly access homoallyl amines from their aliphatic precursors. The strategy employs a triple H-atom transfer (HAT) cascade, entailing (i) cobalt-catalyzed metal-HAT (MHAT), (ii) carbon-to-carbon 1,6-HAT, and (iii) Co-H regeneration via MHAT. A new class of sulfonyl radical chaperone (to rapidly access and direct remote, radical reactivity) enables remote desaturation of diverse amines, amino acids, and peptides with excellent site-, chemo-, and regioselectivity. The key, enabling C-to-C HAT step in this cascade was computationally designed to satisfy both thermodynamic (bond strength) and kinetic (polarity) requirements, and it has been probed via regioselectivity, isomerization, and competition experiments. We have also interrupted this radical transfer dehydrogenation to achieve γ-selective C-Cl, C-CN, and C-N bond formations.
Collapse
Affiliation(s)
- James H Herbort
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Taylor N Bednar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Abstract
Synthetic chemists have long focused on selective C(sp 3)-N bond-forming approaches in response to the high value of this motif in natural products, pharmaceutical agents and functional materials. In recent years, visible light-induced protocols have become an important synthetic platform to promote this transformation under mild reaction conditions. These photo-driven methods rely on converting visible light into chemical energy to generate reactive but controllable radical species. This Review highlights recent advances in this area, mostly after 2014, with an emphasis placed on C(sp 3)-H bond activations, including amination of olefins and carbonyl compounds, and cross-coupling reactions.
Collapse
|
15
|
Herron AN, Hsu CP, Yu JQ. δ-C-H Halogenation Reactions Enabled by a Nitrogen-Centered Radical Precursor. Org Lett 2022; 24:3652-3656. [PMID: 35549294 DOI: 10.1021/acs.orglett.2c01261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrogen-centered radicals are versatile synthetic intermediates with the ability to undergo diverse reactions such as hydrogen atom transfer (HAT), β-scission, and addition across unsaturated systems. A long-standing impediment to the wider adoption of these intermediates in synthesis has been the difficulty of their generation. Herein we disclose a new hydrazonyl carboxylic acid precursor to nitrogen-centered radicals and its application toward remote C-H fluorination and chlorination reactions of sulfonyl-protected alkyl amines via 1,5-HAT.
Collapse
Affiliation(s)
- Alastair N Herron
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ching-Pei Hsu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Li QZ, Zeng R, Fan Y, Liu YQ, Qi T, Zhang X, Li JL. Remote C(sp 3 )-H Acylation of Amides and Cascade Cyclization via N-Heterocyclic Carbene Organocatalysis. Angew Chem Int Ed Engl 2022; 61:e202116629. [PMID: 35112461 DOI: 10.1002/anie.202116629] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/08/2022]
Abstract
The direct functionalization of inert C(sp3 )-H bonds under environmentally benign catalytic conditions remains a challenging task in synthetic chemistry. Here, we report an organocatalytic remote C(sp3 )-H acylation of amides and cascade cyclization through a radical-mediated 1,5-hydrogen atom transfer mechanism using N-heterocyclic carbene as the catalyst. Notably, a diversity of nitrogen-containing substrates, including simple linear aliphatic carbamates and ortho-alkyl benzamides, can be successfully applied to this organocatalytic system. With the established protocol, over 120 examples of functionalized δ-amino ketones and isoquinolinones with diverse substituents were easily synthesized in up to 99 % yield under mild conditions. The robustness and generality of the organocatalytic strategy were further highlighted by the successful acylation of unactivated C(sp3 )-H bonds and late-stage modification of pharmaceutical molecules. Then, the asymmetric control of the radical reaction was attempted and proven feasible by using a newly designed chiral thiazolium catalyst, and moderate enantioselectivity was obtained at the current stage. Preliminary mechanistic investigations including several control reactions, KIE experiments, and computational studies shed light on the organocatalytic radical reaction mechanism.
Collapse
Affiliation(s)
- Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yang Fan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yan-Qing Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
17
|
Li Q, Zeng R, Fan Y, Liu Y, Qi T, Zhang X, Li J. Remote C(sp
3
)−H Acylation of Amides and Cascade Cyclization via N‐Heterocyclic Carbene Organocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qing‐Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Yang Fan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Yan‐Qing Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
- College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Jun‐Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| |
Collapse
|
18
|
Mou XQ, Ren LC, Zhang M, Wang M, Jin YF, Guan QX, Cai A, Zhang SM, Ren H, Zhang Y, Chen YZ. Complementary Copper-Catalyzed and Electrochemical Aminosulfonylation of O-Homoallyl Benzimidates and N-Alkenyl Amidines with Sodium Sulfinates. Org Lett 2022; 24:1405-1411. [PMID: 35138858 DOI: 10.1021/acs.orglett.2c00287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A complementary copper-catalyzed and electrochemical aminosulfonylation of O-homoallyl benzimidates and N-alkenyl amidines with sodium sulfinates was developed. The terminal alkene substrate produced sulfone-containing 1,3-oxazines and tetrahydropyrimidines in the presence of Cu(OAc)2, Ag2CO3, and DPP, and under similar reaction conditions, sulfonylated tetrahydro-1,3-oxazepines were prepared from 1-aryl-substituted O-homoallyl benzimidates in moderate to good yields. For certain electron-rich 1,1-diaryl-substituted alkene substrates, the corresponding tetrahydro-1,3-oxazepines could also be obtained in similar or even higher yields via a green electrochemical technique.
Collapse
Affiliation(s)
- Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Liang-Chen Ren
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Mei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Min Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yu-Fan Jin
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Qing-Xin Guan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Ang Cai
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Shi-Min Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Yun Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| |
Collapse
|
19
|
Abstract
The majority of medicines contain a nitrogen atom within a five- or six- membered ring. To rapidly access both such aza-heterocycles, we sought to develop a remote C-H desaturation of amines. Inspired by the Hofmann-Löffler-Freytag synthesis of five-membered pyrrolidines, we tackled the century-old challenge of synthesizing six-membered piperidines by H-atom transfer. We present herein a double, vicinal C-H oxidation by dual catalysis, entailing Ir photocatalytic initiation of 1,5-HAT by an N-centered radical and Cu-catalyzed interception of the C-centered radical to facilitate desaturation. By this mechanism, two C-H bonds (δ and ε to N) are regioselectively removed from unbiased, remote positions of an alkyl chain. Over 50 examples illustrate efficiency, selectivity, functional group tolerance, and medicinal utility of this synthesis of both internal and terminal δ vinylic amines and aza-heterocycles. Mechanistic experiments probe the alkylcopper intermediate, as well as kinetics and regioselectivity of the HAT and elimination steps.
Collapse
|
20
|
Ghosh SK, Hu M, Comito R. One-Pot Synthesis of Primary and Secondary Aliphatic Amines via Mild and Selective sp3 C-H Imination. Chemistry 2021; 27:17601-17608. [PMID: 34387903 DOI: 10.1002/chem.202102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/09/2022]
Abstract
The direct replacement of sp3 C-H bonds with simple amine units (-NH2) remains synthetically challenging, although primary aliphatic amines are ubiquitous in medicinal chemistry and natural product synthesis. We report a mild and selective protocol for preparing primary and secondary aliphatic amines in a single pot, based on intermolecular sp3 C-H imination. The first C-H imination of diverse alkanes, this method shows useful site-selectivity within substrates bearing multiple sp3 C-H bonds. Furthermore, this reaction tolerates polar functional groups relevant for complex molecule synthesis, highlighted in the synthesis of amine pharmaceuticals and amination of natural products. We characterize a unique C-H imination mechanism based on radical rebound to an iminyl radical, supported by kinetic isotope effects, stereoablation, resubmission, and computational modeling. This work constitutes a selective method for complex amine synthesis and a new mechanistic platform for C-H amination.
Collapse
Affiliation(s)
- Subrata K Ghosh
- University of Houston, Chemistry, Department of Chemistry, 3585 Cullen Boulevard, Room 112, 77204-5003, Houston, UNITED STATES
| | - Mengnan Hu
- University of Houston, Chemistry, Department of Chemistry, 3585 Cullen Boulevard, Room 112, 77204-5003, Houstonn, UNITED STATES
| | - Robert Comito
- University of Houston, Chemistry, Department of Chemistry, 3585 Cullen Boulevard, Room 112, 77204-5003, Houston, UNITED STATES
| |
Collapse
|
21
|
Shibuya M, Orihashi T, Li Y, Yamamoto Y. N-Hydroxyphthalimide-catalyzed chemoselective intermolecular benzylic C-H amination of unprotected arylalkanols. Chem Commun (Camb) 2021; 57:8742-8745. [PMID: 34374398 DOI: 10.1039/d1cc03466a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N-Hydroxyphthalimide-catalyzed chemoselective benzylic C(sp3)-H amination of unprotected arylalkanols using bis(2,2,2-trichloroethyl)azodicarboxylate has been developed. The use of 1,1,1,3,3,3-hexafluoropropan-2-ol as a solvent plays a critical role in chemoselectivity. The conversion of an aminated product to the corresponding free amino alcohol was also demonstrated.
Collapse
Affiliation(s)
- Masatoshi Shibuya
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | |
Collapse
|
22
|
Lai H, Xu J, Lin J, Zha D. Copper-promoted direct amidation of isoindolinone scaffolds by sodium persulfate. Org Biomol Chem 2021; 19:7621-7626. [PMID: 34308463 DOI: 10.1039/d1ob01054a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoindolinones are ubiquitous structural motifs in natural products and pharmaceuticals. Establishing an efficient method for structural modification of isoindolinones could significantly facilitate new drug development. Herein, we describe copper-promoted direct amidation of isoindolinone scaffolds mediated by sodium persulfate. The method exhibits mild reaction conditions and high site-selectivity, and enables the structural modification of the drug indobufen ester with various amides with yields of 49 to 98%. It is also gram-scalable. Additionally, the reaction mechanism appears to involve a radical and a carbocationic pathway.
Collapse
Affiliation(s)
- Huifang Lai
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Jiexin Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Jin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China. and Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, China
| |
Collapse
|
23
|
Aniline‐Type Hypervalent Iodine(III) for Intramolecular Cyclization via C−H Bond Abstraction of Hydrocarbons Containing N‐ and O‐Nucleophiles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Qi Z, Li L, Liang YK, Ma AJ, Zhang XZ, Peng JB. Visible-Light-Induced Carbonylation of Indoles with Phenols under Metal-Free Conditions: Synthesis of Indole-3-carboxylates. Org Lett 2021; 23:4769-4773. [PMID: 34060850 DOI: 10.1021/acs.orglett.1c01494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-induced carbonylation of indoles with phenols for the synthesis of indole-3-carboxylates has been developed. The reaction proceeded via a radical carbonylation process in which elementary I2 was used as an effective photosensitive initiator and, thus, avoided the use of transition metal catalysts. A series of different aryl indole-3-carboxylates were prepared in moderate to good yields. The broad applicability of this methodology was further highlighted by the late-stage functionalization of several phenol-containing natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Zhuang Qi
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Lin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ying-Kang Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
25
|
Nobile E, Castanheiro T, Besset T. Radical-Promoted Distal C-H Functionalization of C(sp 3 ) Centers with Fluorinated Moieties. Angew Chem Int Ed Engl 2021; 60:12170-12191. [PMID: 32897632 DOI: 10.1002/anie.202009995] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Due to their unique properties, fluorinated scaffolds are pivotal compounds in pharmaceuticals, agrochemicals, and materials science. Over the last years, the development of versatile strategies for the selective synthesis of fluorinated molecules by direct C-H bond functionalization has attracted a lot of attention. In particular, the design of novel transformations based on a radical process was a bottleneck for distal C-H functionalization reactions, offering synthetic solutions for the selective introduction of fluorinated groups. This Minireview highlights the major contributions in this blossoming field. The development of new methodologies for the remote functionalization of aliphatic derivatives with various fluorinated groups based on a 1,5-hydrogen atom transfer process and a β-fragmentation reaction will be showcased and discussed.
Collapse
Affiliation(s)
- Enzo Nobile
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Thomas Castanheiro
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
26
|
Annapureddy RR, Burg F, Gramüller J, Golub TP, Merten C, Huber SM, Bach T. Silver‐Catalyzed Enantioselective Sulfimidation Mediated by Hydrogen Bonding Interactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rajasekar Reddy Annapureddy
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Finn Burg
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Johannes Gramüller
- Faculty of Chemistry and Pharmacy Institute of Organic Chemistry University of Regensburg Universitätsstraße 31 93040 Regensburg Germany
| | - Tino P. Golub
- Ruhr-Universität Bochum Faculty for Chemistry and Biochemistry Universitätsstraße 150 44801 Bochum Germany
| | - Christian Merten
- Ruhr-Universität Bochum Faculty for Chemistry and Biochemistry Universitätsstraße 150 44801 Bochum Germany
| | - Stefan M. Huber
- Ruhr-Universität Bochum Faculty for Chemistry and Biochemistry Universitätsstraße 150 44801 Bochum Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
27
|
Annapureddy RR, Burg F, Gramüller J, Golub TP, Merten C, Huber SM, Bach T. Silver-Catalyzed Enantioselective Sulfimidation Mediated by Hydrogen Bonding Interactions. Angew Chem Int Ed Engl 2021; 60:7920-7926. [PMID: 33438798 PMCID: PMC8048691 DOI: 10.1002/anie.202016561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/13/2022]
Abstract
An enantioselective sulfimidation of 3-thiosubstituted 2-quinolones and 2-pyridones was achieved with a stoichiometric nitrene source (PhI=NNs) and a silver-based catalyst system. Key to the success of the reaction is the use of a chiral phenanthroline ligand with a hydrogen bonding site. The enantioselectivity does not depend on the size of the two substituents at the sulfur atom but only on the binding properties of the heterocyclic lactams. A total of 21 chiral sulfimides were obtained in high yields (44-99 %) and with significant enantiomeric excess (70-99 % ee). The sulfimidation proceeds with high site-selectivity and can also be employed for the kinetic resolution of chiral sulfoxides. Mechanistic evidence suggests the intermediacy of a heteroleptic silver complex, in which the silver atom is bound to one molecule of the chiral ligand and one molecule of an achiral 1,10-phenanthroline. Support for the suggested reaction course was obtained by ESI mass spectrometry, DFT calculations, and a Hammett analysis.
Collapse
Affiliation(s)
- Rajasekar Reddy Annapureddy
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Finn Burg
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Johannes Gramüller
- Faculty of Chemistry and PharmacyInstitute of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| | - Tino P. Golub
- Ruhr-Universität BochumFaculty for Chemistry and BiochemistryUniversitätsstraße 15044801BochumGermany
| | - Christian Merten
- Ruhr-Universität BochumFaculty for Chemistry and BiochemistryUniversitätsstraße 15044801BochumGermany
| | - Stefan M. Huber
- Ruhr-Universität BochumFaculty for Chemistry and BiochemistryUniversitätsstraße 15044801BochumGermany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstraße 485747GarchingGermany
| |
Collapse
|
28
|
Zhang Z, Ngo DT, Nagib DA. Regioselective Radical Amino-Functionalizations of Allyl Alcohols via Dual Catalytic Cross-Coupling. ACS Catal 2021; 11:3473-3477. [PMID: 34745713 DOI: 10.1021/acscatal.1c00404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The regioselective amination and cross-coupling of a range of nucleophiles with allyl alcohols has been enabled by a dual catalytic strategy. This approach entails the combined action of an Ir photocatalyst that enables mild access to N-radicals via an energy transfer mechanism, as well as a Cu complex that intercepts the ensuing alkyl radical upon cyclization. Merger of this Cu-catalyzed cross-coupling enables a broad range of nucleophiles (e.g. CN, SCN, N3, vinyl, allyl) to engage in radical amino-functionalizations of olefins. Notably, stereo, regio, and kinetic probes provide insights into the nature of this Cu-based radical interception.
Collapse
Affiliation(s)
- Zuxiao Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Duong T. Ngo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A. Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
29
|
Nobile E, Castanheiro T, Besset T. Radical‐Promoted Distal C−H Functionalization of C(sp
3
) Centers with Fluorinated Moieties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Enzo Nobile
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Thomas Castanheiro
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Tatiana Besset
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
30
|
Jin RX, Dai JC, Li Y, Wang XS. Copper-Catalyzed Intramolecular Amination of C(sp 3)-H Bond of Secondary Amines to Access Azacycles. Org Lett 2021; 23:421-426. [PMID: 33395308 DOI: 10.1021/acs.orglett.0c03934] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cross-coupling of C-N bond directly from inert C-H bonds is an ideal approach to synthesize saturated azacycles due to its high efficiency and atom economy. In this article, a copper-catalyzed intramolecular amination via the cross coupling of C(sp3)-H and N-H bonds of secondary amine has been reported, which exhibit excellent chemo- and regioselectivity, extensive substrate scope, and functional group tolerance in good to excellent yield, offering an efficient pathway to build nitrogen-containing heterocycle skeletons.
Collapse
Affiliation(s)
- Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jing-Cheng Dai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
31
|
Min QQ, Yang JW, Pang MJ, Ao GZ, Liu F. Copper-catalyzed, N-directed remote C(sp3)–H azidation and thiocyanation. Org Chem Front 2021. [DOI: 10.1039/d0qo01012j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mild and practical protocol is developed for the synthesis of distal azido and thiocyanato alkylamines via N-directed remote C(sp3)–H functionalization.
Collapse
Affiliation(s)
- Qing-Qiang Min
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| | - Jia-Wen Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| | - Meng-Juan Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| | - Gui-Zhen Ao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| |
Collapse
|
32
|
Lei N, Shen Y, Li Y, Tao P, Yang L, Su Z, Zheng K. Electrochemical Iodoamination of Indoles Using Unactivated Amines. Org Lett 2020; 22:9184-9189. [PMID: 33185451 DOI: 10.1021/acs.orglett.0c03158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An environmentally friendly electrochemical approach for iodoamination of various indole derivatives with a series of unactivated amines, amino acid derivatives, and benzotriazoles (more than 80 examples) has been developed. This strategy was further applied in late-stage functionalization of natural products and pharmaceuticals and gram-scale synthesis and radiosynthesis of 131I-labeled compounds. Fundamental insights into the mechanism of the reaction based on control experiments, density functional theory calculation, and cyclic voltammetry are provided.
Collapse
Affiliation(s)
- Ning Lei
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yanling Shen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yujun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Pan Tao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Liquan Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
33
|
Yuan Z, Liu X, Liu C, Zhang Y, Rao Y. Recent Advances in Rapid Synthesis of Non-proteinogenic Amino Acids from Proteinogenic Amino Acids Derivatives via Direct Photo-Mediated C-H Functionalization. Molecules 2020; 25:E5270. [PMID: 33198166 PMCID: PMC7696505 DOI: 10.3390/molecules25225270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Non-proteinogenic amino acids have attracted tremendous interest for their essential applications in the realm of biology and chemistry. Recently, rising C-H functionalization has been considered an alternative powerful method for the direct synthesis of non-proteinogenic amino acids. Meanwhile, photochemistry has become popular for its predominant advantages of mild conditions and conservation of energy. Therefore, C-H functionalization and photochemistry have been merged to synthesize diverse non-proteinogenic amino acids in a mild and environmentally friendly way. In this review, the recent developments in the photo-mediated C-H functionalization of proteinogenic amino acids derivatives for the rapid synthesis of versatile non-proteinogenic amino acids are presented. Moreover, postulated mechanisms are also described wherever needed.
Collapse
Affiliation(s)
- Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (X.L.); (C.L.)
| | - Xuanzhong Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (X.L.); (C.L.)
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (X.L.); (C.L.)
| | - Yan Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China;
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (X.L.); (C.L.)
| |
Collapse
|
34
|
Zhao R, Fu K, Fang Y, Zhou J, Shi L. Site-Specific C(sp 3 )-H Aminations of Imidates and Amidines Enabled by Covalently Tethered Distonic Radical Anions. Angew Chem Int Ed Engl 2020; 59:20682-20690. [PMID: 32706927 DOI: 10.1002/anie.202008806] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Indexed: 11/11/2022]
Abstract
The utilization of N-centered radicals to synthesize nitrogen-containing compounds has attracted considerable attention recently, due to their powerful reactivities and the concomitant construction of C-N bonds. However, the generation and control of N-centered radicals remain particularly challenging. We report a tethering strategy using SOMO-HOMO-converted distonic radical anions for the site-specific aminations of imidates and amidines with aid of the non-covalent interaction. This reaction features a remarkably broad substrate scope and also enables the late-stage functionalization of bioactive molecules. Furthermore, the reaction mechanism is thoroughly investigated through kinetic studies, Raman spectroscopy, electron paramagnetic resonance spectroscopy, and density functional theory calculations, revealing that the aminations likely involve direct homolytic cleavage of N-H bonds and subsequently controllable 1,5 or 1,6 hydrogen atom transfer.
Collapse
Affiliation(s)
- Rong Zhao
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Kang Fu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yuanding Fang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jia Zhou
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lei Shi
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
35
|
Du W, Huang H, Xiao T, Jiang Y. Metal‐Free, Visible‐Light Promoted Intramolecular Azole C−H Bond Amination Using Catalytic Amount of I
2
: A Route to 1,2,3‐Triazolo[1,5‐
a
]quinazolin‐5(4
H
)‐ones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Weigen Du
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road, Chenggong District Kunming 650500, P. R. of China
| | - Hongtai Huang
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road, Chenggong District Kunming 650500, P. R. of China
| | - Tiebo Xiao
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road, Chenggong District Kunming 650500, P. R. of China
| | - Yubo Jiang
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road, Chenggong District Kunming 650500, P. R. of China
| |
Collapse
|
36
|
Zhao R, Fu K, Fang Y, Zhou J, Shi L. Site‐Specific C(sp
3
)–H Aminations of Imidates and Amidines Enabled by Covalently Tethered Distonic Radical Anions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rong Zhao
- School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Kang Fu
- School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Yuanding Fang
- School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Jia Zhou
- School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Lei Shi
- School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
37
|
Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Visible‐Light‐Induced Palladium‐Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Nikita Kvasovs
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Sumon Sarkar
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Vladimir Gevorgyan
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| |
Collapse
|
38
|
Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Visible-Light-Induced Palladium-Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew Chem Int Ed Engl 2020; 59:10316-10320. [PMID: 32155303 PMCID: PMC7446712 DOI: 10.1002/anie.201915962] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 12/31/2022]
Abstract
A mild visible-light-induced Pd-catalyzed intramolecular C-H arylation of amides is reported. The method operates by cleavage of a C(sp2 )-O bond, leading to hybrid aryl Pd-radical intermediates. The following 1,5-hydrogen atom translocation, intramolecular cyclization, and rearomatization steps lead to valuable oxindole and isoindoline-1-one motifs. Notably, this method provides access to products with readily enolizable functional groups that are incompatible with traditional Pd-catalyzed conditions.
Collapse
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Nikita Kvasovs
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Sumon Sarkar
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| |
Collapse
|
39
|
Bakhoda AG, Wiese S, Greene C, Figula BC, Bertke JA, Warren TH. Radical Capture at Nickel(II) Complexes: C–C, C–N, and C–O Bond Formation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Abolghasem Gus Bakhoda
- Georgetown University, Department of Chemistry, Washington, District of Columbia 20057-1227, United States
| | - Stefan Wiese
- Georgetown University, Department of Chemistry, Washington, District of Columbia 20057-1227, United States
| | - Christine Greene
- Georgetown University, Department of Chemistry, Washington, District of Columbia 20057-1227, United States
| | - Bryan C. Figula
- Georgetown University, Department of Chemistry, Washington, District of Columbia 20057-1227, United States
| | - Jeffery A. Bertke
- Georgetown University, Department of Chemistry, Washington, District of Columbia 20057-1227, United States
| | - Timothy H. Warren
- Georgetown University, Department of Chemistry, Washington, District of Columbia 20057-1227, United States
| |
Collapse
|
40
|
Min QQ, Yang JW, Pang MJ, Ao GZ, Liu F. Copper-Catalyzed Remote C(sp 3)-H Amination of Carboxamides. Org Lett 2020; 22:2828-2832. [PMID: 32207306 DOI: 10.1021/acs.orglett.0c00829] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we report a method for the site-selective intermolecular C(sp3)-H amination of carboxamides by merging transition-metal catalysis and the hydrogen atom transfer strategy. The reaction proceeds through a sequence of favorable single-electron transfer, 1,5-hydrogen atom transfer, and C-N cross-coupling steps, thus allowing access to a series of desired products. This reaction could accommodate a wide diversity of nitrogen nucleophiles as well as demonstrate excellent chemoselectivity and functional group compatibility.
Collapse
Affiliation(s)
- Qing-Qiang Min
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jia-Wen Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Meng-Juan Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Gui-Zhen Ao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
41
|
Guo Q, Peng Q, Chai H, Huo Y, Wang S, Xu Z. Visible-light promoted regioselective amination and alkylation of remote C(sp 3)-H bonds. Nat Commun 2020; 11:1463. [PMID: 32193371 PMCID: PMC7081228 DOI: 10.1038/s41467-020-15167-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 11/10/2022] Open
Abstract
The C-N cross coupling reaction has always been a fundamental task in organic synthesis. However, the direct use of N-H group of aryl amines to generate N-centered radicals which would couple with alkyl radicals to construct C-N bonds is still rare. Here we report a visible light-promoted C-N radical cross coupling for regioselective amination of remote C(sp3)-H bonds. Under visible light irradiation, the N-H groups of aryl amines are converted to N-centered radicals, and are then trapped by alkyl radicals, which are generated from Hofmann-Löffler-Freytag (HLF) type 1,5-hydrogen atom transfer (1,5-HAT). With the same strategy, the regioselective C(sp3)-C(sp3) cross coupling is also realized by using alkyl Hantzsch esters (or nitrile) as radical alkylation reagents. Notably, the α-C(sp3)-H of tertiary amines can be directly alkylated to form the C(sp3)-C(sp3) bonds via C(sp3)-H − C(sp3)-H cross coupling through the same photoredox pathway. C-N bond forming is an established strategy to form amines, which are quintessential in chemical synthesis and in nature. Here, the authors report three classes of photoredox reactions, involving C(sp3)-N coupling between N-centered radicals and alkyl radicals and C(sp3)- C(sp3) coupling via C(sp3)-H alkylation.
Collapse
Affiliation(s)
- Quanping Guo
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Qiang Peng
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Hongli Chai
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Yumei Huo
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Shan Wang
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zhaoqing Xu
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China.
| |
Collapse
|
42
|
Prusinowski AF, Twumasi RK, Wappes EA, Nagib DA. Vicinal, Double C-H Functionalization of Alcohols via an Imidate Radical-Polar Crossover Cascade. J Am Chem Soc 2020; 142:5429-5438. [PMID: 32141741 PMCID: PMC7299201 DOI: 10.1021/jacs.0c01318] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A double functionalization of vicinal sp3 C-H bonds has been developed, wherein a β amine and γ iodide are incorporated onto an aliphatic alcohol in a single operation. This approach is enabled by an imidate radical chaperone, which selectively affords a transient β alkene that is amino-iodinated in situ. Overall, the radical-polar-crossover cascade entails the following key steps: (i) β C-H iodination via 1,5-hydrogen atom transfer (HAT), (ii) desaturation via I2 complexation, and (iii) vicinal amino-iodination of an in situ generated allyl imidate. The synthetic utility of this double C-H functionalization is illustrated by conversion of aliphatic alcohols to a diverse collection of α,β,γ substituted products bearing heteroatoms on three adjacent carbons. The radical-polar crossover mechanism is supported by various experimental probes, including isotopic labeling, intermediate validation, and kinetic studies.
Collapse
Affiliation(s)
- Allen F Prusinowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Raymond K Twumasi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ethan A Wappes
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
43
|
Wu F, Ariyarathna JP, Kaur N, Alom NE, Kennell ML, Bassiouni OH, Li W. Halogen-Bond-Induced Consecutive Csp3–H Aminations via Hydrogen Atom Transfer Relay Strategy. Org Lett 2020; 22:2135-2140. [PMID: 32109065 DOI: 10.1021/acs.orglett.0c00081] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fan Wu
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Jeewani P. Ariyarathna
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Navdeep Kaur
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Nur-E Alom
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Maureen L. Kennell
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Omar H. Bassiouni
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Wei Li
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
44
|
Kumar G, Pradhan S, Chatterjee I. N‐Centered Radical Directed Remote C−H Bond Functionalization via Hydrogen Atom Transfer. Chem Asian J 2020; 15:651-672. [DOI: 10.1002/asia.201901744] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/16/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Gautam Kumar
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road, Rupnagar Punjab 140001 India
| | - Suman Pradhan
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road, Rupnagar Punjab 140001 India
| | - Indranil Chatterjee
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road, Rupnagar Punjab 140001 India
| |
Collapse
|
45
|
Chen AD, Herbort JH, Wappes EA, Nakafuku KM, Mustafa DN, Nagib DA. Radical cascade synthesis of azoles via tandem hydrogen atom transfer. Chem Sci 2020; 11:2479-2486. [PMID: 34084413 PMCID: PMC8157396 DOI: 10.1039/c9sc06239d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
A radical cascade strategy for the modular synthesis of five-membered heteroarenes (e.g. oxazoles, imidazoles) from feedstock reagents (e.g. alcohols, amines, nitriles) has been developed. This double C-H oxidation is enabled by in situ generated imidate and acyloxy radicals, which afford regio- and chemo-selective β C-H bis-functionalization. The broad synthetic utility of this tandem hydrogen atom transfer (HAT) approach to access azoles is included, along with experiments and computations that provide insight into the selectivity and mechanism of both HAT events.
Collapse
Affiliation(s)
- Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - James H Herbort
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Ethan A Wappes
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Kohki M Nakafuku
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Darsheed N Mustafa
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| |
Collapse
|
46
|
Qin Y, Han Y, Tang Y, Wei J, Yang M. A general method for site-selective Csp 3-S bond formation via cooperative catalysis. Chem Sci 2019; 11:1276-1282. [PMID: 34123252 PMCID: PMC8148391 DOI: 10.1039/c9sc04169a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Herein, we report a copper-catalysed site-selective thiolation of Csp3-H bonds of aliphatic amines. The method features a broad substrate scope and good functional group compatibility. Primary, secondary, and tertiary C-H bonds can be converted into C-S bonds with a high efficiency. The late-stage modification of biologically active compounds by this method was also demonstrated. Furthermore, the one-pot preparation of pyrrolidine or piperidine compounds via a domino process was achieved.
Collapse
Affiliation(s)
- Yuman Qin
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Yujie Han
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Yongzhen Tang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Junfa Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| |
Collapse
|
47
|
Zhang TS, Zhang H, Fu R, Wang J, Hao WJ, Tu SJ, Jiang B. tert-Butyl peroxide (TBHP)/KI-mediated dual C(sp 2)-H bond amination of arylamines with α-diazo carbonyls toward 1,2,4-benzotriazines. Chem Commun (Camb) 2019; 55:13231-13234. [PMID: 31631212 DOI: 10.1039/c9cc07236e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new radical-induced dehydrogenative heterocyclization of arylamines with α-diazo carbonyls has been established under metal-free oxidative conditions, enabling two-fold C(sp2)-H bond amination to access a wide range of functionalized 1,2,4-triazine derivatives with generally good yields by combining KI/tert-butyl peroxide (TBHP). The present protocol features wide substrate scope, commercial accessibility, and mild reaction conditions. Mechanistic details of this radical process are rendered by conducting systematic theoretical calculations.
Collapse
Affiliation(s)
- Tian-Shu Zhang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Hongping Zhang
- Medical College, Guangxi University, Nanning 530004, P. R. China.
| | - Rong Fu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning 530004, P. R. China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
48
|
Wang C, Yu Y, Liu WL, Duan WL. Site-Tunable Csp3–H Bonds Functionalization by Visible-Light-Induced Radical Translocation of N-Alkoxyphthalimides. Org Lett 2019; 21:9147-9152. [DOI: 10.1021/acs.orglett.9b03524] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Yangyang Yu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Wen-Long Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| |
Collapse
|
49
|
Nakafuku KM, Twumasi RK, Vanitcha A, Wappes EA, Namitharan K, Bekkaye M, Nagib DA. Development of an Imine Chaperone for Selective C-H Functionalization of Alcohols via Radical Relay. J Org Chem 2019; 84:13065-13072. [PMID: 31513401 PMCID: PMC6948922 DOI: 10.1021/acs.joc.9b02052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The design of a radical relay chaperone to promote selective C-H functionalizations is described. A saccharin-based imine was found to be uniquely suited to effect C-H amination of alcohols via an in situ generated hemiaminal. This radical chaperone facilitates the mild generation of an N-centered radical while also directing its regioselective H atom transfer (HAT) to the β carbon of an alcohol. Upon β C-H halogenation, aminocyclization, and reductive cleavage, an NH2 is formally added vicinal to an alcohol. The development, synthetic utility, and chemo-, regio-, and stereoselectivity of this imine chaperone-mediated C-H amination is presented herein.
Collapse
Affiliation(s)
- Kohki M Nakafuku
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Raymond K Twumasi
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Avassaya Vanitcha
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Ethan A Wappes
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Kayambu Namitharan
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Mathieu Bekkaye
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - David A Nagib
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
50
|
Shu W, Zhang H, Huang Y. γ-Alkylation of Alcohols Enabled by Visible-Light Induced 1,6-Hydrogen Atom Transfer. Org Lett 2019; 21:6107-6111. [PMID: 31339735 DOI: 10.1021/acs.orglett.9b02255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-selective remote alkylation of alcohol is attractive but challenging in organic synthesis. Herein, we report a novel visible-light mediated γ-alkylation of alcohol derivatives via the formation of Csp3-Csp3 bond through Csp3-H bond functionalization under mild conditions. The use of sulfamate esters enables the directed, otherwise rare 1,6-HAT to generate γ-selective C-centered radical, which is complementary to δ-selective 1,5-HAT of alcohols. This redox-neutral protocol provides a general and operationally simple method to access γ-alkylated alcohols.
Collapse
Affiliation(s)
- Wei Shu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , 518055 , Shenzhen , Guangdong , China.,State Key Laboratory of Elemento-Organic Chemistry , Nankai University , 300071 , Tianjin , China
| | - Hui Zhang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , 518055 , Shenzhen , Guangdong , China
| | - Yan Huang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , 518055 , Shenzhen , Guangdong , China
| |
Collapse
|