1
|
Bagdonaitė R, Žvirblis R, Dodonova-Vaitku̅nienė J, Polita A. Cancer Cell Identification via Lysosomal Membrane Microviscosities Using a Green-Emitting BODIPY Molecular Rotor. JACS AU 2025; 5:2004-2014. [PMID: 40313834 PMCID: PMC12042019 DOI: 10.1021/jacsau.5c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/03/2025]
Abstract
Lysosomes are dynamic, membrane-bound organelles that play key roles in cellular waste disposal, macromolecule recycling, and signaling. Disruptions in lysosomal function and lipid composition are implicated in a wide range of diseases including lysosomal storage disorders, fatty liver disease, atherosclerosis, and cancer. Imaging of the lysosomal lipid composition has the potential to not only enhance the understanding of lysosome-related diseases and their progression but also help identify them. In this work, we present a novel viscosity-sensitive, green-emitting BODIPY probe that can distinguish between ordered and disordered lipid phases and selectively internalize into the lysosomal membranes of live cells. Through the use of fluorescence lifetime imaging microscopy, we demonstrate that lysosomal membranes in multiple cancer cells exhibit significantly higher microviscosities compared to noncancer cells. The differences in lysosomal microviscosities provide an effective approach for identifying cancer cells and indicate that malignant cells may possess more oxidized and saturated lysosomal lipid membranes. Furthermore, we demonstrate the utility of viscosity-sensitive probes in quantifying the compositional changes in lysosomal membranes by investigating the effects of lysosome-permeabilizing cationic amphiphilic drugs (CADs), sertraline, and astemizole. Our results reveal that despite their functional similarities, these CADs exert opposite effects on lysosomal microviscosities in both cancerous and noncancerous cells, suggesting that different mechanisms may contribute to the CAD-induced lysosomal damage and leakage.
Collapse
Affiliation(s)
- Ru̅ta Bagdonaitė
- Department
of Biospectroscopy and Bioelectrochemistry, Institute of Biochemistry,
Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Rokas Žvirblis
- Department
of Biothermodynamics and drug design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Jelena Dodonova-Vaitku̅nienė
- Department
of Organic Chemistry, Faculty of Chemistry and Geosciences, Institute
of Chemistry, Vilnius University, Naugarduko st. 24, Vilnius LT-03225, Lithuania
| | - Artu̅ras Polita
- Department
of Biospectroscopy and Bioelectrochemistry, Institute of Biochemistry,
Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology, Saulėtekio av. 3, Vilnius LT-10257, Lithuania
| |
Collapse
|
2
|
Allerton S, Kuimova MK, Aprile FA. Molecular Rotors Detect the Formation and Conversion of α-Synuclein Oligomers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10499-10508. [PMID: 39907186 PMCID: PMC11843532 DOI: 10.1021/acsami.4c21710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
α-Synuclein is an intrinsically disordered protein that forms amyloids in Parkinson's disease. Currently, detection methods predominantly report on the formation of mature amyloids but are weakly sensitive to the early stage, toxic oligomers. Molecular rotors are fluorophores that sense changes in the viscosity of their local environment. Here, we monitor α-synuclein oligomer formation using the fluorescence lifetime of molecular rotors. We detect oligomer formation and conversion into amyloids for wild-type and two α-synuclein variants, the pathological mutant A30P and ΔP1 α-synuclein, which lacks a master regulator region of aggregation (residues 36-42). We report that A30P α-synuclein shows a rate of oligomer formation similar to that of wild-type α-synuclein, whereas ΔP1 α-synuclein shows delayed oligomer formation. Additionally, both variants demonstrate a slower conversion of oligomers into amyloids. Our method provides a quantitative approach to unveiling the complex mechanism of α-synuclein aggregation, which is key to understanding the pathology of Parkinson's disease.
Collapse
Affiliation(s)
- Siân
C. Allerton
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Marina K. Kuimova
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Francesco A. Aprile
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
3
|
Abramchuk D, Voskresenskaya A, Kuzmichev I, Erofeev A, Gorelkin P, Abakumov M, Beloglazkina E, Krasnovskaya O. BODIPY in Alzheimer's disease diagnostics: A review. Eur J Med Chem 2024; 276:116682. [PMID: 39053190 DOI: 10.1016/j.ejmech.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Timely diagnosis and therapy of Alzheimer's disease remains one of the greatest questions in medicinal chemistry of neurodegenerative disease. The lack of low-cost sensors capable of reliable detection of structural changes in AD-related proteins is the driving factor for the development of novel molecules with affinity for AD hallmarks. The development of cheap, safe diagnostic methods is a highly sought-after area of research. Optical fluorescent probes are of great interest due to their non-radioactivity, low cost, and ability of the real-time visualization of AD hallmarks. Boron dipyrromethene (BODIPY)-based fluorophore is one promising fluorescent unit for in vivo labeling due to its high photostability, easy modification, low toxicity, and cell-permeability. In recent years, many fluorescent BODIPY-based probes capable of Aβ plaque, Aβ soluble oligomers, neurofibrillary tangles (NFT) optical detection, as well as probes with copper ion chelating units and viscosity sensors have been developed. In this review, we summarized BODIPY derivatives as fluorescent sensors capable of detecting pathological features of Alzheimer's disease, published from 2009 to 2023, as well as their design strategies, optical properties, and in vitro and in vivo activities.
Collapse
Affiliation(s)
- Daniil Abramchuk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Alevtina Voskresenskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia
| | - Ilia Kuzmichev
- V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinsky per. 23, 119034, Moscow, Russia
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Peter Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Maxim Abakumov
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia; Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, Ostrovityanova str., 1, 6, 117997, Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia.
| |
Collapse
|
4
|
Polita AR, Bagdonaitė RT, Shivabalan AP, Valinčius G. Influence of Simvastatin and Pravastatin on the Biophysical Properties of Model Lipid Bilayers and Plasma Membranes of Live Cells. ACS Biomater Sci Eng 2024; 10:5714-5722. [PMID: 39180473 PMCID: PMC11388144 DOI: 10.1021/acsbiomaterials.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Statins are among the most widely used drugs for the inhibition of cholesterol biosynthesis, prevention of cardiovascular diseases, and treatment of hypercholesterolemia. Additionally, statins also exhibit cholesterol-independent benefits in various diseases, including neuroprotective properties in Alzheimer's disease, anti-inflammatory effects in coronary artery disease, and antiproliferative activities in cancer, which likely result from the statins' interaction and alteration of lipid bilayers. However, the membrane-modulatory effects of statins and the mechanisms by which statins alter lipid bilayers remain poorly understood. In this work, we explore the membrane-modulating effects of statins on model lipid bilayers and live cells. Through the use of fluorescence lifetime imaging microscopy (FLIM) combined with viscosity-sensitive environmental probes, we demonstrate that hydrophobic, but not hydrophilic, statins are capable of changing the microviscosity and lipid order in model and live cell membranes. Furthermore, we show that hydrophobic simvastatin is capable of forming nanoscale cholesterol-rich domains and homogenizing the cholesterol concentrations in lipid bilayers. Our results provide a mechanistic framework for understanding the bimodal effects of simvastatin on the lipid order and the lateral organization of cholesterol in lipid bilayers. Finally, we demonstrate that simvastatin temporarily decreases the microviscosity of live cell plasma membranes, making them more permeable and increasing the level of intracellular chemotherapeutic drug accumulation.
Collapse
Affiliation(s)
- Artu Ras Polita
- Department of Biospectroscopy and bioelectrochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Ru Ta Bagdonaitė
- Department of Biospectroscopy and bioelectrochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Arun Prabha Shivabalan
- Department of Biospectroscopy and bioelectrochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Gintaras Valinčius
- Department of Biospectroscopy and bioelectrochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
5
|
Pfister S, Lesieur J, Bourdoncle P, Elhassan M, Didier P, Anton N, Anton H, Collot M. Red-Emitting Pyrrolyl Squaraine Molecular Rotor Reports Variations of Plasma Membrane and Vesicular Viscosity in Fluorescence Lifetime Imaging. Anal Chem 2024; 96:12784-12793. [PMID: 39066698 DOI: 10.1021/acs.analchem.4c02145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The viscosity that ensures the controlled diffusion of biomolecules in cells is a crucial biophysical parameter. Consequently, fluorescent probes capable of reporting viscosity variations are valuable tools in bioimaging. In this field, red-shifted probes are essential, as the widely used and gold standard probe remains green-emitting molecular rotors based on BODIPY. Here, we demonstrate that pyrrolyl squaraines, red-emissive fluorophores, exhibit high sensitivity over a wide viscosity range from 30 to 4890 mPa·s. Upon alkylation of the pyrrole moieties, the probes improve their sensitivity to viscosity through an enhanced twisted intramolecular charge transfer phenomenon. We utilized this scaffold to develop a plasma membrane probe, pSQ-PM, that efficiently stains the plasma membrane in a fluorogenic manner. Using fluorescence lifetime imaging, pSQ-PM enabled efficient sensing of viscosity variations in the plasma membrane under various conditions and in different cell lines (HeLa, U2OS, and NIH/3T3). Moreover, upon incubation, pSQ-PM stained the membrane of intracellular vesicles and suggested that the lysosomal membranes displayed enhanced fluidity.
Collapse
Affiliation(s)
- Sonia Pfister
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France
| | - Julie Lesieur
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Pierre Bourdoncle
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Mohamed Elhassan
- Université de Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani 21111, Sudan
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, Graffenstaden, France
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Halina Anton
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, Graffenstaden, France
| | - Mayeul Collot
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France
| |
Collapse
|
6
|
Polita A, Žvirblis R, Dodonova-Vaitkūnienė J, Shivabalan AP, Maleckaitė K, Valinčius G. Bimodal effects on lipid droplets induced in cancer and non-cancer cells by chemotherapy drugs as revealed with a green-emitting BODIPY fluorescent probe. J Mater Chem B 2024; 12:3022-3030. [PMID: 38426244 DOI: 10.1039/d3tb02979d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Lipid droplets (LDs) are cytoplasmic lipid-rich organelles with important roles in lipid storage and metabolism, cell signaling and membrane biosynthesis. Additionally, multiple diseases, such as obesity, fatty liver, cardiovascular diseases and cancer, are related to the metabolic disorders of LDs. In various cancer cells, LD accumulation is associated with resistance to cell death, reduced effectiveness of chemotherapeutic drugs, and increased proliferation and aggressiveness. In this work, we present a new viscosity-sensitive, green-emitting BODIPY probe capable of distinguishing between ordered and disordered lipid phases and selectively internalising into LDs of live cells. Through the use of fluorescence lifetime imaging microscopy (FLIM), we demonstrate that LDs in live cancer (A549) and non-cancer (HEK 293T) cells have vastly different microviscosities. Additionally, we quantify the microviscosity changes in LDs under the influence of DNA-damaging chemotherapy drugs doxorubicin and etoposide. Finally, we show that doxorubicin and etoposide have different effects on the microviscosities of LDs in chemotherapy-resistant A549 cancer cells.
Collapse
Affiliation(s)
- Artūras Polita
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania.
| | - Rokas Žvirblis
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Jelena Dodonova-Vaitkūnienė
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, Vilnius, LT-03225, Lithuania
| | - Arun Prabha Shivabalan
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania.
| | - Karolina Maleckaitė
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT-10257, Lithuania
| | - Gintaras Valinčius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania.
| |
Collapse
|
7
|
Paez‐Perez M, Kuimova MK. Molecular Rotors: Fluorescent Sensors for Microviscosity and Conformation of Biomolecules. Angew Chem Int Ed Engl 2024; 63:e202311233. [PMID: 37856157 PMCID: PMC10952837 DOI: 10.1002/anie.202311233] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
The viscosity and crowding of biological environment are considered vital for the correct cellular function, and alterations in these parameters are known to underly a number of pathologies including diabetes, malaria, cancer and neurodegenerative diseases, to name a few. Over the last decades, fluorescent molecular probes termed molecular rotors proved extremely useful for exploring viscosity, crowding, and underlying molecular interactions in biologically relevant settings. In this review, we will discuss the basic principles underpinning the functionality of these probes and will review advances in their use as sensors for lipid order, protein crowding and conformation, temperature and non-canonical nucleic acid structures in live cells and other relevant biological settings.
Collapse
Affiliation(s)
- Miguel Paez‐Perez
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| |
Collapse
|
8
|
Polita A, Stancikaitė M, Žvirblis R, Maleckaitė K, Dodonova-Vaitkūnienė J, Tumkevičius S, Shivabalan AP, Valinčius G. Designing a green-emitting viscosity-sensitive 4,4-difluoro-4-bora-3a,4a-diaza- s-indacene (BODIPY) probe for plasma membrane viscosity imaging. RSC Adv 2023; 13:19257-19264. [PMID: 37377877 PMCID: PMC10291278 DOI: 10.1039/d3ra04126c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
Viscosity is a key characteristic of lipid membranes - it governs the passive diffusion of solutes and affects the lipid raft formation and membrane fluidity. Precise determination of viscosity values in biological systems is of great interest and viscosity-sensitive fluorescent probes offer a convenient solution for this task. In this work we present a novel membrane-targeting and water-soluble viscosity probe BODIPY-PM, which is based on one of the most frequently used probes BODIPY-C10. Despite its regular use, BODIPY-C10 suffers from poor integration into liquid-ordered lipid phases and lack of water solubility. Here, we investigate the photophysical characteristics of BODIPY-PM and demonstrate that solvent polarity only slightly affects the viscosity-sensing qualities of BODIPY-PM. In addition, with fluorescence lifetime imaging microscopy (FLIM), we imaged microviscosity in complex biological systems - large unilamellar vesicles (LUVs), tethered bilayer membranes (tBLMs) and live lung cancer cells. Our study showcases that BODIPY-PM preferentially stains the plasma membranes of live cells, equally well partitions into both liquid-ordered and liquid-disordered phases and reliably distinguishes lipid phase separation in tBLMs and LUVs.
Collapse
Affiliation(s)
- Artūras Polita
- Institute of Biochemistry, Life Sciences Center, Vilnius University Saulėtekio Av. 7 Vilnius LT-10257 Lithuania
| | - Milda Stancikaitė
- Center of Physical Sciences and Technology Saulėtekio Av. 3 Vilnius LT-10257 Lithuania
| | - Rokas Žvirblis
- Life Sciences Center, Institute of Biotechnology, Vilnius University Saulėtekio Av. 7 Vilnius LT-10257 Lithuania
| | - Karolina Maleckaitė
- Center of Physical Sciences and Technology Saulėtekio Av. 3 Vilnius LT-10257 Lithuania
| | - Jelena Dodonova-Vaitkūnienė
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University Naugarduko St. 24 Vilnius LT-03225 Lithuania
| | - Sigitas Tumkevičius
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University Naugarduko St. 24 Vilnius LT-03225 Lithuania
| | - Arun Prabha Shivabalan
- Institute of Biochemistry, Life Sciences Center, Vilnius University Saulėtekio Av. 7 Vilnius LT-10257 Lithuania
| | - Gintaras Valinčius
- Institute of Biochemistry, Life Sciences Center, Vilnius University Saulėtekio Av. 7 Vilnius LT-10257 Lithuania
| |
Collapse
|
9
|
Morfill C, Pankratova S, Machado P, Fernando NK, Regoutz A, Talamona F, Pinna A, Klosowski M, Wilkinson RJ, Fleck RA, Xie F, Porter AE, Kiryushko D. Nanostars Carrying Multifunctional Neurotrophic Dendrimers Protect Neurons in Preclinical In Vitro Models of Neurodegenerative Disorders. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47445-47460. [PMID: 36218307 PMCID: PMC9614720 DOI: 10.1021/acsami.2c14220] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 05/06/2023]
Abstract
A challenge in neurology is the lack of efficient brain-penetrable neuroprotectants targeting multiple disease mechanisms. Plasmonic gold nanostars are promising candidates to deliver standard-of-care drugs inside the brain but have not been trialed as carriers for neuroprotectants. Here, we conjugated custom-made peptide dendrimers (termed H3/H6), encompassing motifs of the neurotrophic S100A4-protein, onto star-shaped and spherical gold nanostructures (H3/H6-AuNS/AuNP) and evaluated their potential as neuroprotectants and interaction with neurons. The H3/H6 nanostructures crossed a model blood-brain barrier, bound to plasma membranes, and induced neuritogenesis with the AuNS, showing higher potency/efficacy than the AuNP. The H3-AuNS/NP protected neurons against oxidative stress, the H3-AuNS being more potent, and against Parkinson's or Alzheimer's disease (PD/AD)-related cytotoxicity. Unconjugated S100A4 motifs also decreased amyloid beta-induced neurodegeneration, introducing S100A4 as a player in AD. Using custom-made dendrimers coupled to star-shaped nanoparticles is a promising route to activate multiple neuroprotective pathways and increase drug potency to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Corinne Morfill
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Stanislava Pankratova
- Department
of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200N, Denmark
- Comparative
Paediatrics and Nutrition, Department of Veterinary and Animal Sciences,
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200N, Denmark
| | - Pedro Machado
- Centre
for Ultrastructural Imaging, Kings College
London, LondonSE1 1UL, UK
| | - Nathalie K. Fernando
- Department
of Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, UK
| | - Anna Regoutz
- Department
of Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, UK
| | - Federica Talamona
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Alessandra Pinna
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
- The Francis
Crick Institute, LondonNW11 AT, UK
| | - Michal Klosowski
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Robert J. Wilkinson
- The Francis
Crick Institute, LondonNW11 AT, UK
- Imperial
College, Exhibition Road, LondonSW7 2AZ, UK
| | - Roland A. Fleck
- Centre
for Ultrastructural Imaging, Kings College
London, LondonSE1 1UL, UK
| | - Fang Xie
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Alexandra E. Porter
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Darya Kiryushko
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
- Centre
for Neuroinflammation and Neurodegeneration, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, 160 Du
Cane Road, LondonW12 0NN, UK
- Experimental
Solid State Physics Group, Department of Physics, Imperial College, Exhibition Road, LondonSW72AZ, UK
| |
Collapse
|
10
|
Maleckaitė K, Dodonova-Vaitkūnienė J, Žilėnaitė R, Tumkevičius S, Vyšniauskas A. Red fluorescent BODIPY molecular rotor for high microviscosity environments. Methods Appl Fluoresc 2022; 10. [PMID: 35705104 DOI: 10.1088/2050-6120/ac7943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
Microviscosity has a strong impact for diffusion-controlled processes in biological environments. BODIPY molecular rotors are viscosity-sensitive fluorophores that provide a simple and non-invasive way to visualise microviscosity. Although green fluorescent probes are already well developed for imaging, thick biological samples require longer wavelengths for investigation. This work focuses on the examination of novelβ-substitutedmeso-phenyl-BODIPYs possessing a red emission. We report a new red fluorescent BODIPY-based probe BP-Vinyl-NO2suitable for sensing microviscosity in rigid environments of over 100 000 cP viscosities. Furthermore, we demonstrate that changing the methyl position fromorthotometaon theβ-phenyl-substituted conjugate BP-PH-m2M-NO2redshifts absorbance and fluorescence spectra while maintaining viscosity sensitivity. Finally, we show that nitro-substitution ofmeso-phenyl is a versatile approach to improve the sensitivity to viscosity while suppressing sensitivity to polarity and temperature of such derivatives. In summary, we present two nitro-substituted red fluorescent probes that could be used as lifetime-based microviscosity sensors.
Collapse
Affiliation(s)
- Karolina Maleckaitė
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT-10257, Lithuania
| | - Jelena Dodonova-Vaitkūnienė
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, Vilnius, LT-03225, Lithuania
| | - Rugilė Žilėnaitė
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT-10257, Lithuania.,Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, Vilnius, LT-03225, Lithuania
| | - Sigitas Tumkevičius
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, Vilnius, LT-03225, Lithuania
| | - Aurimas Vyšniauskas
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT-10257, Lithuania.,Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, Vilnius, LT-03225, Lithuania
| |
Collapse
|
11
|
Give or Take: Effects of Electron-Accepting/-Withdrawing Groups in Red-Fluorescent BODIPY Molecular Rotors. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010023. [PMID: 35011252 PMCID: PMC8746292 DOI: 10.3390/molecules27010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/12/2023]
Abstract
Mapping microviscosity, temperature, and polarity in biosystems is an important capability that can aid in disease detection. This can be achieved using fluorescent sensors based on a green-emitting BODIPY group. However, red fluorescent sensors are desired for convenient imaging of biological samples. It is known that phenyl substituents in the β position of the BODIPY core can shift the fluorescence spectra to longer wavelengths. In this research, we report how electron-withdrawing (EWG) and -donating (EDG) groups can change the spectral and sensory properties of β-phenyl-substituted BODIPYs. We present a trifluoromethyl-substituted (EWG) conjugate with moderate temperature sensing properties and a methoxy-substituted (EDG) molecule that could be used as a lifetime-based polarity probe. In this study, we utilise experimental results of steady-state and time-resolved fluorescence, as well as quantum chemical calculations using density functional theory (DFT). We also explain how the energy barrier height (Ea) for non-radiative relaxation affects the probe’s sensitivity to temperature and viscosity and provide appropriate Ea ranges for the best possible sensitivity to viscosity and temperature.
Collapse
|
12
|
Maleckaitė K, Dodonova J, Toliautas S, Žilėnaitė R, Jurgutis D, Karabanovas V, Tumkevičius S, Vyšniauskas A. Designing a Red-Emitting Viscosity-Sensitive BODIPY Fluorophore for Intracellular Viscosity Imaging. Chemistry 2021; 27:16768-16775. [PMID: 34553449 DOI: 10.1002/chem.202102743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Viscosity imaging at a microscopic scale can provide important information about biosystems, including the development of serious illnesses. Microviscosity imaging is achievable with viscosity-sensitive fluorophores, the most popular of which are based on the BODIPY group. However, most of the BODIPY probes fluoresce green light, whereas the red luminescence is desired for the imaging of biological samples. Designing a new viscosity probe with suitable spectroscopic properties is a challenging task because it is difficult to preserve viscosity sensitivity after modifying the molecular structure. Here we describe how we developed a new red-emitting, viscosity-sensitive, BODIPY fluorophore BP-PH-2M-NO2 that is suitable for reliable intracellular viscosity imaging of lipid droplets in MCF-7 breast cancer cells. The design of BP-PH-2M-NO2 was aided by DFT calculations that allowed a successful prediction of the viscosity sensitivity of fluorophores before synthesis. In summary, we report a new red viscosity probe possessing monoexponential fluorescence decay that makes it attractive for lifetime-based viscosity imaging.
Collapse
Affiliation(s)
- Karolina Maleckaitė
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT, 10257, Lithuania
| | - Jelena Dodonova
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, Vilnius, LT, 03225, Lithuania
| | - Stepas Toliautas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 9-III, Vilnius, LT, 10222, Lithuania
| | - Rugilė Žilėnaitė
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT, 10257, Lithuania
| | - Džiugas Jurgutis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio str. 3b, Vilnius, LT, 08406, Lithuania
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio str. 3b, Vilnius, LT, 08406, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio av. 11, Vilnius, LT, 10223, Lithuania
| | - Sigitas Tumkevičius
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, Vilnius, LT, 03225, Lithuania
| | - Aurimas Vyšniauskas
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT, 10257, Lithuania
| |
Collapse
|
13
|
Shimolina LE, Gulin AA, Paez-Perez M, López-Duarte I, Druzhkova IN, Lukina MM, Gubina MV, Brooks NJ, Zagaynova EV, Kuimova MK, Shirmanova MV. Mapping cisplatin-induced viscosity alterations in cancer cells using molecular rotor and fluorescence lifetime imaging microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:126004. [PMID: 33331150 PMCID: PMC7744042 DOI: 10.1117/1.jbo.25.12.126004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Despite the importance of the cell membrane in regulation of drug activity, the influence of drug treatments on its physical properties is still poorly understood. The combination of fluorescence lifetime imaging microscopy (FLIM) with specific viscosity-sensitive fluorescent molecular rotors allows the quantification of membrane viscosity with high spatiotemporal resolution, down to the individual cell organelles. AIM The aim of our work was to analyze microviscosity of the plasma membrane of living cancer cells during chemotherapy with cisplatin using FLIM and correlate the observed changes with lipid composition and cell's response to treatment. APPROACH FLIM together with viscosity-sensitive boron dipyrromethene-based fluorescent molecular rotor was used to map the fluidity of the cell's membrane. Chemical analysis of membrane lipid composition was performed with time-of-flight secondary ion mass spectrometry (ToF-SIMS). RESULTS We detected a significant steady increase in membrane viscosity in viable cancer cells, both in cell monolayers and tumor spheroids, upon prolonged treatment with cisplatin, as well as in cisplatin-adapted cell line. ToF-SIMS revealed correlative changes in lipid profile of cisplatin-treated cells. CONCLUSIONS These results suggest an involvement of membrane viscosity in the cell adaptation to the drug and in the acquisition of drug resistance.
Collapse
Affiliation(s)
- Liubov E. Shimolina
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexander A. Gulin
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| | - Miguel Paez-Perez
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Ismael López-Duarte
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Irina N. Druzhkova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| | - Maria M. Lukina
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| | - Margarita V. Gubina
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nicolas J. Brooks
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Elena V. Zagaynova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Marina K. Kuimova
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Marina V. Shirmanova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| |
Collapse
|
14
|
Dzyuba SV. BODIPY Dyes as Probes and Sensors to Study Amyloid-β-Related Processes. BIOSENSORS 2020; 10:E192. [PMID: 33260945 PMCID: PMC7760207 DOI: 10.3390/bios10120192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Amyloid formation plays a major role in a number of neurodegenerative diseases, including Alzheimer's disease. Amyloid-β peptides (Aβ) are one of the primary markers associated with this pathology. Aβ aggregates exhibit a diverse range of morphologies with distinct pathological activities. Recognition of the Aβ aggregates by using small molecule-based probes and sensors should not only enhance understanding of the underlying mechanisms of amyloid formation, but also facilitate the development of therapeutic strategies to interfere with amyloid neurotoxicity. BODIPY (boron dipyrrin) dyes are among the most versatile small molecule fluorophores. BODIPY scaffolds could be functionalized to tune their photophysical properties to the desired ranges as well as to adapt these dyes to various types of conditions and environments. Thus, BODIPY dyes could be viewed as unique platforms for the design of probes and sensors that are capable of detecting and tracking structural changes of various Aβ aggregates. This review summarizes currently available examples of BODIPY dyes that have been used to investigate conformational changes of Aβ peptides, self-assembly processes of Aβ, as well as Aβ interactions with various molecules.
Collapse
Affiliation(s)
- Sergei V Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA
| |
Collapse
|
15
|
Kato T, Strakova K, García-Calvo J, Sakai N, Matile S. Mechanosensitive Fluorescent Probes, Changing Color Like Lobsters during Cooking: Cascade Switching Variations. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Takehiro Kato
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Karolina Strakova
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - José García-Calvo
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Robson JA, Kubánková M, Bond T, Hendley RA, White AJP, Kuimova MK, Wilton‐Ely JDET. Simultaneous Detection of Carbon Monoxide and Viscosity Changes in Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jonathan A. Robson
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| | - Markéta Kubánková
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| | - Tamzin Bond
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| | - Rian A. Hendley
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| | - Andrew J. P. White
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| | - Marina K. Kuimova
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| | - James D. E. T. Wilton‐Ely
- Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|
17
|
Robson JA, Kubánková M, Bond T, Hendley RA, White AJP, Kuimova MK, Wilton-Ely JDET. Simultaneous Detection of Carbon Monoxide and Viscosity Changes in Cells. Angew Chem Int Ed Engl 2020; 59:21431-21435. [PMID: 32686308 PMCID: PMC7756414 DOI: 10.1002/anie.202008224] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022]
Abstract
A new family of robust, non‐toxic, water‐compatible ruthenium(II) vinyl probes allows the rapid, selective and sensitive detection of endogenous carbon monoxide (CO) in live mammalian cells under normoxic and hypoxic conditions. Uniquely, these probes incorporate a viscosity‐sensitive BODIPY fluorophore that allows the measurement of microscopic viscosity in live cells via fluorescence lifetime imaging microscopy (FLIM) while also monitoring CO levels. This is the first example of a probe that can simultaneously detect CO alongside small viscosity changes in organelles of live cells.
Collapse
Affiliation(s)
- Jonathan A Robson
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Markéta Kubánková
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Tamzin Bond
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Rian A Hendley
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Marina K Kuimova
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| |
Collapse
|
18
|
Bednarska J, Pelchen-Matthews A, Novak P, Burden JJ, Summers PA, Kuimova MK, Korchev Y, Marsh M, Shevchuk A. Rapid formation of human immunodeficiency virus-like particles. Proc Natl Acad Sci U S A 2020; 117:21637-21646. [PMID: 32817566 PMCID: PMC7474690 DOI: 10.1073/pnas.2008156117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular mechanisms involved in the assembly of viruses is essential for discerning how viruses transmit from cell to cell and host to host. Although molecular aspects of assembly have been studied for many viruses, we still have little information about these events in real time. Enveloped viruses such as HIV that assemble at, and bud from, the plasma membrane have been studied in some detail using live cell fluorescence imaging techniques; however, these approaches provide little information about the real-time morphological changes that take place as viral components come together to form individual virus particles. Here we used correlative scanning ion conductance microscopy and fluorescence confocal microscopy to measure the topological changes, together with the recruitment of fluorescently labeled viral proteins such as Gag and Vpr, during the assembly and release of individual HIV virus-like particles (VLPs) from the top, nonadherent surfaces of living cells. We show that 1) labeling of viral proteins with green fluorescent protein affects particle formation, 2) the kinetics of particle assembly on different plasma membrane domains can vary, possibly as a consequence of differences in membrane biophysical properties, and 3) VLPs budding from the top, unimpeded surface of cells can reach full size in 20 s and disappear from the budding site in 0.5 to 3 min from the moment curvature is initially detected, significantly faster than has been previously reported.
Collapse
Affiliation(s)
- Joanna Bednarska
- Department of Medicine, Imperial College London, W12 0NN London, United Kingdom
| | - Annegret Pelchen-Matthews
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom
| | - Pavel Novak
- Department of Medicine, Imperial College London, W12 0NN London, United Kingdom
- Functional Low-Dimensional Structures Laboratory, National University of Science and Technology "MISIS", 119991 Moscow, Russian Federation
| | - Jemima J Burden
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom
| | - Peter A Summers
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Marina K Kuimova
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Yuri Korchev
- Department of Medicine, Imperial College London, W12 0NN London, United Kingdom
- Nano Life Science Institute, Kanazawa University, 920-1192 Kanazawa, Japan
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom;
| | - Andrew Shevchuk
- Department of Medicine, Imperial College London, W12 0NN London, United Kingdom;
| |
Collapse
|
19
|
Kashirina AS, López-Duarte I, Kubánková M, Gulin AA, Dudenkova VV, Rodimova SA, Torgomyan HG, Zagaynova EV, Meleshina AV, Kuimova MK. Monitoring membrane viscosity in differentiating stem cells using BODIPY-based molecular rotors and FLIM. Sci Rep 2020; 10:14063. [PMID: 32820221 PMCID: PMC7441180 DOI: 10.1038/s41598-020-70972-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022] Open
Abstract
Membrane fluidity plays an important role in many cell functions such as cell adhesion, and migration. In stem cell lines membrane fluidity may play a role in differentiation. Here we report the use of viscosity-sensitive fluorophores based on a BODIPY core, termed “molecular rotors”, in combination with Fluorescence Lifetime Imaging Microscopy, for monitoring of plasma membrane viscosity changes in mesenchymal stem cells (MSCs) during osteogenic and chondrogenic differentiation. In order to correlate the viscosity values with membrane lipid composition, the detailed analysis of the corresponding membrane lipid composition of differentiated cells was performed by time-of-flight secondary ion mass spectrometry. Our results directly demonstrate for the first time that differentiation of MSCs results in distinct membrane viscosities, that reflect the change in lipidome of the cells following differentiation.
Collapse
Affiliation(s)
- Alena S Kashirina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950
| | - Ismael López-Duarte
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Markéta Kubánková
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Alexander A Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences (FRCCP RAS), Kosygin st. 4, Moscow, Russian Federation, 119991.,Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, Russian Federation, 119991
| | - Varvara V Dudenkova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950
| | - Svetlana A Rodimova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950.,Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Novgorod, Nizhny Novgorod, Russian Federation, 603950
| | - Hayk G Torgomyan
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950
| | - Elena V Zagaynova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950.,Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Novgorod, Nizhny Novgorod, Russian Federation, 603950
| | - Aleksandra V Meleshina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950.
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK.
| |
Collapse
|
20
|
Wu CH, Chen Y, Pyrshev KA, Chen YT, Zhang Z, Chang KH, Yesylevskyy SO, Demchenko AP, Chou PT. Fluorescence Probes Exhibit Photoinduced Structural Planarization: Sensing In Vitro and In Vivo Microscopic Dynamics of Viscosity Free from Polarity Interference. ACS Chem Biol 2020; 15:1862-1873. [PMID: 32543829 DOI: 10.1021/acschembio.0c00100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate the construction of wavelength λ-ratiometric images that allow visualizing the distribution of microscopic dynamics within living cells and tissues by using the newly developed principle of fluorescence response. The bent-to-planar motion in the excited state of incorporated fluorescence probes leads to elongation of the π-delocalization, resulting in microviscosity-dependent but polarity-insensitive interplay between well-separated blue and red bands in emission spectra. This allows constructing the exceptionally contrasted images of cellular dynamics. Moreover, the application of probes with increased affinity toward biological membranes allowed detecting the differences in dynamics between the plasma membrane and intracellular membrane structures. Such λ-ratiometric microviscosity imaging was extended for mapping the living tissues and observing their inflammation-dependent changes.
Collapse
Affiliation(s)
- Cheng-Ham Wu
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
| | - Yi Chen
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Kyrylo A. Pyrshev
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv 01030, Ukraine
- Institute of Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Yi-Ting Chen
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
| | - Zhiyun Zhang
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Kai-Hsin Chang
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
| | - Semen O. Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Universite′ de Bourgogne Franche-Comte′, 16 route de Gray, 25030 Besançon Cedex, France
- Institute of Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Alexander P. Demchenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv 01030, Ukraine
- Yuriy Fedkovych National University, 58012 Chernivtsi, Ukraine
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
| |
Collapse
|
21
|
Kravenska Y, Nieznanska H, Nieznanski K, Lukyanetz E, Szewczyk A, Koprowski P. The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBK Ca channels by a membrane-mediated mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183337. [PMID: 32380169 DOI: 10.1016/j.bbamem.2020.183337] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
Abstract
A causative agent of Alzheimer's disease (AD) is a short amphipathic peptide called amyloid beta (Aβ). Aβ monomers undergo structural changes leading to their oligomerization or fibrillization. The monomers as well as all aggregated forms of Aβ, i.e., oligomers, and fibrils, can bind to biological membranes, thereby modulating membrane mechanical properties. It is also known that some isoforms of the large-conductance calcium-activated potassium (BKCa) channel, including the mitochondrial BKCa (mitoBKCa) channel, respond to mechanical changes in the membrane. Here, using the patch-clamp technique, we investigated the impact of full-length Aβ (Aβ1-42) and its fragment, Aβ25-35, on the activity of mitoBKCa channels. We found that all forms of Aβ inhibited the activity of the mitoBKCa channel in a concentration-dependent manner. Since monomers, oligomers, and fibrils of Aβ exhibit different molecular characteristics and structures, we hypothesized that the inhibition was not due to direct peptide-protein interactions but rather to membrane-binding of the Aβ peptides. Our findings supported this hypothesis by showing that Aβ peptides block mitoBKCa channels irrespective of the side of the membrane to which they are applied. In addition, we found that the enantiomeric peptide, D-Aβ1-42, demonstrated similar inhibitory activity towards mitoBKCa channels. As a result, we proposed a general model in which all Aβ forms i.e., monomers, oligomers, and amyloid fibrils, contribute to the progression of AD by exerting a modulatory effect on mechanosensitive membrane components.
Collapse
Affiliation(s)
- Yevheniia Kravenska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland; Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine.
| | - Hanna Nieznanska
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Krzysztof Nieznanski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Elena Lukyanetz
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| |
Collapse
|
22
|
Polita A, Toliautas S, Žvirblis R, Vyšniauskas A. The effect of solvent polarity and macromolecular crowding on the viscosity sensitivity of a molecular rotor BODIPY-C10. Phys Chem Chem Phys 2020; 22:8296-8303. [DOI: 10.1039/c9cp06865a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viscosity is the key parameter of many biological systems such as live cells. It can be conveniently measured with ‘molecular rotors’ – fluorescent sensors of microviscosity. Here, we investigate one of the most applied molecular rotors BODIPY-C10.
Collapse
Affiliation(s)
- Artūras Polita
- Center of Physical Sciences and Technology
- Vilnius
- Lithuania
| | - Stepas Toliautas
- Institute of Chemical Physics
- Faculty of Physics
- Vilnius University
- 10222 Vilnius
- Lithuania
| | - Rokas Žvirblis
- Center of Physical Sciences and Technology
- Vilnius
- Lithuania
| | | |
Collapse
|
23
|
Zhang X, Sakai N, Matile S. Methyl Scanning for Mechanochemical Chalcogen-Bonding Cascade Switches. ChemistryOpen 2020; 9:18-22. [PMID: 31921541 PMCID: PMC6946998 DOI: 10.1002/open.201900288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Chalcogen-bonding cascade switching was introduced recently to produce the chemistry tools needed to image physical forces in biological systems. In the original flipper probe, one methyl group appeared to possibly interfere with the cascade switch. In this report, this questionable methyl group is replaced by a hydrogen. The deletion of this methyl group in planarizable push-pull probes was not trivial because it required the synthesis of dithienothiophenes with four different substituents on the four available carbons. The mechanosensitivity of the resulting demethylated flipper probe was nearly identical to that of the original. Thus methyl groups in the switching region are irrelevant for function, whereas those in the twisting region are essential. This result supports the chalcogen-bonding cascade switching concept and, most importantly, removes significant synthetic demands from future probe development.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
24
|
Macchione M, Goujon A, Strakova K, Humeniuk HV, Licari G, Tajkhorshid E, Sakai N, Matile S. A Chalcogen-Bonding Cascade Switch for Planarizable Push-Pull Probes. Angew Chem Int Ed Engl 2019; 58:15752-15756. [PMID: 31539191 PMCID: PMC7035594 DOI: 10.1002/anie.201909741] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 11/08/2022]
Abstract
Planarizable push-pull probes have been introduced to demonstrate physical forces in biology. However, the donors and acceptors needed to polarize mechanically planarized probes are incompatible with their twisted resting state. The objective of this study was to overcome this "flipper dilemma" with chalcogen-bonding cascade switches that turn on donors and acceptors only in response to mechanical planarization of the probe. This concept is explored by molecular dynamics simulations as well as chemical double-mutant cycle analysis. Cascade switched flipper probes turn out to excel with chemical stability, red shifts adding up to high significance, and focused mechanosensitivity. Most important, however, is the introduction of a new, general and fundamental concept that operates with non-trivial supramolecular chemistry, solves an important practical problem and opens a wide chemical space.
Collapse
Affiliation(s)
- Mariano Macchione
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Antoine Goujon
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Karolina Strakova
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Heorhii V Humeniuk
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Giuseppe Licari
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Strakova K, Poblador‐Bahamonde AI, Sakai N, Matile S. Fluorescent Flipper Probes: Comprehensive Twist Coverage. Chemistry 2019; 25:14935-14942. [DOI: 10.1002/chem.201903604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/01/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Karolina Strakova
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | | | - Naomi Sakai
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| |
Collapse
|
26
|
Kubánková M, Chambers JE, Huber RG, Bond PJ, Marciniak SJ, Kuimova MK. Linker length affects photostability of protein-targeted sensor of cellular microviscosity. Methods Appl Fluoresc 2019; 7:044004. [DOI: 10.1088/2050-6120/ab481f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Kubánková M, Summers PA, López-Duarte I, Kiryushko D, Kuimova MK. Microscopic Viscosity of Neuronal Plasma Membranes Measured Using Fluorescent Molecular Rotors: Effects of Oxidative Stress and Neuroprotection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36307-36315. [PMID: 31513373 DOI: 10.1021/acsami.9b10426] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular mobility in neuronal plasma membranes is a crucial factor in brain function. Microscopic viscosity is an important parameter that determines molecular mobility. This study presents the first direct measurement of the microviscosity of plasma membranes of live neurons. Microviscosity maps were obtained using fluorescence lifetime imaging of environment-sensing dyes termed "molecular rotors". Neurons were investigated both in the basal state and following common neurodegenerative stimuli, excitotoxicity, or oxidative stress. Both types of neurotoxic challenges induced microviscosity decrease in cultured neurons, and oxidant-induced membrane fluidification was counteracted by the wide-spectrum neuroprotectant, the H3 peptide. These results provide new insights into molecular mobility in neuronal membranes, paramount for basic brain function, and suggest that preservation of membrane stability may be an important aspect of neuroprotection in brain insults and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Darya Kiryushko
- Centre for Neuroinflammation and Neurodegeneration , Imperial College London , Hammersmith Hospital Campus, Burlington Danes Building, 160 Du Cane Road , London W12 0NN , U.K
| | | |
Collapse
|
28
|
Macchione M, Goujon A, Strakova K, Humeniuk HV, Licari G, Tajkhorshid E, Sakai N, Matile S. A Chalcogen‐Bonding Cascade Switch for Planarizable Push–Pull Probes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mariano Macchione
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Antoine Goujon
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Karolina Strakova
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | | | - Giuseppe Licari
- NIH Center for Macromolecular Modeling and Bioinformatics Beckman Institute for Advanced Science and Technology and Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics Beckman Institute for Advanced Science and Technology and Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| |
Collapse
|
29
|
Steinkühler J, Sezgin E, Urbančič I, Eggeling C, Dimova R. Mechanical properties of plasma membrane vesicles correlate with lipid order, viscosity and cell density. Commun Biol 2019; 2:337. [PMID: 31531398 PMCID: PMC6744421 DOI: 10.1038/s42003-019-0583-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/15/2019] [Indexed: 11/08/2022] Open
Abstract
Regulation of plasma membrane curvature and composition governs essential cellular processes. The material property of bending rigidity describes the energetic cost of membrane deformations and depends on the plasma membrane molecular composition. Because of compositional fluctuations and active processes, it is challenging to measure it in intact cells. Here, we study the plasma membrane using giant plasma membrane vesicles (GPMVs), which largely preserve the plasma membrane lipidome and proteome. We show that the bending rigidity of plasma membranes under varied conditions is correlated to readout from environment-sensitive dyes, which are indicative of membrane order and microviscosity. This correlation holds across different cell lines, upon cholesterol depletion or enrichment of the plasma membrane, and variations in cell density. Thus, polarity- and viscosity-sensitive probes represent a promising indicator of membrane mechanical properties. Additionally, our results allow for identifying synthetic membranes with a few well defined lipids as optimal plasma membrane mimetics.
Collapse
Affiliation(s)
- Jan Steinkühler
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
| | - Iztok Urbančič
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
- Condensed Matter Physics Department, “Jožef Stefan” Institute, Ljubljana, Slovenia
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
- Institute of Applied Optics Friedrich‐Schiller‐University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Rumiana Dimova
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
30
|
Ober K, Volz-Rakebrand P, Stellmacher J, Brodwolf R, Licha K, Haag R, Alexiev U. Expanding the Scope of Reporting Nanoparticles: Sensing of Lipid Phase Transitions and Nanoviscosities in Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11422-11434. [PMID: 31378067 DOI: 10.1021/acs.langmuir.9b01372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biological membrane fluidity and thus the local viscosity in lipid membranes are of vital importance for many life processes and implicated in various diseases. Here, we introduce a novel viscosity sensor design for lipid membranes based on a reporting nanoparticle, a sulfated dendritic polyglycerol (dPGS), conjugated to a fluorescent molecular rotor, indocarbocyanine (ICC). We show that dPGS-ICC provides high affinity to lipid bilayers, enabling viscosity sensing in the lipid tail region. The systematic characterization of viscosity- and temperature-dependent photoisomerization properties of ICC and dPGS-ICC allowed us to determine membrane viscosities in different model systems and in living cells using fluorescence lifetime imaging (FLIM). dPGS-ICC distinguishes between ordered lipids and the onset of membrane defects in small unilamellar single lipid vesicles and is highly sensitive in the fluid phase to small changes in viscosity introduced by cholesterol. In microscopy-based viscosity measurements of large multilamellar vesicles, we observed an order of magnitude more viscous environments by dPGS-ICC, lending support to the hypothesis of heterogeneous nanoviscosity environments even in single lipid bilayers. The existence of such complex viscosity structures could explain the large variation in the apparent membrane viscosity values found in the literature, depending on technique and probe, both for model membranes and live cells. In HeLa cells, a tumor-derived cell line, our nanoparticle-based viscosity sensor detects a membrane viscosity of ∼190 cP and is able to discriminate between cell membrane and intracellular vesicle localization. Thus, our results show the versatility of the dPGS-ICC nano-conjugate in physicochemical and biomedical applications by adding a new analytical functionality to its medical properties.
Collapse
Affiliation(s)
- Katja Ober
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Pierre Volz-Rakebrand
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Johannes Stellmacher
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Robert Brodwolf
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Kai Licha
- Mivenion GmbH , Robert-Koch-Platz 4 , 10115 Berlin , Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Ulrike Alexiev
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| |
Collapse
|
31
|
Zatsikha YV, Didukh NO, Swedin RK, Yakubovskyi VP, Blesener TS, Healy AT, Herbert DE, Blank DA, Nemykin VN, Kovtun YP. Preparation of Viscosity-Sensitive Isoxazoline/Isoxazolyl-Based Molecular Rotors and Directly Linked BODIPY–Fulleroisoxazoline from the Stable meso-(Nitrile Oxide)-Substituted BODIPY. Org Lett 2019; 21:5713-5718. [DOI: 10.1021/acs.orglett.9b02082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuriy V. Zatsikha
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Natalia O. Didukh
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., 02660 Kyiv, Ukraine
| | - Rachel K. Swedin
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Viktor P. Yakubovskyi
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., 02660 Kyiv, Ukraine
| | - Tanner S. Blesener
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Andrew T. Healy
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - David E. Herbert
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David A. Blank
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Victor N. Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yuriy P. Kovtun
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., 02660 Kyiv, Ukraine
| |
Collapse
|
32
|
Goujon A, Colom A, Straková K, Mercier V, Mahecic D, Manley S, Sakai N, Roux A, Matile S. Mechanosensitive Fluorescent Probes to Image Membrane Tension in Mitochondria, Endoplasmic Reticulum, and Lysosomes. J Am Chem Soc 2019; 141:3380-3384. [PMID: 30744381 DOI: 10.1021/jacs.8b13189] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Measuring forces inside cells is particularly challenging. With the development of quantitative microscopy, fluorophores which allow the measurement of forces became highly desirable. We have previously introduced a mechanosensitive flipper probe, which responds to the change of plasma membrane tension by changing its fluorescence lifetime and thus allows tension imaging by FLIM. Herein, we describe the design, synthesis, and evaluation of flipper probes that selectively label intracellular organelles, i.e., lysosomes, mitochondria, and the endoplasmic reticulum. The probes respond uniformly to osmotic shocks applied extracellularly, thus confirming sensitivity toward changes in membrane tension. At rest, different lifetimes found for different organelles relate to known differences in membrane organization rather than membrane tension and allow colabeling in the same cells. At the organelle scale, lifetime heterogeneity provides unprecedented insights on ER tubules and sheets, and nuclear membranes. Examples on endosomal trafficking or increase of tension at mitochondrial constriction sites outline the potential of intracellularly targeted fluorescent tension probes to address essential questions that were previously beyond reach.
Collapse
Affiliation(s)
- Antoine Goujon
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| | - Adai Colom
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| | - Karolína Straková
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| | | | | | - Naomi Sakai
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| | - Aurélien Roux
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry and ‡National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , CH-1211 Geneva , Switzerland
| |
Collapse
|