1
|
Mileo PGM, Yoon JW, Cho KH, Lee JS, Lee UH, Maurin G, Chang JS. Effective Separation of Acetylene/Ethylene by the Mesoporous MIL-100(Cr) MOF. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:13800-13810. [PMID: 40413651 DOI: 10.1021/acs.langmuir.5c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Acetylene plays a key role in diverse commercial chemicals and high-quality fuel applications, yet its storage poses significant challenges due to its explosive nature. In-situ plasma-assisted CH4 coupling conversion presents a promising alternative for the safe production of C2 chemicals, including acetylene, assuming that efficient downstream separation processes are feasible. This study focuses on the adsorptive separation of acetylene from ethylene to achieve high-purity acetylene with the use of mesoporous metal-organic frameworks (MOFs) as effective selective adsorbents. Herein, we systematically investigate the acetylene/ethylene separation performance of a series of MIL-100 (M = Al, Fe, V, Cr) MOFs. Single-component sorption data first evidenced that MIL-100(Cr) shows the highest affinity to acetylene, supported by Operando Infrared spectroscopy and Density Functional Theory calculations. These analysis revealed the crucial role played by the Cr3+ coordinatively unsaturated sites and the counter-anions (OH-/F-) bound to 1 of the 3 Cr3+ atoms of the oxo-trimer. Grand Canonical Monte Carlo simulations further elucidated the microscopic adsorption mechanisms for each single-component and equimolar binary acetylene/ethylene mixtures. Breakthrough experiments demonstrated that MIL-100(Cr) achieves selectivity ranging from 5 to 23, suggesting its potential for dual high-purity acetylene and ethylene production. Vacuum Pressure Swing Adsorption (VPSA) cycle tests indicated that MIL-100(Cr) achieves high acetylene recovery and moderate purity without a rinse step, while an acetylene rinse step enhances purity for fine chemical raw materials. Overall, this study paves the way toward the promotion of MIL-100(Cr) for future large-scale industrial applications in acetylene harvesting and purification.
Collapse
Affiliation(s)
- Paulo G M Mileo
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Ji Woong Yoon
- Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong, Daejeon 34114, South Korea
| | - Kyung Ho Cho
- Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong, Daejeon 34114, South Korea
| | - Ji Sun Lee
- Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong, Daejeon 34114, South Korea
| | - U-Hwang Lee
- Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong, Daejeon 34114, South Korea
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
- Institut Universitaire de France, 75005 Paris, France
| | - Jong-San Chang
- Research Group for Nanocatalyst, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong, Daejeon 34114, South Korea
- Department of Chemistry, Sungkyunkwan University, Suwon 440-476, South Korea
| |
Collapse
|
2
|
Lu X, Zhang P, Pan H, Yin P, Zhang P, Yang L, Suo X, Cui X, Xing H. Ionic porous materials: from synthetic strategies to applications in gas separation and catalysis. Chem Soc Rev 2025; 54:3061-3139. [PMID: 39963797 DOI: 10.1039/d3cs01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Ionic porous materials possess a unique combination of tunable pore sizes and task-specific interactions between guest molecules and the charged frameworks, which endow them with versatility across diverse domains in chemistry and materials science. Significant advancements in their applications for gas separation and catalysis have been achieved in recent years due to the incorporation of ionic functionalities and ultra-microporous structures that enable molecular-scale recognition of guest molecules. This review summarizes recent advancements in the synthetic strategies of ionic porous materials, establishing design guidelines for the incorporation of ionic moieties into the backbone to fine-tune pore sizes and chemistry. It highlights the synergistic interplay of task-specific interactions with custom-designed pore structures in key applications, including adsorption separation, membrane separation, and gas conversion. Additionally, it examines structure-property relationships, offering deeper insights into enhancing performance. The report also addresses the current challenges in the practical application of these materials. Finally, the review provides future perspectives on ionic porous materials from both scientific and industrial viewpoints. Overall, this review aims to provide insights into pore structure and chemistry, supporting the precise placement of ionic functionalities.
Collapse
Affiliation(s)
- Xiaofei Lu
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Penghui Zhang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Hanqian Pan
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Pengyuan Yin
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Peixin Zhang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Lifeng Yang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xian Suo
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Xili Cui
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Huabin Xing
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
3
|
Ye ZM, Xie Y, Kirlikovali KO, Xiang S, Farha OK, Chen B. Architecting Metal-Organic Frameworks at Molecular Level toward Direct Air Capture. J Am Chem Soc 2025; 147:5495-5514. [PMID: 39919319 DOI: 10.1021/jacs.4c12200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Escalating carbon dioxide (CO2) emissions have intensified the greenhouse effect, posing a significant long-term threat to environmental sustainability. Direct air capture (DAC) has emerged as a promising approach to achieving a net-zero carbon future, which offers several practical advantages, such as independence from specific CO2 emission sources, economic feasibility, flexible deployment, and minimal risk of CO2 leakage. The design and optimization of DAC sorbents are crucial for accelerating industrial adoption. Metal-organic frameworks (MOFs), with high structural order and tunable pore sizes, present an ideal solution for achieving strong guest-host interactions under trace CO2 conditions. This perspective highlights recent advancements in using MOFs for DAC, examines the molecular-level effects of water vapor on trace CO2 capture, reviews data-driven computational screening methods to develop a molecularly programmable MOF platform for identifying optimal DAC sorbents, and discusses scale-up and cost of MOFs for DAC.
Collapse
Affiliation(s)
- Zi-Ming Ye
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kent O Kirlikovali
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shengchang Xiang
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Banglin Chen
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
4
|
Zhong Z, Peng X, Gao H, Hussain I, Wang X, Tan B. Preparation of Hierarchical Porous Monoliths With High Surface Areas by a Solvent Knitting Strategy. Macromol Rapid Commun 2025; 46:e2400494. [PMID: 39292820 DOI: 10.1002/marc.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Indexed: 09/20/2024]
Abstract
Hierarchical porous hypercrosslinked monoliths (PolyHIPE-HCP) with ultrahigh specific surface areas are prepared via a solvent knitting strategy. Compared to previous work, the solvent knitting strategy is carried out in a relatively low air-controlled atmosphere with gradient heating starting from low temperature while using DCM (Dichloromethane) as both a solvent and a cross-linker, allowing for a slow and controlled cross-linking process, thereby achieving a BET surface area ranging from 514 to 728 m2 g-1. Scanning electron microscopy (SEM) shows that the knitting process does not affect the presence of macroporous structure in the PolyHIPE. With the introduction of mesopores and micropores, these hierarchical porous monoliths exhibit significant potential for applications in gas adsorption and water treatment. Hence, a universal, simple and low-cost method to synthesize polymeric monoliths with hierarchically porous structure and higher surface area is proposed, which has fascinating prospects in industrialization.
Collapse
Affiliation(s)
- Zicheng Zhong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojie Peng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Irshad Hussain
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
5
|
Li WL, Shuai Q, Yu J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402783. [PMID: 39115100 DOI: 10.1002/smll.202402783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Indexed: 11/08/2024]
Abstract
The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.
Collapse
Affiliation(s)
- Wen-Liang Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qi Shuai
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiamei Yu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
6
|
Xue C, Zhang Y, Zhu K, Deng S, Qu K, Gong S, Yang H. One ligand, two roles: novel pillar-layered metal-organic frameworks built with a 3D ligand and asymmetric inorganic nodes. Dalton Trans 2024; 53:17146-17150. [PMID: 39420625 DOI: 10.1039/d4dt02061h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Herein, we show two cases of pillar-layered MOFs which are built solely with one kind of three-dimensional (3D) ditopic ligand. The ligand in both structures functions not only as an intralayer linker in the layer but also as a "pillar" between adjacent layers. Such multi-functionality of the linker is accompanied by uncommon asymmetric 10-c metal hexamer or 7-c tetramer nodes, which have never been reported in previous 3D MOF structures.
Collapse
Affiliation(s)
- Chaozhuang Xue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Yingying Zhang
- Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Kai Zhu
- Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Suyun Deng
- Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Konggang Qu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Shuwen Gong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Huajun Yang
- Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
7
|
Jin Y, Ke T, Xu G, Li J, Jiang Z, Fan R, Zhang Z, Bao Z, Ren Q, Yang Q. Ultra-High Purity and Productivity Separation of CO 2 and C 2H 2 from CH 4 in Rigid Layered Ultramicroporous Material. ACS CENTRAL SCIENCE 2024; 10:1885-1893. [PMID: 39463839 PMCID: PMC11503503 DOI: 10.1021/acscentsci.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/29/2024]
Abstract
Efficiently obtaining both high-purity gas-phase and adsorbed-phase products in a single physisorption process presents the challenge of simultaneously achieving high selectivity and uptake and rapid diffusion in adsorbents. With a focus on natural gas purification and high-purity acetylene production, we report for the first time that the synergistic ligand/anion binding mode and multiple diffusion pathways in a robust 2D layered ultramicroporous framework (ZUL-100) enable unprecedented carbon dioxide/methane and acetylene/methane separation performance. Taking advantage of its rich anion, functional ligand ,and rigid 3D interpenetrated ultramicroporous channels, ZUL-100 achieved record IAST selectivities for equimolar carbon dioxide/methane (3.2 × 105) and acetylene/methane (1.7 × 1010) mixtures, accompanied by record dynamic uptakes of carbon dioxide (3.10 mmol/g) and acetylene (4.79 mmol/g), respectively. The strong affinity and fast mass transfer of carbon dioxide and acetylene on ZUL-100 were systematically elucidated by a combination of in situ FTIR, single-crystal XRD, kinetic tests, and DFT-D adsorption/diffusion modeling. In particular, high-purity (≥99.999%) methane and carbon dioxide (acetylene) can both be obtained on ZUL-100 through a single adsorption-desorption cycle, with exceptional productivity (2.81-4.22 mmol/g of methane, 2.96 mmol/g of carbon dioxide, and 4.31 mmol/g of acetylene) and high yield (95.5% for carbon dioxide and 90.0% for acetylene).
Collapse
Affiliation(s)
- Yuanyuan Jin
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Tian Ke
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Guihong Xu
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Jinjian Li
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Zhixin Jiang
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Rongrong Fan
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Zhiguo Zhang
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute
of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Zongbi Bao
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute
of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qilong Ren
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute
of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qiwei Yang
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute
of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| |
Collapse
|
8
|
Liu X, Wang H, Liu C, Chen J, Zhou Z, Deng S, Wang J. Recent Advances of Multidentate Ligand-Based Anion-Pillared MOFs for Enhanced Separation and Purification Processes. CHEM & BIO ENGINEERING 2024; 1:469-487. [PMID: 39974605 PMCID: PMC11835165 DOI: 10.1021/cbe.3c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 02/21/2025]
Abstract
As an important subclass of metal-organic frameworks (MOFs), anion-pillars MOFs (APMOFs) have recently exhibited exceptional performances in separation and purification processes. The adjustment of pore sizes and environments of APMOFs can be finely tuned through judicious combination of organic ligands, anion pillars, and metal ions. Compared to widely investigated anion pillars, organic ligands are more crucial as they allow for a broader range of pore sizes and environments at the nanometer scale. Furthermore, different from the bidentate ligand-based APMOFs that typically form three-dimensional (3D) frameworks with pcu topology, APMOFs constructed using multidentate nitrogen(N)-containing ligands (with a coordination number ≥ 3) offer opportunities to create APMOFs with diverse topologies. The larger dimensions and possible distortion of multidentate N-containing ligands prove advantageous for addressing multi-component hydrocarbon separations encompassing a broad spectrum of dynamic diameters. Therefore, this Review summarizes the structural characteristics of multidentate ligand-based APMOFs and their enhanced performances for gas separation and purification processes. Additionally, it discusses current challenges and prospects associated with constructing multidentate ligand-based APMOFs while providing prospects. This critical review will provide valuable insights and guides for designing and developing advanced multidentate ligand-based APMOF adsorbents.
Collapse
Affiliation(s)
- Xing Liu
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Hao Wang
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Cheng Liu
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Jingwen Chen
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Zhenyu Zhou
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Shuguang Deng
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Jun Wang
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
9
|
Liu S, Wang L, Zhang H, Fang H, Yue X, Wei S, Liu S, Wang Z, Lu X. Efficient CO 2 Capture and Separation in MOFs: Effect from Isoreticular Double Interpenetration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7152-7160. [PMID: 38294350 DOI: 10.1021/acsami.3c16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Severe CO2 emissions has posed an increasingly alarming threat, motivating the development of efficient CO2 capture materials, one of the key parts of carbon capture, utilization, and storage (CCUS). In this study, a series of metal-organic frameworks (MOFs) named Sc-X (X = S, M, L) were constructed inspired by recorded MOFs, Zn-BPZ-SA and MFU-4l-Li. The corresponding isoreticular double-interpenetrating MOFs (Sc-X-IDI) were subsequently constructed via the introduction of isoreticular double interpenetration. Grand canonical Monte Carlo (GCMC) simulations were adopted at 298 K and 0.1-1.0 bar to comprehensively evaluate the CO2 capture and separation performances in Sc-X and Sc-X-IDI, with gas distribution, isothermal adsorption heat (Qst), and van der Waals (vdW)/Coulomb interactions. It is showed that isoreticular double interpenetration significantly improved the interactions between adsorbed gases and frameworks by precisely modulating pore sizes, particularly observed in Sc-M and Sc-M-IDI. Specifically, the Qst and Coulomb interactions exhibited a substantial increase, rising from 28.38 and 22.19 kJ mol-1 in Sc-M to 43.52 and 38.04 kJ mol-1 in Sc-M-IDI, respectively, at 298 K and 1.0 bar. Besides, the selectivity of CO2 over CH4/N2 was enhanced from 55.36/107.28 in Sc-M to 3308.61/7021.48 in Sc-M-IDI. However, the CO2 capture capacity is significantly influenced by the pore size. Sc-M, with a favorable pore size, exhibits the highest capture capacity of 15.86 mmol g-1 at 298 K and 1.0 bar. This study elucidated the impact of isoreticular double interpenetration on the CO2 capture performance in MOFs.
Collapse
Affiliation(s)
- Sen Liu
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Lu Wang
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Huili Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Hongxu Fang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Xiaokun Yue
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Shuxian Wei
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| |
Collapse
|
10
|
Xiao C, Tian J, Chen Q, Hong M. Water-stable metal-organic frameworks (MOFs): rational construction and carbon dioxide capture. Chem Sci 2024; 15:1570-1610. [PMID: 38303941 PMCID: PMC10829030 DOI: 10.1039/d3sc06076d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) are considered to be a promising porous material due to their excellent porosity and chemical tailorability. However, due to the relatively weak strength of coordination bonds, the stability (e.g., water stability) of MOFs is usually poor, which severely inhibits their practical applications. To prepare water-stable MOFs, several important strategies such as increasing the bonding strength of building units and introducing hydrophobic units have been proposed, and many MOFs with excellent water stability have been prepared. Carbon dioxide not only causes a range of climate and health problems but also is a by-product of some important chemicals (e.g., natural gas). Due to their excellent adsorption performances, MOFs are considered as a promising adsorbent that can capture carbon dioxide efficiently and energetically, and many water-stable MOFs have been used to capture carbon dioxide in various scenarios, including flue gas decarbonization, direct air capture, and purified crude natural gas. In this review, we first introduce the design and synthesis of water-stable MOFs and then describe their applications in carbon dioxide capture, and finally provide some personal comments on the challenges facing these areas.
Collapse
Affiliation(s)
- Cao Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jindou Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
11
|
Song D, Jiang F, Yuan D, Chen Q, Hong M. Optimizing Sieving Effect for CO 2 Capture from Humid Air Using an Adaptive Ultramicroporous Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302677. [PMID: 37357172 DOI: 10.1002/smll.202302677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Indexed: 06/27/2023]
Abstract
Excessive CO2 in the air can not only lead to serious climate problems but also cause serious damage to humans in confined spaces. Here, a novel metal-organic framework (FJI-H38) with adaptive ultramicropores and multiple active sites is prepared. It can sieve CO2 from air with the very high adsorption capacity/selectivity but the lowest adsorption enthalpy among the reported physical adsorbents. Such excellent adsorption performances can be retained even at high humidity. Mechanistic studies show that the polar ultramicropore is very suitable for molecular sieving of CO2 from N2 , and the distinguishable adsorption sites for H2 O and CO2 enable them to be co-adsorbed. Notably, the adsorbed-CO2 -driven pore shrinkage can further promote CO2 capture while the adsorbed-H2 O-induced phase transitions in turn inhibit H2 O adsorption. Moreover, FJI-H38 has excellent stability and recyclability and can be synthesized on a large scale, making it a practical trace CO2 adsorbent. This will provide a new strategy for developing practical adsorbents for CO2 capture from the air.
Collapse
Affiliation(s)
- Danhua Song
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
12
|
Kumar De S, Won DI, Kim J, Kim DH. Integrated CO 2 capture and electrochemical upgradation: the underpinning mechanism and techno-chemical analysis. Chem Soc Rev 2023; 52:5744-5802. [PMID: 37539619 DOI: 10.1039/d2cs00512c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Coupling post-combustion CO2 capture with electrochemical utilization (CCU) is a quantum leap in renewable energy science since it eliminates the cost and energy involved in the transport and storage of CO2. However, the major challenges involved in industrial scale implementation are selecting an appropriate solvent/electrolyte for CO2 capture, modeling an appropriate infrastructure by coupling an electrolyser with a CO2 point source and a separator to isolate CO2 reduction reaction (CO2RR) products, and finally selection of an appropriate electrocatalyst. In this review, we highlight the major difficulties with detailed mechanistic interpretation in each step, to find out the underpinning mechanism involved in the integration of electrochemical CCU to achieve higher-value products. In the past decades, most of the studies dealt with individual parts of the integration process, i.e., either selecting a solvent for CO2 capture, designing an electrocatalyst, or choosing an ideal electrolyte. In this context, it is important to note that solvents such as monoethanolamine, bicarbonate, and ionic liquids are often used as electrolytes in CO2 capture media. Therefore, it is essential to fabricate a cost-effective electrolyser that should function as a reversible binder with CO2 and an electron pool capable of recovering the solvent to electrolyte reversibly. For example, reversible ionic liquids, which are non-ionic in their normal forms, but produce ionic forms after CO2 capture, can be further reverted back to their original non-ionic forms after CO2 release with almost 100% efficiency through the chemical or thermal modulations. This review also sheds light on a focused techno-economic evolution for converting the electrochemically integrated CCU process from a pilot-scale project to industrial-scale implementation. In brief, this review article will summarize a state-of-the-art argumentation of challenges and outcomes over the different segments involved in electrochemically integrated CCU to stimulate urgent progress in the field.
Collapse
Affiliation(s)
- Sandip Kumar De
- Department of Chemistry, UPL University of Sustainable Technology, 402, Ankleshwar - Valia Rd, Vataria, Gujarat 393135, India
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
13
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
14
|
Abánades Lázaro I, Mazarakioti EC, Andres-Garcia E, Vieira BJC, Waerenborgh JC, Vitórica-Yrezábal IJ, Giménez-Marqués M, Mínguez Espallargas G. Ultramicroporous iron-isonicotinate MOFs combining size-exclusion kinetics and thermodynamics for efficient CO 2/N 2 gas separation. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:5320-5327. [PMID: 36911163 PMCID: PMC9990143 DOI: 10.1039/d2ta08934c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Two ultramicroporous 2D and 3D iron-based Metal-Organic Frameworks (MOFs) have been obtained by solvothermal synthesis using different ratios and concentrations of precursors. Their reduced pore space decorated with pendant pyridine from tangling isonicotinic ligands enables the combination of size-exclusion kinetic gas separation, due to their small pores, with thermodynamic separation, resulting from the interaction of the linker with CO2 molecules. This combined separation results in efficient materials for dynamic breakthrough gas separation with virtually infinite CO2/N2 selectivity in a wide operando range and with complete renewability at room temperature and ambient pressure.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán Martínez No 2 46980 Paterna Valencia Spain
| | - Eleni C Mazarakioti
- Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán Martínez No 2 46980 Paterna Valencia Spain
| | - Eduardo Andres-Garcia
- Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán Martínez No 2 46980 Paterna Valencia Spain
| | - Bruno J C Vieira
- Centro de Ciências e Tecnologias Nucleares, DECN, Instituto Superior Técnico, Universidade de Lisboa 2695-066 Bobadela LRS Portugal
| | - João C Waerenborgh
- Centro de Ciências e Tecnologias Nucleares, DECN, Instituto Superior Técnico, Universidade de Lisboa 2695-066 Bobadela LRS Portugal
| | | | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán Martínez No 2 46980 Paterna Valencia Spain
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán Martínez No 2 46980 Paterna Valencia Spain
| |
Collapse
|
15
|
Jin F, Lin E, Wang T, Geng S, Hao L, Zhu Q, Wang Z, Chen Y, Cheng P, Zhang Z. Rationally Fabricating Three-Dimensional Covalent Organic Frameworks for Propyne/Propylene Separation. J Am Chem Soc 2022; 144:23081-23088. [DOI: 10.1021/jacs.2c10548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fazheng Jin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - En Lin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ting Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Shubo Geng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Liqin Hao
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qianqian Zhu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zhifang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Discovering the impact of targeted defects in SP-MOF for CO2 capture from flue gas in presence of humidity through computational modelling. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Razavi SAA, Morsali A, Piroozzadeh M. Redox Metal–Organic Framework for Photocatalytic Organic Transformation: The Role of Tetrazine Function in Radical-Anion Pathway. Inorg Chem 2022; 61:19134-19143. [DOI: 10.1021/acs.inorgchem.2c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sayed Ali Akbar Razavi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Maryam Piroozzadeh
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| |
Collapse
|
18
|
Li X, Bian H, Huang W, Yan B, Wang X, Zhu B. A review on anion-pillared metal–organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214714] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Yin BB, Gao NN, Xu AR, Liang J, Wang LJ, Wang Y. High Emission Zinc Metal‐Organic Framework for Sensitive and Selective Detection of Fe
3+
, Cr
6+
and Nitrofurazone Antibiotic. ChemistrySelect 2022. [DOI: 10.1002/slct.202202812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bei B. Yin
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Ning N. Gao
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - An R. Xu
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Jing Liang
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Li J. Wang
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Yan Wang
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| |
Collapse
|
20
|
Wang Y, Zhang YY, Liao XH, Yin BB, Zhao Y, Gao NN, Jiang H, Mao DR, Yang YX. Multi-responsive luminescent MOF sensor for Fe3+, CrO42− and Cr2O72− in aqueous solution based on phenylenediacetate and bis-imidazole ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Ebadi Amooghin A, Sanaeepur H, Luque R, Garcia H, Chen B. Fluorinated metal-organic frameworks for gas separation. Chem Soc Rev 2022; 51:7427-7508. [PMID: 35920324 DOI: 10.1039/d2cs00442a] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorinated metal-organic frameworks (F-MOFs) as fast-growing porous materials have revolutionized the field of gas separation due to their tunable pore apertures, appealing chemical features, and excellent stability. A deep understanding of their structure-performance relationships is critical for the synthesis and development of new F-MOFs. This critical review has focused on several strategies for the precise design and synthesis of new F-MOFs with structures tuned for specific gas separation purposes. First, the basic principles and concepts of F-MOFs as well as their structure, synthesis and modification and their structure to property relationships are studied. Then, applications of F-MOFs in adsorption and membrane gas separation are discussed. A detailed account of the design and capabilities of F-MOFs for the adsorption of various gases and the governing principles is provided. In addition, the exceptional characteristics of highly stable F-MOFs with engineered pore size and tuned structures are put into perspective to fabricate selective membranes for gas separation. Systematic analysis of the position of F-MOFs in gas separation revealed that F-MOFs are benchmark materials in most of the challenging gas separations. The outlook and future directions of the science and engineering of F-MOFs and their challenges are highlighted to tackle the issues of overcoming the trade-off between capacity/permeability and selectivity for a serious move towards industrialization.
Collapse
Affiliation(s)
- Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russian Federation
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA.
| |
Collapse
|
22
|
Gogoi C, Rana A, Ghosh S, Fopase R, Pandey LM, Biswas S. Superhydrophobic Self-Cleaning Composite of a Metal–Organic Framework with Polypropylene Fabric for Efficient Removal of Oils from Oil–Water Mixtures and Emulsions. ACS APPLIED NANO MATERIALS 2022; 5:10003-10014. [DOI: 10.1021/acsanm.2c02418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Affiliation(s)
- Chiranjib Gogoi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Abhijeet Rana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Subhrajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rushikesh Fopase
- Bio-Interface & Environment Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Lalit M. Pandey
- Bio-Interface & Environment Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
23
|
do Pim WD, Marcotte S, Kitos AA, Richardson P, Pallister P, Murugesu M. Straightforward Mechanosynthesis of a Phase-Pure Interpenetrated MOF-5 Bearing a Size-Matching Tetrazine-Based Linker. Inorg Chem 2022; 61:11695-11701. [PMID: 35854222 DOI: 10.1021/acs.inorgchem.2c01285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The archetypal metal-organic framework-5 (MOF-5 or IRMOF-1) has been explored as a benchmark sorbent material with untapped potential to be studied in the capture and storage of gases and chemical confinement. Several derivatives of this framework have been prepared using the multivariate (MTV) strategy through mixing size-matching linkers to isolate, for example, MIXMOFs that outperform same-linker congeners when employed as gas reservoirs. Herein, we describe a straightforward protocol that uses mechanosynthesis (solvent-free grinding) followed by mild activation in dimethylformamide (DMF)/CHCl3 (40 °C and ambient pressure) to synthesize a functional phase-pure interpenetrated MOF-5 (int-MOF-5) bearing the size-matching 1,4-benzene dicarboxylate (BDC) and 1,2,4,5-tetrazine-3,6-dicarboxylate (TZDC) linkers in the backbone of the interpenetrated MIXMOF. We found that the grinding involving a mixture of H2TZDC and H2BDC in a 1:4 ratio (20% of H2TZDC) in the presence of zinc(II) acetate yields a crystalline solid that upon activation forms a phase-pure int-MOF-5 herein referred to as 20%TZDC-MOF-5. The crystalline phase, thermal stability, and porous structure of 20%TZDC-MOF-5 were thoroughly characterized, and the gas adsorption performance of the MIXMOF was investigated through the isotherms of N2 and H2 at 77 K and CO2 at 273 and 296 K. The pore size distribution for 20%TZDC-MOF-5 was found to be very similar to that determined using single crystals of the same-linker int-MOF-5. The presence of TZDC in the MIXMOF led to a slight increase in the uptake values for both H2 and CO2, suggesting that beneficial interactions take place. To the best of our knowledge, this is the first report presenting a suitable protocol to yield a functionalized int-MOF-5 as a promising means of synergistically fine-tuning the confinement of small target molecules such as CO2 and H2.
Collapse
Affiliation(s)
- Walace D do Pim
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Sébastien Marcotte
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Alexandros A Kitos
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Paul Richardson
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Peter Pallister
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
24
|
Chen F, Wang J, Guo L, Huang X, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. Carbon dioxide capture in gallate-based metal-organic frameworks. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Ma LN, Wang GD, Hou L, Zhu Z, Wang YY. Efficient One-Step Purification of C 1 and C 2 Hydrocarbons over CO 2 in a New CO 2-Selective MOF with a Gate-Opening Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26858-26865. [PMID: 35642726 DOI: 10.1021/acsami.2c06744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Removing CO2 impurity is an essential industrial process in the purification of hydrocarbons. The most promising strategy is the one-step collection of high-purity hydrocarbons by employing CO2-selective adsorbents, which requires improving the CO2 adsorption and separation behavior of adsorbents, especially the low-pressure performance under actual industrial conditions. Herein, we constructed a new flexible metal-organic framework [Zn(odip)0.5(bpe)0.5(CH3OH)]·0.5NMF·H2O (1) (H4odip = 5,5'-oxydiisophthalic acid, bpe = 1,2-bi(4-pyridyl)ethylene, and NMF = N-methylformamide) containing rich ether O adsorption sites in the channels that exhibits remarkable adsorption capacity for CO2 (118.7 cm3 g-1) due to the only gate-opening-type abrupt adsorption of CO2 at room temperature. Its low affinity for other competing gases enables it to deliver high selectivity for the adsorption of CO2 over C1 and C2 hydrocarbons. For equimolar mixtures of CO2-CH4 and CO2-C2H2, the selectivities are 376.0 and 13.2, respectively. Molecular simulations disclose more abundant adsorption sites for CO2 than hydrocarbons in 1. The breakthrough separation performances combined with remarkable stability and recyclability further verify that 1 is a promising adsorbent that can efficiently extract high-purity hydrocarbons through selective capture of CO2.
Collapse
Affiliation(s)
- Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
26
|
Wang Y, Yin BB, Xu W, Zhang YY, Liang J, Fan LL, Lu YJ, Hu R, Gao NN, Jiang H, Sun JY, Kai XM. Multiresponsive luminescent probe for Fe 3+, CrO 42- and Cr 2O 72- in aqueous solution based on N,N’-bis-pyridin-2-ylmethylene-hydrazine and phthalate ligands. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2065633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yan Wang
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Bei-Bei Yin
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Wei Xu
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Yun-Yun Zhang
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Jing Liang
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Ling-Long Fan
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Ya-Jie Lu
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Rong Hu
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Ning-Ning Gao
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Hao Jiang
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Jia-Yin Sun
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Xiao-Ming Kai
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| |
Collapse
|
27
|
Kollias L, Zhang D, Allec SI, Nguyen MT, Lee MS, Cantu DC, Rousseau R, Glezakou VA. Advanced Theory and Simulation to Guide the Development of CO 2 Capture Solvents. ACS OMEGA 2022; 7:12453-12466. [PMID: 35465123 PMCID: PMC9022203 DOI: 10.1021/acsomega.1c07398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Increasing atmospheric concentrations of greenhouse gases due to industrial activity have led to concerning levels of global warming. Reducing carbon dioxide (CO2) emissions, one of the main contributors to the greenhouse effect, is key to mitigating further warming and its negative effects on the planet. CO2 capture solvent systems are currently the only available technology deployable at scales commensurate with industrial processes. Nonetheless, designing these solvents for a given application is a daunting task requiring the optimization of both thermodynamic and transport properties. Here, we discuss the use of atomic scale modeling for computing reaction energetics and transport properties of these chemically complex solvents. Theoretical studies have shown that in many cases, one is dealing with a rich ensemble of chemical species in a coupled equilibrium that is often difficult to characterize and quantify by experiment alone. As a result, solvent design is a balancing act between multiple parameters which have optimal zones of effectiveness depending on the operating conditions of the application. Simulation of reaction mechanisms has shown that CO2 binding and proton transfer reactions create chemical equilibrium between multiple species and that the agglomeration of resulting ions and zwitterions can have profound effects on bulk solvent properties such as viscosity. This is balanced against the solvent systems needing to perform different functions (e.g., CO2 uptake and release) depending on the thermodynamic conditions (e.g., temperature and pressure swings). The latter constraint imposes a "Goldilocks" range of effective parameters, such as binding enthalpy and pK a, which need to be tuned at the molecular level. The resulting picture is that solvent development requires an integrated approach where theory and simulation can provide the necessary ingredients to balance competing factors.
Collapse
Affiliation(s)
- Loukas Kollias
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Difan Zhang
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Sarah I. Allec
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Manh-Thuong Nguyen
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Mal-Soon Lee
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - David C. Cantu
- Department
of Chemical and Materials Engineering, University
of Nevada, Reno, Reno, Nevada 89557, United States
| | - Roger Rousseau
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Vassiliki-Alexandra Glezakou
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
28
|
Jun HJ, Yoo DK, Jhung SH. Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101932] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Li T, Cui P, Sun D. Uncoordinated Hexafluorosilicates in a Microporous Metal-Organic Framework Enabled C 2H 2/CO 2 Separation. Inorg Chem 2022; 61:4251-4256. [PMID: 35238553 DOI: 10.1021/acs.inorgchem.2c00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) represent a kind of low-energy physisorbent with modifiable pores and framework structures; however, a deep understanding of how these structural features influence properties is a prerequisite for the rational design and development of tailor-made materials for advanced applications. In this report, a MOF, [Ni2(TCPP-Ni)1/4(TPIM)2(COOH)F][(Me2NH2)SiF6]·xS (SDU-CP-1; S = solvent molecules, SDU = Shandong University, and CP = coordination polymer), assembled by tetrakis(4-carboxyphenyl)porphyrin (TCPP-Ni) and 2,4,5-tris(4-pyridyl)imidazole (TPIM) ligands as well as Ni2+ cations is reported. Interestingly, inorganic SiF62- anions do not serve as the pillars like precedents in the framework but are just counterions, which endows SDU-CP-1 with high uptake for C2H2 and adsorption selectivity (2.5-4.2) for C2H2/CO2 at room temperature, as certified by gas adsorption and separation experiments and grand canonical Monte Carlo calculation.
Collapse
Affiliation(s)
- Tong Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
30
|
Xu M, Meng SS, Cai P, Gu YH, Yan TA, Yan TH, Zhang QH, Gu L, Liu DH, Zhou HC, Gu ZY. Homogeneously Mixing Different Metal-Organic Framework Structures in Single Nanocrystals through Forming Solid Solutions. ACS CENTRAL SCIENCE 2022; 8:184-191. [PMID: 35233451 PMCID: PMC8874727 DOI: 10.1021/acscentsci.1c01344] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 06/01/2023]
Abstract
Pore engineering plays a significant role in the applications of porous materials, especially in the area of separation and catalysis. Here, we demonstrated a metal-organic framework (MOF) solid solution (MOSS) strategy to homogeneously and controllably mix NU-1000 and NU-901 structures inside single MOF nanocrystals. The key for the homogeneous mixing and forming of MOSS was the bidentate modulator, which was designed to have a slightly longer distance between two carboxylate groups than the original tetratopic ligand. All of the MOSS nanocrystals showed a uniform pore size distribution with a well-tuned ratio of mesopores to micropores. Because of the appropriate pore ratio, MOSS nanocrystals can balance the thermodynamic interactions and kinetic diffusion of the substrates, thus showing exceedingly higher separation abilities and a unique elution sequence. Our work proposes a rational strategy to design mixed-porous MOFs with controlled pore ratios and provides a new direction to design homogeneously mixed MOFs with a high separation ability and unique separation selectivity.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Sha-Sha Meng
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Peiyu Cai
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Yu-Hao Gu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tong-An Yan
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian-Hao Yan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Qing-Hua Zhang
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Da-Huan Liu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77842, United States
| | - Zhi-Yuan Gu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
31
|
Hypothetical yet Effective: Computational Identification of High-performing MOFs for CO2 Capture. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Ding J, Wang M, Gao S, Xie Y, Guo X, Yu T. Preparation of adsorption materials by combustion method: a new approach to the preparation of magnesia doped with trace zirconium. NEW J CHEM 2022. [DOI: 10.1039/d2nj01794f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, Zr-doping MgO adsorbents were prepared by combustion method with the aid of salicylic acid which was a facile and efficient method for functional material preparation. The one doped with 2% ZrO2 showed excellent performance in CO2 capture.
Collapse
Affiliation(s)
- Jian Ding
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou, 014010, Inner Mongolia, P. R. China
- Inner Mongolia Engineering Research Center of Coal Cleaning & Comprehensive Utilization, Baotou, 014010, Inner Mongolia, P. R. China
| | - Meihui Wang
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou, 014010, Inner Mongolia, P. R. China
| | - Shuang Gao
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou, 014010, Inner Mongolia, P. R. China
| | - Yuelin Xie
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou, 014010, Inner Mongolia, P. R. China
| | - Xiaohui Guo
- Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou, 014010, Inner Mongolia, P. R. China
- Inner Mongolia Engineering Research Center of Coal Cleaning & Comprehensive Utilization, Baotou, 014010, Inner Mongolia, P. R. China
| | - Tingting Yu
- Ordos agricultural and livestock product quality and safety center, Ordos, 017000, Inner Mongolia, P. R. China
| |
Collapse
|
33
|
Meng N, Li H, Liu Y, Liao Y. Self-templating synthesis of nitrogen-rich porous carbons using pyridyl functionalized conjugated microporous polytriphenylamine for electrochemical energy storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Lv M, Sun DW, Huang L, Pu H. Precision release systems of food bioactive compounds based on metal-organic frameworks: synthesis, mechanisms and recent applications. Crit Rev Food Sci Nutr 2021; 62:3991-4009. [PMID: 34817301 DOI: 10.1080/10408398.2021.2004086] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Controlled release (CR) systems have become a powerful platform for accurate and effective delivery of bioactive compounds (BCs). Metal-organic frameworks (MOFs) are one of the best BCs-loaded carriers for CR systems. In the review, the principles and methods of the design and synthesis of MOFs-CR systems are summarized in detail, the encapsulation of BCs by MOFs and CR mechanisms are explored, and their biological toxicity and biocompatibility are highlighted and applications in the food industry are discussed. In addition, current challenges in this field and possible future development directions are also presented. MOFs have been proven to encapsulate BCs effectively, including gaseous and solid molecules, and control the release of BCs through spontaneous diffusion or stimulus-response. The solubility, stability and biocompatibility of BCs encapsulated by MOFs are greatly improved, which expands their applications in foods. The effective CR of BCs by MOFs-CR systems is beneficial to assist in maintaining or even improving the quality and safety of food, reduce the BCs usage while increasing the bioavailability. Low- or non-biotoxic MOFs, especially bio-MOFs, show greater application prospects in the food industry.
Collapse
Affiliation(s)
- Mingchun Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
35
|
Usman M, Iqbal N, Noor T, Zaman N, Asghar A, Abdelnaby MM, Galadima A, Helal A. Advanced strategies in Metal-Organic Frameworks for CO 2 Capture and Separation. CHEM REC 2021; 22:e202100230. [PMID: 34757694 DOI: 10.1002/tcr.202100230] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
The continuous carbon dioxide (CO2 ) gas emissions associated with fossil fuel production, valorization, and utilization are serious challenges to the global environment. Therefore, several developments of CO2 capture, separation, transportation, storage, and valorization have been explored. Consequently, we documented a comprehensive review of the most advanced strategies adopted in metal-organic frameworks (MOFs) for CO2 capture and separation. The enhancements in CO2 capture and separation are generally achieved due to the chemistry of MOFs by controlling pore window, pore size, open-metal sites, acidity, chemical doping, post or pre-synthetic modifications. The chemistry of defects engineering, breathing in MOFs, functionalization in MOFs, hydrophobicity, and topology are the salient advanced strategies, recently reported in MOFs for CO2 capture and separation. Therefore, this review summarizes MOF materials' advancement explaining different strategies and their role in the CO2 mitigations. The study also provided useful insights into key areas for further investigations.
Collapse
Affiliation(s)
- Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Naseem Iqbal
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Neelam Zaman
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aisha Asghar
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mahmoud M Abdelnaby
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Ahmad Galadima
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
36
|
Wang M, Zeng G, Zhang X, Bai FY, Xing YH, Shi Z. A new family of Ln-BTC-AC-FM framework intelligent materials: Precise synthesis, structure and characterization for fluorescence detecting of UO22+ and adsorbing dyes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Zhang YJ, Nie HX, Yu MH, Chang Z. Post-synthetic modification of tetrazine functionalized porous MOF for CO2 sorption performances modulation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Deng J, Zou W, Mi J, Du Z, Kong P, Zhang C. Construction of Porous Polymer Beads for CO 2 Capture in a Fluidized Bed with High Stability. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingqian Deng
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wei Zou
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jianguo Mi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongjie Du
- Sinochem Petrochemical Distribution Company LTD, Shanghai 201103, PR China
| | - Peng Kong
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chen Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
39
|
Zhou JJ, Zhang M, Lu J, Gu MX, Li YX, Liu XQ, Sun LB. Controllable Microporous Framework Isomerism within Continuous Mesoporous Channels: Hierarchically Porous Structure for Capture of Bulky Molecules. Inorg Chem 2021; 60:6633-6640. [PMID: 33872509 DOI: 10.1021/acs.inorgchem.1c00438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To date, some attempts have been made to synthesize hierarchically porous metal-organic frameworks (HPMOFs), and in most cases, mesopores are formed in microporous frameworks. However, mass transfer and diffusion are still limited in such HPMOFs since micropores connect mesopores and mesopores are noncontinuous. Here, we fabricate a new hierarchical structure through the formation of microporous MOFs within continuous mesoporous channels. Confined space in the as-prepared mesoporous silica-containing template was used to prepare well-dispersed metal precursor of ZnO. The strategy of ligand vapor-induced crystallization was then designed to construct MOFs inside mesoporous channels, in which vapored ligand at elevated temperature diffuses and reacts with metal precursor. Our results indicate that framework isomerism is controllable by adjusting the crystallization conditions. In comparison to their microporous and mesoporous counterparts, the hierarchically porous materials show obviously enhanced adsorption performance on a series of bulky molecules including dye, enzyme, and metal-organic polyhedron.
Collapse
Affiliation(s)
- Jin-Jian Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Meng Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Meng-Xuan Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu-Xia Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
40
|
Gu C, Yu Z, Liu J, Sholl DS. Construction of an Anion-Pillared MOF Database and the Screening of MOFs Suitable for Xe/Kr Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11039-11049. [PMID: 33646743 DOI: 10.1021/acsami.1c00152] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The separation of xenon/krypton (Xe/Kr) mixtures is a challenging process. Many porous materials allow the adsorption of both Xe and Kr but only with low selectivity. Anion-pillared metal-organic frameworks (MOFs), featuring the anion groups as structural pillars, show potential in gas separations, but only a limited number of them have been synthesized. Here, we describe a collection of 936 anion-pillared MOFs based on 22 experimentally available structures. We performed density functional theory (DFT) optimization and then assigned density-derived electrostatic and chemical (DDEC) charges for each MOF to make them well suited to molecular simulations. The structural properties of the MOFs vary more strongly with the choice of the organic ligand than with other aspects like fluorine groups and metal centers. We then screened the entire collection of MOFs in the context of Xe/Kr separation at room temperature. Compared with previously reported MOFs, the interpenetrated MOF SIFSIX-6-Cd-i is predicted to perform better for Xe/Kr separations, with a good balance between working capacity (1.62 mmol/g) and separation selectivity (16.4) at 298 K and 100 kPa. We also found that the heterogeneity of fluorine groups within a MOF can help to enhance Xe working capacity without reducing the Xe/Kr selectivity, suggesting that synthesis of anion-pillared MOFs with mixed fluorine groups may lead to improved Xe/Kr separation performance.
Collapse
Affiliation(s)
- Chenkai Gu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Zhenzi Yu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Jing Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - David S Sholl
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
41
|
Miguel-Casañ E, Andres-Garcia E, Calbo J, Giménez-Marqués M, Mínguez Espallargas G. Selective CO 2 Sorption Using Compartmentalized Coordination Polymers with Discrete Voids*. Chemistry 2021; 27:4653-4659. [PMID: 33337561 DOI: 10.1002/chem.202004845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 11/08/2022]
Abstract
Carbon capture and storage with porous materials is one of the most promising technologies to minimize CO2 release into the atmosphere. Here, we report a family of compartmentalized coordination polymers (CCPs) capable of capturing gas molecules in a selective manner based on two novel tetrazole-based ligands. Crystal structures have been modelled theoretically under the Density Functional Theory (DFT) revealing the presence of discrete voids of 380 Å3 . Single gas adsorption isotherms of N2 , CH4 and CO2 have been measured, obtaining a loading capacity of 0.6, 1.7 and 2.2 molecules/void at 10 bar and at 298 K for the best performing material. Moreover, they present excellent selectivity and regenerability for CO2 in mixtures with CH4 and N2 in comparison with other reported materials, as evidenced by dynamic breakthrough gas experiments. These frameworks are therefore great candidates for separation of gas mixtures in the chemical engineering industry.
Collapse
Affiliation(s)
- Eugenia Miguel-Casañ
- Instituto de Ciencia Molecular (ICMol), c/ Catedrático José Beltran, 2, 46980, Paterna, Spain
| | - Eduardo Andres-Garcia
- Instituto de Ciencia Molecular (ICMol), c/ Catedrático José Beltran, 2, 46980, Paterna, Spain
| | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol), c/ Catedrático José Beltran, 2, 46980, Paterna, Spain
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), c/ Catedrático José Beltran, 2, 46980, Paterna, Spain
| | | |
Collapse
|
42
|
Li SY, Zhang FF, Wang X, He MH, Ding Z, Chen M, Hou XY, Chen XL, Tang L, Yue EL, Wang JJ, Fu F. Flexible ligands-dependent formation of a new column layered MOF possess 1D channel and effective separation performance for CO2. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Modified fibrous silica for enhanced carbon dioxide adsorption: Role of metal oxides on physicochemical properties and adsorption performance. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Wen HM, Shao K, Zhou W, Li B, Chen B. A novel expanded metal-organic framework for balancing volumetric and gravimetric methane storage working capacities. Chem Commun (Camb) 2020; 56:13117-13120. [PMID: 33001080 DOI: 10.1039/d0cc05504b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel expanded metal-organic framework (UTSA-111a) with functional pyrimidine sites exhibits simultaneously high gravimetric and volumetric methane storage working capacities of 309 cm3 (STP) g-1 and 183 cm3 (STP) cm-3 at 298 K and 5.8-65 bar.
Collapse
Affiliation(s)
- Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China.
| | | | | | | | | |
Collapse
|
45
|
Li J, Bhatt PM, Li J, Eddaoudi M, Liu Y. Recent Progress on Microfine Design of Metal-Organic Frameworks: Structure Regulation and Gas Sorption and Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002563. [PMID: 32671894 DOI: 10.1002/adma.202002563] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Indexed: 05/18/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as an important and unique class of functional crystalline hybrid porous materials in the past two decades. Due to their modular structures and adjustable pore system, such distinctive materials have exhibited remarkable prospects in key applications pertaining to adsorption such as gas storage, gas and liquid separations, and trace impurity removal. Evidently, gaining a better understanding of the structure-property relationship offers great potential for the enhancement of a given associated MOF property either by structural adjustments via isoreticular chemistry or by the design and construction of new MOF structures via the practice of reticular chemistry. Correspondingly, the application of isoreticular chemistry paves the way for the microfine design and structure regulation of presented MOFs. Explicitly, the microfine tuning is mainly based on known MOF platforms, focusing on the modification and/or functionalization of a precise part of the MOF structure or pore system, thus providing an effective approach to produce richer pore systems with enhanced performances from a limited number of MOF platforms. Here, the latest progress in this field is highlighted by emphasizing the differences and connections between various methods. Finally, the challenges together with prospects are also discussed.
Collapse
Affiliation(s)
- Jiantang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Functional Materials Design, Discovery & Development (FMD3), Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Prashant M Bhatt
- Functional Materials Design, Discovery & Development (FMD3), Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery & Development (FMD3), Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
46
|
Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213485] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Pal A, Chand S, Madden DG, Franz D, Ritter L, Space B, Curtin T, Chand Pal S, Das MC. Immobilization of a Polar Sulfone Moiety onto the Pore Surface of a Humid-Stable MOF for Highly Efficient CO 2 Separation under Dry and Wet Environments through Direct CO 2-Sulfone Interactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41177-41184. [PMID: 32803939 DOI: 10.1021/acsami.0c07380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The stability of microporous metal-organic frameworks (MOFs) in moist environments must be taken into consideration for their practical implementations, which has been largely ignored thus far. Herein, we synthesized a new moisture-stable Zn-MOF, {[Zn2(SDB)2(L)2]·2DMA}n, IITKGP-12, by utilizing a bent organic linker 4,4'-sulfonyldibenzoic acid (H2SDB) containing a polar sulfone group (-SO2) and a N, N-donor spacer (L) with a Brunauer-Emmett-Teller surface area of 216 m2 g-1. This material displays greater CO2 adsorption capacity over N2 and CH4 with high IAST selectivity, which is also validated by breakthrough experiments with longer breakthrough times for CO2. Most importantly, the separation performance is largely unaffected in the presence of moisture of simulated flue gas stream. Temperature-programmed desorption (TPD) analysis shows the ease of the regeneration process, and the performance was verified for multiple cycles. In order to understand the structure-function relationship at the atomistic level, grand canonical Monte Carlo (GCMC) calculation was performed, indicating that the primary binding site for CO2 is between the sulfone moieties in IITKGP-12. CO2 is attracted to the bonded structure (V-shape) of the sulfone moieties in a perpendicular fashion, where CCO2 is aligned with S, and the CO2 axis bisects the SO2 axis. Thus, the strategic approach to immobilize the polar sulfone moiety with a high number of inherent stronger M-N coordination and the absence of coordination unsaturation made this MOF potential toward practical CO2 separation applications.
Collapse
Affiliation(s)
- Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - David G Madden
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, U.K
| | - Douglas Franz
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - Logan Ritter
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - Brian Space
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - Teresa Curtin
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
48
|
Wu D, Liu C, Tian J, Jiang F, Yuan D, Chen Q, Hong M. Acid-Base-Resistant Metal-Organic Framework for Size-Selective Carbon Dioxide Capture. Inorg Chem 2020; 59:13542-13550. [PMID: 32864962 DOI: 10.1021/acs.inorgchem.0c01912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of practical porous materials for the selective capture of CO2 from flue gas and crude biogas is highly critical for both environment protection and energy safety. Here, a novel metal-organic framework (FJI-H29) has been prepared, which not only has excellent acid-base resistance but also possesses polar micropores (3.4-4.3 Å) that can match CO2 molecules well. FJI-H29 can selectively capture CO2 from N2 and CH4 with excellent separation efficiency and suitable adsorption enthalpy under ambient conditions. Breakthrough experiments further confirm its practicability for both CO2/N2 and CO2/CH4 separation. All of these confirm FJI-H29 is a practical CO2 adsorbent. Modeling calculations reveal that the confinement effect of micropores and the polar environment synergistically promotes the selective adsorption of CO2, which will provide a potential strategy for the synthesis of a practical metal-organic framework for CO2 capture.
Collapse
Affiliation(s)
- Dong Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jiayue Tian
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Maochun Hong
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
49
|
Chen Y, Luo L, Zhang SG, Ding R, Zhou J, Yang C. A porous Co(II)–MOF for selective C 2H 2/CO 2 separation and treatment activity on virus-induced COPD via reducing tlr3 gene expression. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1786886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yu Chen
- Department of Respiration, Huai’an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai’an, China
| | - Li Luo
- Department of Cardiology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, China
| | - Shu-Guang Zhang
- Department of Cardiology, Huai’an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai’an, China
| | - Rong Ding
- Blood Rheumatology and Lmmunology, Lianshui County People's Hospital, Lianshui, China
| | - Jie Zhou
- Department of Respiratory, Anhui Medical University, Hefei, China
| | - Chao Yang
- Department of Respiratory, Anhui Medical University, Hefei, China
| |
Collapse
|
50
|
Chand S, Pal A, Saha R, Das P, Sahoo R, Chattaraj PK, Das MC. Two Closely Related Zn(II)-MOFs for Their Large Difference in CO2 Uptake Capacities and Selective CO2 Sorption. Inorg Chem 2020; 59:7056-7066. [DOI: 10.1021/acs.inorgchem.0c00551] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Ranajit Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Prasenjit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Pratim K. Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
- Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Madhab C. Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| |
Collapse
|