1
|
Kumbham S, Md Mahabubur Rahman K, Foster BA, You Y. A Comprehensive Review of Current Approaches in Bladder Cancer Treatment. ACS Pharmacol Transl Sci 2025; 8:286-307. [PMID: 39974639 PMCID: PMC11833730 DOI: 10.1021/acsptsci.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
Bladder cancer is one of the most common malignant tumors of the urinary system globally. It is also one of the most expensive cancers to manage, due to the need for extensive treatment and follow-ups that often involve invasive and costly procedures. Although there have been some improvements in treatment options, the quality of life they offer has not improved at the same rate as other cancers. Therefore, there is an urgent need to find new alternatives to ease the burden of bladder cancer on patients. Recent discoveries have opened new avenues for the diagnosis and management of bladder cancer even though the clinical approach has largely remained the same for years. The decline in bladder cancer-specific mortality in regions that promote social awareness of risk factors and reduction of carcinogenic exposure demonstrates the effectiveness of such measures. New agents have been approved for patients who have undergone radical cystectomy after Bacillus Calmette-Guérin failure. Current best practices for diagnosing and treating bladder cancer are presented in this review. The review discusses radiation therapy, photodynamic therapy, gene therapy, chemotherapy, and nanomedicine in relation to non muscle-invasive cancers and muscle-invasive bladder cancers, as well as systemic treatments.
Collapse
Affiliation(s)
- Soniya Kumbham
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Barbara A. Foster
- Department
of Pharmacology & Therapeutics, Roswell
Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Youngjae You
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
2
|
Fattahi MR, Dehghani M, Paknahad S, Rahiminia S, Zareie D, Hoseini B, Oroomi TR, Motedayyen H, Arefnezhad R. Clinical insights into nanomedicine and biosafety: advanced therapeutic approaches for common urological cancers. Front Oncol 2024; 14:1438297. [PMID: 39193389 PMCID: PMC11347329 DOI: 10.3389/fonc.2024.1438297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Urological cancers including those of the prostate, bladder, and kidney, are prevalent and often lethal malignancies besides other less common ones like testicular and penile cancers. Current treatments have major limitations like side effects, recurrence, resistance, high costs, and poor quality of life. Nanotechnology offers promising solutions through enhanced diagnostic accuracy, targeted drug delivery, controlled release, and multimodal imaging. This review reflects clinical challenges and nanomedical advances across major urological cancers. In prostate cancer, nanoparticles improve delineation and radiosensitization in radiation therapy, enable fluorescent guidance in surgery, and enhance chemotherapy penetration in metastatic disease. Nanoparticles also overcome bladder permeability barriers to increase the residence time of intravesical therapy and chemotherapy agents. In renal cancer, nanocarriers potentiate tyrosine kinase inhibitors and immunotherapy while gene vectors and zinc oxide nanoparticles demonstrate antiproliferative effects. Across modalities, urological applications of nanomedicine include polymeric, liposomal, and metal nanoparticles for targeted therapy, prodrug delivery, photodynamic therapy, and thermal ablation. Biosafety assessments reveal favorable profiles but clinical translation remains limited, necessitating further trials. In conclusion, nanotechnology holds significant potential for earlier detection, precise intervention, and tailored treatment of urological malignancies, warranting expanded research to transform patient outcomes.
Collapse
Affiliation(s)
- Mohammad Reza Fattahi
- Student Research Committee, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Shafa Rahiminia
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Deniz Zareie
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behzad Hoseini
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Tang W, Kang J, Yang L, Lin J, Song J, Zhou D, Ye F. Thermosensitive nanocomposite components for combined photothermal-photodynamic therapy in liver cancer treatment. Colloids Surf B Biointerfaces 2023; 226:113317. [PMID: 37105064 DOI: 10.1016/j.colsurfb.2023.113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Phototherapies, in the form of photodynamic therapy (PDT) and photothermal therapy (PTT), have great application prospects in the field of biomedical science due to high precision and non-invasiveness. Because of the limited therapeutic efficacy of single phototherapy, researchers start to focus on combined PTT-PDT. Here, we designed a composite nanomaterial for PTT-PDT. H-TiO2 mesoporous spheres were prepared by sol-gel method and hydrogenation treatment. After modification with polydopamine (PDA), they were combined with indocyanine green (ICG) and NPe6 photosensitizers and coated by thermosensitive liposomes to prepare H-TiO2 @PDA@ICG@NPe6 @Lipo nanocomposite component. The results indicated a substantial improvement of the component in the aspects of spectral response range, photothermal conversion efficiency and light absorption performance by modification and photosensitizers, in the absence of any toxicities on cells. Thermal induction and sequential irradiation with 808 nm and 664 nm lasers induced the aggregation of H-TiO2 @PDA@ICG@NPe6 @Lipo at the tumor site to generate hyperthermia and massive reactive oxygen species (ROS), resulting in decreased cell activity or even cell apoptosis and restrained growth of allograft tumors. These findings underscore the favorable effects of H-TiO2 @PDA@ICG@NPe6 @Lipo on the combined phototherapies and provide approaches for the development of nano-drugs in the context of liver cancer.
Collapse
Affiliation(s)
- Weiwei Tang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian Medical University, Xiamen, China; Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Jiapeng Kang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian Medical University, Xiamen, China; Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lu Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian Medical University, Xiamen, China; Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jialin Lin
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian Medical University, Xiamen, China; Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jing Song
- Xiamen University Laboratory Animal Center, Xiamen, China
| | - Dan Zhou
- Institute of Cosmetology and Dermatology, Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, Xiamen, China.
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian Medical University, Xiamen, China; Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Wang F, Li N, Wang W, Ma L, Sun Y, Wang H, Zhan J, Yu D. A Multifunctional, Highly Biocompatible, and Double-Triggering Caramelized Nanotheranostic System Loaded with Fe 3O 4 and DOX for Combined Chemo-Photothermal Therapy and Real-Time Magnetic Resonance Imaging Monitoring of Triple Negative Breast Cancer. Int J Nanomedicine 2023; 18:881-897. [PMID: 36844435 PMCID: PMC9948638 DOI: 10.2147/ijn.s393507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Purpose Owing to lack of specific molecular targets, the current clinical therapeutic strategy for triple negative breast cancer (TNBC) is still limited. In recent years, some nanosystems for malignancy treatment have received considerable attention. In this study, we prepared caramelized nanospheres (CNSs) loaded with doxorubicin (DOX) and Fe3O4 to achieve the synergistic effect of combined therapy and real-time magnetic resonance imaging (MRI) monitoring, so as to improve the diagnosis and therapeutic effect of TNBC. Methods CNSs with biocompatibility and unique optical properties were prepared by hydrothermal method, DOX and Fe3O4 were loaded on it to obtain Fe3O4/DOX@CNSs nanosystem. Characteristics including morphology, hydrodynamic size, zeta potentials and magnetic properties of Fe3O4/DOX@CNSs were evaluated. The DOX release was evaluated by different pH/near-infrared (NIR) light energy. Biosafety, pharmacokinetics, MRI and therapeutic treatment of Fe3O4@CNSs, DOX and Fe3O4/DOX@CNSs were examined in vitro or in vivo. Results Fe3O4/DOX@CNSs has an average particle size of 160 nm and a zeta potential of 27.5mV, it demonstrated that Fe3O4/DOX@CNSs is a stable and homogeneous dispersed system. The hemolysis experiment of Fe3O4/DOX@CNSs proved that it can be used in vivo. Fe3O4/DOX@CNSs displayed high photothermal conversion efficiency, extensive pH/heat-induced DOX release. 70.3% DOX release is observed under the 808 nm laser in the pH = 5 PBS solution, obviously higher than pH = 5 (50.9%) and pH = 7.4 (less than 10%). Pharmacokinetic experiments indicated the t1/2β, and AUC0-t of Fe3O4/DOX@CNSs were 1.96 and 1.31 -fold higher than those of DOX solution, respectively. Additionally, Fe3O4/DOX@CNSs with NIR had the greatest tumor suppression in vitro and in vivo. Moreover, this nanosystem demonstrated distinct contrast enhancement on T2 MRI to achieve real-time imaging monitoring during treatment. Conclusion Fe3O4/DOX@CNSs is a highly biocompatible, double-triggering and improved DOX bioavailability nanosystem that combines chemo-PTT and real-time MRI monitoring to achieve integration of diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Fangqing Wang
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Nianlu Li
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250002, People’s Republic of China
| | - Wenbo Wang
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Long Ma
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Shandong Normal University, Jinan, 250014, People’s Republic of China
| | - Yaru Sun
- Department of Nuclear Medicine, The Second Hospital of Shandong University, Affiliated Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Hong Wang
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People’s Republic of China,Correspondence: Jinhua Zhan, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People’s Republic of China, Email
| | - Dexin Yu
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China,Dexin Yu, Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China, Tel +86-18560081629, Fax +86-531-86927544, Email
| |
Collapse
|
5
|
Li G, Wu S, Chen W, Duan X, Sun X, Li S, Mai Z, Wu W, Zeng G, Liu H, Chen T. Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer. SMALL METHODS 2023; 7:e2201313. [PMID: 36599700 DOI: 10.1002/smtd.202201313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Sicheng Wu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzhe Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xiaolu Duan
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Shujue Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zanlin Mai
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Guohua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| | - Tianfeng Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| |
Collapse
|
6
|
Ashrafizadeh M, Zarrabi A, Karimi‐Maleh H, Taheriazam A, Mirzaei S, Hashemi M, Hushmandi K, Makvandi P, Nazarzadeh Zare E, Sharifi E, Goel A, Wang L, Ren J, Nuri Ertas Y, Kumar AP, Wang Y, Rabiee N, Sethi G, Ma Z. (Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10353. [PMID: 36684065 PMCID: PMC9842064 DOI: 10.1002/btm2.10353] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023] Open
Abstract
Urological cancers are among the most common malignancies around the world. In particular, bladder cancer severely threatens human health due to its aggressive and heterogeneous nature. Various therapeutic modalities have been considered for the treatment of bladder cancer although its prognosis remains unfavorable. It is perceived that treatment of bladder cancer depends on an interdisciplinary approach combining biology and engineering. The nanotechnological approaches have been introduced in the treatment of various cancers, especially bladder cancer. The current review aims to emphasize and highlight possible applications of nanomedicine in eradication of bladder tumor. Nanoparticles can improve efficacy of drugs in bladder cancer therapy through elevating their bioavailability. The potential of genetic tools such as siRNA and miRNA in gene expression regulation can be boosted using nanostructures by facilitating their internalization and accumulation at tumor sites and cells. Nanoparticles can provide photodynamic and photothermal therapy for ROS overgeneration and hyperthermia, respectively, in the suppression of bladder cancer. Furthermore, remodeling of tumor microenvironment and infiltration of immune cells for the purpose of immunotherapy are achieved through cargo-loaded nanocarriers. Nanocarriers are mainly internalized in bladder tumor cells by endocytosis, and proper design of smart nanoparticles such as pH-, redox-, and light-responsive nanocarriers is of importance for targeted tumor therapy. Bladder cancer biomarkers can be detected using nanoparticles for timely diagnosis of patients. Based on their accumulation at the tumor site, they can be employed for tumor imaging. The clinical translation and challenges are also covered in current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Orta MahalleIstanbulTurkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and EnvironmentUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical SciencesUniversity of JohannesburgJohannesburgSouth Africa
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicineTehran Medical Sciences, Islamic Azad UniversityTehranIran
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Pooyan Makvandi
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | | | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Arul Goel
- La Canada High SchoolLa Cañada FlintridgeCaliforniaUSA
| | - Lingzhi Wang
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Jun Ren
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Shanghai Institute of Cardiovascular Diseases, Department of CardiologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
| | - Alan Prem Kumar
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNew South Wales2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673South Korea
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
7
|
Xu Z, Chen J, Li Y, Hu T, Fan L, Xi J, Han J, Guo R. Yolk-shell Fe 3O 4@Carbon@Platinum-Chlorin e6 nanozyme for MRI-assisted synergistic catalytic-photodynamic-photothermal tumor therapy. J Colloid Interface Sci 2022; 628:1033-1043. [PMID: 35970129 DOI: 10.1016/j.jcis.2022.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS Tumor treatments based on phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT), are promising anticancer strategies. However, their dependence on light also poses several limitations for their application. Therefore, the establishment of a multifunctional nanotheranostic platform based on light therapy is needed to improve applicability of the technology. EXPERIMENTS We designed yolk-shell magnetic Fe3O4@Carbon@Platinum-Chlorin e6 nanoparticles (MCPtCe6), which may be used for Magnetic resonance imaging (MRI) and synergistic catalytic-photodynamic-photothermal (catalytic-PDT-PTT) tumor therapy. FINDINGS We designed to compound multiple nanozymes and solve the drawbacks of single nanozyme and give additional functionalization to nanozymes for tumor therapy. Fe3O4 has T2 weighted MRI ability. The designed yolk-shell structure can disperse Fe3O4 in the carbon shell layer, which in turn can act as a carrier for PtNPs and improve the dispersion of both Fe3O4 and Pt. Pt nanoparticles attached to the surface of N-doped carbon spheres enhanced the catalytic ability of the nanozyme to generate reactive oxygen species (ROS). The covalently linked photosensitizer chlorin e6 (Ce6) on the Fe3O4@C@Pt (MCPt) nanozyme is essential for the therapeutic effects of PDT. MCPtCe6 can be specifically activated by the microenvironment through an enzyme-like catalytic process and extend PDT/PTT in acidic and H2O2-rich microenvironments. The results showed that MCPtCe6 had a high photothermal conversion efficiency (η = 28.28%), indicating its feasibility for PTT. Further cellular and animal studies have revealed that catalytic-PDT-PTT therapy can effectively inhibit tumors both in vitro and in vivo.
Collapse
Affiliation(s)
- Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jie Chen
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225002, China
| | - Yanan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Ting Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
8
|
Sun Z, Zhang W, Ye Z, Yuan L, Fu M, Liu X, Liang H, Han H. NIR-II-triggered doxorubicin release for orthotopic bladder cancer chemo-photothermal therapy. NANOSCALE 2022; 14:17929-17939. [PMID: 36325926 DOI: 10.1039/d2nr04200b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intravesical instillation has been widely utilized for bladder cancer treatment in clinic. However, due to the bladder mucosal barrier, its poor penetration efficiency and drug utilization limit the clinical therapeutic effectiveness and result in a high recurrence rate. Therefore, designing an efficient and controllable drug delivery nanoplatform is of great significance for bladder cancer treatment. Non-invasive therapy based on near-infrared-II (NIR-II) photothermal therapy (PTT) conduces to overcome bladder mucosal barrier and enhance drug delivery. Also, the photothermal nanomaterials, Au Hollow Nanorods (AuHNRs), demonstrate strong photothermal properties and drug loading capacity. Herein, a quaternized chitosan N-(2-hydroxyl)propyl-3-trimethyl ammonium chitosan chloride (HTCC)-modified nanocarrier Dox/NH4HCO3@AuHNRs-HTCC (DNAH) was designed for controlled drug release and enhanced penetration. The drug loading capacity of DNAH reached 117.20%. Also, the thermal decomposition of NH4HCO3 realized NIR-II-triggered gas-driven drug burst release, and the doxorubicin release was 2.79 times higher within 1 h after NIR-II irradiation. Also, the HTCC-modified nanocarriers significantly enhanced the bladder mucosal permeability as well as long-term drug retention, and the penetration efficiency of DNAH increased by 144%. In the orthotopic bladder cancer model, the tumor suppression rate and mouse survival time were significantly improved. DNAH showed potent inhibition of the orthotopic bladder tumor growth owing to the enhanced penetration and drug delivery. This work presents a potential drug delivery nanocarrier, which is promising for optimized bladder mucosal permeability and controlled drug burst release.
Collapse
Affiliation(s)
- Zhiduo Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China.
| | - Weiyun Zhang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| | - Zhichao Ye
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Li Yuan
- Department of Ultrasonography, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Manli Fu
- Department of Ultrasonography, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, P. R. China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China.
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
9
|
Kong C, Zhang S, Lei Q, Wu S. State-of-the-Art Advances of Nanomedicine for Diagnosis and Treatment of Bladder Cancer. BIOSENSORS 2022; 12:bios12100796. [PMID: 36290934 PMCID: PMC9599190 DOI: 10.3390/bios12100796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 06/13/2023]
Abstract
Bladder cancer is a common malignant tumor of the urinary system. Cystoscopy, urine cytology, and CT are the routine diagnostic methods. However, there are some problems such as low sensitivity and difficulty in staging, which must be urgently supplemented by novel diagnostic methods. Surgery, intravesical instillation, systemic chemotherapy, and radiotherapy are the main clinical treatments for bladder cancer. It is difficult for conventional treatment to deal with tumor recurrence, progression and drug resistance. In addition, the treatment agents usually have the defects of poor specific distribution ability to target tumor tissues and side effects. The rapid development of nanomedicine has brought hope for the treatment of bladder cancer in reducing side effects, enhancing tumor inhibition effects, and anti-drug resistance. Overall, we review the new progression of nano-platforms in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chenfan Kong
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Qifang Lei
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
10
|
Ding M, Lin J, Qin C, Wei P, Tian J, Lin T, Xu T. Application of synthetic biology in bladder cancer. Chin Med J (Engl) 2022; 135:2178-2187. [PMID: 36209735 PMCID: PMC9771244 DOI: 10.1097/cm9.0000000000002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT Bladder cancer (BC) is the most common malignant tumor of the genitourinary system. The age of individuals diagnosed with BC tends to decrease in recent years. A variety of standard therapeutic options are available for the clinical management of BC, but limitations exist. It is difficult to surgically eliminate small lesions, while radiation and chemotherapy damage normal tissues, leading to severe side effects. Therefore, new approaches are required to improve the efficacy and specificity of BC treatment. Synthetic biology is a field emerging in the last decade that refers to biological elements, devices, and materials that are artificially synthesized according to users' needs. In this review, we discuss how to utilize genetic elements to regulate BC-related gene expression periodically and quantitatively to inhibit the initiation and progression of BC. In addition, the design and construction of gene circuits to distinguish cancer cells from normal cells to kill the former but spare the latter are elaborated. Then, we introduce the development of genetically modified T cells for targeted attacks on BC. Finally, synthetic nanomaterials specializing in detecting and killing BC cells are detailed. This review aims to describe the innovative details of the clinical diagnosis and treatment of BC from the perspective of synthetic biology.
Collapse
Affiliation(s)
- Mengting Ding
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Jiaxing Lin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Ping Wei
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiahe Tian
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 528403, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
11
|
Ji J, Li H, Chen J, Wang W. Lamin B2 contributes to the proliferation of bladder cancer cells via activating the expression of cell division cycle‑associated protein 3. Int J Mol Med 2022; 50:111. [PMID: 35775376 PMCID: PMC9282643 DOI: 10.3892/ijmm.2022.5168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/24/2022] [Indexed: 12/09/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, and in China it is first among urogenital system tumors. More therapeutic targets are still urgently required to combat this disease. Lamin B2 (LMNB2) is a type of nuclear lamina filament protein, which is involved in multiple cellular processes, and known as an oncogene affecting the progression of multiple types of cancers. Although the multiple effects of LMNB2 on cancer progression have been elucidated, its possible role in bladder cancer remains unclear. In the present study, it was determined that LMNB2 expression was upregulated in human bladder cancer tissues, and its expression was correlated with the prognosis and the clinical features, including tumor stage (P=0.001) and recurrence (P=0.006) of patients with bladder cancer. In addition, it was further revealed that LMNB2 depletion inhibited bladder cancer cell proliferation, stimulated cell cycle arrest and apoptosis in vitro, and suppressed tumor growth of bladder cancer cells in mice. Furthermore, the present data revealed that LMNB2 promoted the proliferation of bladder cancer cells via transcriptional activation of CDCA3 expression. Therefore, the role of LMNB2 in bladder cancer progression was demonstrated, and may serve as a promising therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Junpeng Ji
- Department of Urology Surgery, The Third Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
- Department of Urology Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Huibing Li
- Department of Urology Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jing Chen
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Wenjun Wang
- Department of Urology Surgery, The Third Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
12
|
Zeng S, Feng X, Xing S, Xu Z, Miao Z, Liu Q. Advanced Peptide Nanomedicines for Bladder Cancer Theranostics. Front Chem 2022; 10:946865. [PMID: 35991612 PMCID: PMC9389364 DOI: 10.3389/fchem.2022.946865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is still a global public health problem. Although remarkable success has been achieved in cancer diagnosis and treatment, the high recurrence and mortality rates remain severely threatening to human lives and health. In recent years, peptide nanomedicines with precise selectivity and high biocompatibility have attracted intense attention in biomedical applications. In particular, there has been a significant increase in the exploration of peptides and their derivatives for malignant tumor therapy and diagnosis. Herein, we review the applications of peptides and their derivatives in the diagnosis and treatment of bladder cancer, providing new insights for the design and development of novel peptide nanomedicines for the treatment of bladder cancer in the future.
Collapse
Affiliation(s)
- Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| | - Xiaodi Feng
- Department of Urology, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), ShanDong, China
| | - Shaoqiang Xing
- Department of Urology, Weihai Central Hospital, ShanDong, China
| | - Zhaoliang Xu
- Department of Urology, First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Zhizhao Miao
- School of Medicine, Nankai University, Tianjin, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Qian Liu,
| |
Collapse
|
13
|
Akakuru OU, Zhang Z, Iqbal MZ, Zhu C, Zhang Y, Wu A. Chemotherapeutic nanomaterials in tumor boundary delineation: Prospects for effective tumor treatment. Acta Pharm Sin B 2022; 12:2640-2657. [PMID: 35755279 PMCID: PMC9214073 DOI: 10.1016/j.apsb.2022.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/14/2022] Open
Abstract
Accurately delineating tumor boundaries is key to predicting survival rates of cancer patients and assessing response of tumor microenvironment to various therapeutic techniques such as chemotherapy and radiotherapy. This review discusses various strategies that have been deployed to accurately delineate tumor boundaries with particular emphasis on the potential of chemotherapeutic nanomaterials in tumor boundary delineation. It also compiles the types of tumors that have been successfully delineated by currently available strategies. Finally, the challenges that still abound in accurate tumor boundary delineation are presented alongside possible perspective strategies to either ameliorate or solve the problems. It is expected that the information communicated herein will form the first compendious baseline information on tumor boundary delineation with chemotherapeutic nanomaterials and provide useful insights into future possible paths to advancing current available tumor boundary delineation approaches to achieve efficacious tumor therapy.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Zhoujing Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - M. Zubair Iqbal
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengjie Zhu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Yewei Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Corresponding author.
| |
Collapse
|
14
|
Yang F, Li S, Jiao M, Wu D, Wang L, Cui Z, Zeng L. Advances of Light/Ultrasound/Magnetic-Responsive Nanoprobes for Visualized Theranostics of Urinary Tumors. ACS APPLIED BIO MATERIALS 2022; 5:438-450. [PMID: 35043619 DOI: 10.1021/acsabm.1c01284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Light/ultrasound/magnetic-responsive nanomaterials exhibit excellent performance in imaging and therapy and play an important role in precision theranostics of tumors. In contrast to deep organs, urinary organs (such as bladder and prostate) can easily be studied via intervention mode, which has greatly brought promising applications of stimuli-responsive nanoprobes in visualized theranostics of urinary tumors. Therefore, it has been very critical to develop stimuli-responsive nanoprobes with high safety, stability, and reliability against urinary tumors. In this review, recent advances in light/ultrasound/magnetic-responsive nanoprobes in visualized theranostics of urinary tumors are summarized, including magnetic resonance/fluorescence/ultrasound/photoacoustic imaging and multimodal imaging, photothermal/photodynamic/sonodynamic therapy and combination therapy, and single-modal/multimodal-imaging-guided visualized theranostics. Finally, the future perspectives of light/ultrasound/magnetic-responsive nanoprobes against urinary tumors are also prospected.
Collapse
Affiliation(s)
- Fan Yang
- Affiliated Hospital of Hebei University, Baoding 071000, P. R. China
| | - Shaowen Li
- Affiliated Hospital of Hebei University, Baoding 071000, P. R. China
| | - Meng Jiao
- Affiliated Hospital of Hebei University, Baoding 071000, P. R. China
| | - Di Wu
- Institute of Life Science and Green Development, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Luna Wang
- Institute of Life Science and Green Development, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Zhenyu Cui
- Affiliated Hospital of Hebei University, Baoding 071000, P. R. China
| | - Leyong Zeng
- Institute of Life Science and Green Development, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
15
|
Liu H, Zhang M, Jin H, Tao K, Tang C, Fan Y, Liu S, Liu Y, Hou Y, Zhang H. Fe(III)-Doped Polyaminopyrrole Nanoparticle for Imaging-Guided Photothermal Therapy of Bladder Cancer. ACS Biomater Sci Eng 2022; 8:502-511. [PMID: 35014785 DOI: 10.1021/acsbiomaterials.1c01217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinically, the surgical treatment of bladder cancer often faces the problem of tumor recurrence, and the surgical treatment combined with postoperative chemotherapy to inhibit tumor recurrence also faces high toxicity and side effects. Therefore, the need for innovative bladder cancer treatments is urgent. For the past few years, with the development of nano science and technology, imaging-guided therapy using nanomaterials with both imaging and therapy functions has shown great advantages and can not only identify the locations of the tumors but also exhibit biodistributions of nanomaterials in the tumors, significantly improving the accuracy and efficacy of treatment. In this work, we synthesized Fe(III)-doped polyaminopyrrole nanoparticles (FePPy-NH2 NPs). With low cytotoxicity and a blood circulation half-life of 7.59 h, high levels of FePPy-NH2 NPs accumulated in bladder tumors, with an accumulation rate of up to 5.07%ID/g. The coordination of Fe(III) and the amino group in the structure can be used for magnetic resonance imaging (MRI), whereas absorption in the near-infrared region can be applied to photoacoustic imaging (PAI) and photothermal therapy (PTT). MRI and PAI accurately identified the location of the tumor, and based on the imaging data, laser irradiation was employed accurately. With a high photothermal conversion efficiency of 44.3%, the bladder tumor was completely resected without recurrence. Hematological analysis and histopathological analysis jointly confirmed the high level of safety of the experiment.
Collapse
Affiliation(s)
- Heng Liu
- Department of Urinary, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Mengsi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Jin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kepeng Tao
- Department of Urinary, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Chao Tang
- Department of Urinary, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yanpeng Fan
- Department of Urinary, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Shuwei Liu
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuchuan Hou
- Department of Urinary, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Hao Zhang
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
16
|
Towner RA, Smith N, Saunders D, Hurst RE. MRI as a Tool to Assess Interstitial Cystitis Associated Bladder and Brain Pathologies. Diagnostics (Basel) 2021; 11:diagnostics11122298. [PMID: 34943535 PMCID: PMC8700450 DOI: 10.3390/diagnostics11122298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic, often incapacitating condition characterized by pain seeming to originate in the bladder in conjunction with lower urinary tract symptoms of frequency and urgency, and consists of a wide range of clinical phenotypes with diverse etiologies. There are currently no diagnostic tests for IC/BPS. Magnetic resonance imaging (MRI) is a relatively new tool to assess IC/BPS. There are several methodologies that can be applied to assess either bladder wall or brain-associated alterations in tissue morphology and/or pain. IC/BPS is commonly associated with bladder wall hyperpermeability (BWH), particularly in severe cases. Our group developed a contrast-enhanced magnetic resonance imaging (CE-MRI) approach to assess BWH in preclinical models for IC/BPS, as well as for a pilot study for IC/BPS patients. We have also used the CE-MRI approach to assess possible therapies to alleviate the BWH in preclinical models for IC/BPS, which will hopefully pave the way for future clinical trials. In addition, we have used molecular-targeted MRI (mt-MRI) to quantitatively assess BWH biomarkers. Biomarkers, such as claudin-2, may be important to assess and determine the severity of BWH, as well as to assess therapeutic efficacy. Others have also used other MRI approaches to assess the bladder wall structural alterations with diffusion-weighted imaging (DWI), by measuring changes in the apparent diffusion coefficient (ADC), diffusion tensor imaging (DTI), as well as using functional MRI (fMRI) to assess pain and morphological MRI or DWI to assess anatomical or structural changes in the brains of patients with IC/BPS. It would be beneficial if MRI-based diagnostic tests could be routinely used for these patients and possibly used to assess potential therapeutics.
Collapse
Affiliation(s)
- Rheal A. Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA; (N.S.); (D.S.)
- Correspondence: ; Tel.: +1-405-271-7383
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA; (N.S.); (D.S.)
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA; (N.S.); (D.S.)
| | - Robert E. Hurst
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA;
| |
Collapse
|
17
|
Xu Y, Luo C, Wang J, Chen L, Chen J, Chen T, Zeng Q. Application of nanotechnology in the diagnosis and treatment of bladder cancer. J Nanobiotechnology 2021; 19:393. [PMID: 34838048 PMCID: PMC8626998 DOI: 10.1186/s12951-021-01104-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer (BC) is a common malignancy in the genitourinary system and the current theranostic approaches are unsatisfactory. Sensitivity and specificity of current diagnosis methods are not ideal and high recurrence and progression rates after initial treatment indicate the urgent need for management improvements in clinic. Nanotechnology has been proposed as an effective method to improve theranosis efficiency for both non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). For example, gold nanoparticles (AuNPs) have been developed for simple, fast and sensitive urinary sample test for bladder cancer diagnosis. Nanoparticles targeting bladder cancers can facilitate to distinguish the normal and abnormal bladder tissues during cystoscopy and thus help with the complete removal of malignant lesions. Both intravenous and intravesical agents can be modified by nanotechnology for targeted delivery, high anti-tumor efficiency and excellent tolerability, exhibiting encouraging potential in bladder cancer treatment. Photosensitizers and biological agents can also be delivered by nanotechnology, intermediating phototherapy and targeted therapy. The management of bladder cancer remained almost unchanged for decades with unsatisfactory effect. However, it is likely to change with the fast-developed nanotechnology. Herein we summarized the current utility of nanotechnology in bladder cancer diagnosis and treatment, providing insights for the future designing and discovering novel nanoparticles for bladder cancer management. ![]()
Collapse
Affiliation(s)
- Yadong Xu
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cheng Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jieqiong Wang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou, China
| | - Lingwu Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junxing Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| | - Qinsong Zeng
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
18
|
Li D, Xiong Q, Liang L, Duan H. Multienzyme nanoassemblies: from rational design to biomedical applications. Biomater Sci 2021; 9:7323-7342. [PMID: 34647942 DOI: 10.1039/d1bm01106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multienzyme nanoassemblies (MENAs) that combine the functions of several enzymes into one entity have attracted widespread research interest due to their improved enzymatic performance and great potential for multiple applications. Considerable progress has been made to design and fabricate MENAs in recent years. This review begins with an introduction of the up-to-date strategies in designing MENAs, mainly including substrate channeling, compartmentalization and control of enzyme stoichiometry. The desirable properties that endow MENAs with important applications are also discussed in detail. Then, the recent advances in utilizing MENAs in the biomedical field are reviewed, with a particular focus on biosensing, tumor therapy, antioxidant and drug delivery. Finally, the challenges and perspectives for development of versatile MENAs are summarized.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
19
|
Cheong JK, Popov V, Alchera E, Locatelli I, Alfano M, Menichetti L, Armanetti P, Maturi M, Franchini MC, Ooi EH, Chiew YS. A numerical study to investigate the effects of tumour position on the treatment of bladder cancer in mice using gold nanorods assisted photothermal ablation. Comput Biol Med 2021; 138:104881. [PMID: 34583149 DOI: 10.1016/j.compbiomed.2021.104881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Gold nanorods assisted photothermal therapy (GNR-PTT) is a new cancer treatment technique that has shown promising potential for bladder cancer treatment. The position of the bladder cancer at different locations along the bladder wall lining can potentially affect the treatment efficacy since laser is irradiated externally from the skin surface. The present study investigates the efficacy of GNR-PTT in the treatment of bladder cancer in mice for tumours growing at three different locations on the bladder, i.e., Case 1: closest to skin surface, Case 2: at the bottom half of the bladder, and Case 3: at the side of the bladder. Investigations were carried out numerically using an experimentally validated framework for optical-thermal simulations. An in-silico approach was adopted due to the flexibility in placing the tumour at a desired location along the bladder lining. Results indicate that for the treatment parameters considered (laser power 0.3 W, GNR volume fraction 0.01% v/v), only Case 1 can be used for an effective GNR-PTT. No damage to the tumour was observed in Cases 2 and 3. Analysis of the thermo-physiological responses showed that the effectiveness of GNR-PTT in treating bladder cancer depends not only on the depth of the tumour from the skin surface, but also on the type of tissue that the laser must pass through before reaching the tumour. In addition, the results are reliant on GNRs with a diameter of 10 nm and an aspect ratio of 3.8 - tuned to exhibit peak absorption for the chosen laser wavelength. Results from the present study can be used to highlight the potential for using GNR-PTT for treatment of human bladder cancer. It appears that Cases 2 and 3 suggest that GNR-PTT, where the laser passes through the skin to reach the bladder, may be unfeasible in humans. While this study shows the feasibility of using GNRs for photothermal ablation of bladder cancer, it also identifies the current limitations needed to be overcome for an effective clinical application in the bladder cancer patients.
Collapse
Affiliation(s)
- Jason Kk Cheong
- Ascend Technologies Ltd, Southampton Science Park, 2 Venture Road, SO16 7NP, Southampton, United Kingdom; School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Viktor Popov
- Ascend Technologies Ltd, Southampton Science Park, 2 Venture Road, SO16 7NP, Southampton, United Kingdom.
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS, Ospedale San Raffaele, Milan, Italy
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS, Ospedale San Raffaele, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS, Ospedale San Raffaele, Milan, Italy.
| | - Luca Menichetti
- Istituto di Fisiologia Clinica, Sede Principale, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Paolo Armanetti
- Istituto di Fisiologia Clinica, Sede Principale, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Ean H Ooi
- Ascend Technologies Ltd, Southampton Science Park, 2 Venture Road, SO16 7NP, Southampton, United Kingdom; School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Yeong S Chiew
- School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
20
|
Jin Z, Dun Y, Xie L, Jiang W, Sun X, Hu P, Zheng S, Yu Y. Preparation of doxorubicin-loaded porous iron Oxide@ polydopamine nanocomposites for MR imaging and synergistic photothermal-chemotherapy of cancer. Colloids Surf B Biointerfaces 2021; 208:112107. [PMID: 34517220 DOI: 10.1016/j.colsurfb.2021.112107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/24/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022]
Abstract
Recently, the development of biosafe nanocomposites with integrated diagnosis and therapeutic modality is received great attention in anti-cancer drug delivery. In this sturdy, we developed a multifunctional PION@PDA-PEG nanocomposite that combines the functions of magnetic resonance (MR) imaging, photothermal therapy (PTT) and chemotherapy into one single nanoprobe. The spherical and uniform-sized porous iron oxide nanoparticles (PION) were synthesized via a simple solvothermal method. Subsequently, a near-infrared light (NIR) sensitive polydopamine (PDA) shell was directly coated on the surface of PIONs to form monodisperse and biosafe core-shell nanocomposites, Thereafter, the surface of nanocomposites was further modified with polyethylene glycol (PEG) to prolong their blood circulation lifetime. The prepared PION@PDA-PEG showed excellent biocompatibility and promising MR imaging contrast agent capability. Furthermore, the porous structure of PION and the abundant functional groups of PDA shell permitted the remarkable drug loading capacity of more than 24.1 wt%. In addition, the synergistic photothermal- chemotherapy exhibited obvious enhanced anti-tumor effect in in-vitro cell experiment. These results suggest that the developed PION@PDA-PEG nanocomposite can be utilized as an efficient drug nanocarrier for biomedical applications including MR imaging and photothermal-chemotherapy.
Collapse
Affiliation(s)
- Zhen Jin
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Yanbing Dun
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Linyan Xie
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Wenshuai Jiang
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xuming Sun
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Pengcheng Hu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yi Yu
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
21
|
Wang L, Liu S, Ren C, Xiang S, Li D, Hao X, Ni S, Chen Y, Zhang K, Sun H. Construction of hollow polydopamine nanoparticle based drug sustainable release system and its application in bone regeneration. Int J Oral Sci 2021; 13:27. [PMID: 34408132 PMCID: PMC8373924 DOI: 10.1038/s41368-021-00132-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022] Open
Abstract
Nanomaterial-based drug sustainable release systems have been tentatively applied to bone regeneration. They, however, still face disadvantages of high toxicity, low biocompatibility, and low drug-load capacity. In view of the low toxicity and high biocompatibility of polymer nanomaterials and the excellent load capacity of hollow nanomaterials with high specific surface area, we evaluated the hollow polydopamine nanoparticles (HPDA NPs), in order to find an optimal system to effectively deliver the osteogenic drugs to improve treatment of bone defect. Data demonstrated that the HPDA NPs synthesized herein could efficiently load four types of osteogenic drugs and the drugs can effectively release from the HPDA NPs for a relatively longer time in vitro and in vivo with low toxicity and high biocompatibility. Results of qRT-PCR, ALP, and alizarin red S staining showed that drugs released from the HPDA NPs could promote osteogenic differentiation and proliferation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. Image data from micro-CT and H&E staining showed that all four osteogenic drugs released from the HPDA NPs effectively promoted bone regeneration in the defect of tooth extraction fossa in vivo, especially tacrolimus. These results suggest that the HPDA NPs, the biodegradable hollow polymer nanoparticles with high drug load rate and sustainable release ability, have good prospect to treat the bone defect in future clinical practice.
Collapse
Affiliation(s)
- Lu Wang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuwei Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Chunxia Ren
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Siyuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinqing Hao
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Shilei Ni
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yixin Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
22
|
Thangudu S, Kaur N, Korupalli C, Sharma V, Kalluru P, Vankayala R. Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications. Biomater Sci 2021; 9:5472-5483. [PMID: 34269365 DOI: 10.1039/d1bm00631b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light-based theranostics have become indispensable tools in the field of cancer nanomedicine. Specifically, near infrared (NIR) light mediated imaging and therapy of deeply seated tumors using a single multi-functional nanoplatform have gained significant attention. To this end, several multi-functional nanomaterials have been utilized to tackle cancer and thereby achieve significant outcomes. The present review mainly focuses on the recent advances in the development of NIR light activatable multi-functional materials such as small molecules, quantum dots, and metallic nanostructures for the diagnosis and treatment of deeply seated tumors. The need for improved disease detection and enhanced treatment options, together with realistic considerations for clinically translatable nanomaterials will be the key driving factors for theranostic agent research in the near future. NIR-light mediated cancer imaging and therapeutic approaches offer several advantages in terms of minimal invasiveness, deeper tissue penetration, spatiotemporal resolution, and molecular specificities. Herein, we have reviewed the recent developments in NIR light responsive multi-functional nanostructures for phototheranostic applications in cancer therapy.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Navpreet Kaur
- Discipline of Biosciences & Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Chiranjeevi Korupalli
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Vinay Sharma
- Discipline of Materials Engineering, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Poliraju Kalluru
- Department of Chemistry, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342037, India.
| |
Collapse
|
23
|
Jain P, Kathuria H, Momin M. Clinical therapies and nano drug delivery systems for urinary bladder cancer. Pharmacol Ther 2021; 226:107871. [PMID: 33915179 DOI: 10.1016/j.pharmthera.2021.107871] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Bladder cancer is the 10th most commonly occurring malignancy worldwide with a 75% of 5-year survival rate, while it ranks 13th among the deaths occurring due to cancer. The majority of bladder cancer cases are diagnosed at an early stage and 70% are of non-invasive grade. However, 70% of these cases develop chemoresistance and progress to the muscle invasive stage. Conventional chemotherapy treatments are unsuccessful in curbing chemoresistance, bladder cancer progression while having an adverse side effect, which is mainly due to off-target drug distribution. Therefore, new drug delivery strategies, new therapeutics and therapies or their combination are being explored to develop better treatments. In this regard, nanotechnology has shown promise in the targeted delivery of therapeutics to bladder cancer cells. This review discusses the recent discovery of new therapeutics (chemotherapeutics, immunotherapeutic, and gene therapies), recent developments in the delivery of therapeutics using nano drug delivery systems, and the combination treatments with FDA-approved therapies, i.e., hyperthermia and photodynamic therapy. We also discussed the potential of other novel drug delivery systems that are minimally explored in bladder cancer. Lastly, we discussed the clinical status of therapeutics and therapies for bladder cancer. Overall, this review can provide a summary of available treatments for bladder cancer, and also provide opportunities for further development of drug delivery systems for better management of bladder cancer.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore 117543, Republic of Singapore; Nusmetic Pvt Ltd, Makerspace, i4 building, 3 Research Link Singapore, 117602, Republic of Singapore.
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.
| |
Collapse
|
24
|
Wang W, Tang Z, Zhang Y, Wang Q, Liang Z, Zeng X. Mussel-Inspired Polydopamine: The Bridge for Targeting Drug Delivery System and Synergistic Cancer Treatment. Macromol Biosci 2020; 20:e2000222. [PMID: 32761887 DOI: 10.1002/mabi.202000222] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Polydopamine (PDA), a mussel-inspired molecule, has been recognized as attractive in cancer therapy due to a number of inherent advantages, such as good biocompatibility, outstanding drug-loading capacity, degradability, superior photothermal conversion efficiency, and low tissue toxicity. Furthermore, due to its strong adhesive property, PDA is able to functionalize various nanomaterials, facilitating the construction of a PDA-based multifunctional platform for targeted or synergistic therapy. Herein, recent PDA research, including targeted drug delivery, single-mode therapy, and diverse synergistic therapies against cancer, are summarized and discussed. For synergistic therapy, advanced developments are highlighted, such as photothermal/radiotherapy, chemo-/photothermal/gene therapy, photothermal/immune therapy, and photothermal/photodynamic/immune therapy. Finally, the challenges and promise of PDA for biomedical applications in the future are discussed.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuo Tang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yi Zhang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Qiuxu Wang
- Stomatology Department of Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Zhigang Liang
- Stomatology Department of Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
25
|
Yang Y, Liu C, Yang X. Endoscopic Molecular Imaging plus Photoimmunotherapy: A New Strategy for Monitoring and Treatment of Bladder Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:409-418. [PMID: 32913890 PMCID: PMC7452043 DOI: 10.1016/j.omto.2020.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to the high recurrence and progression rate of non-muscle invasive bladder cancer after transurethral resection of bladder tumor, some new optical imaging technologies have arisen as auxiliary imaging modes for white light cystoscopy to improve the detection rate of small or occult tumor lesions, such as photodynamic diagnosis, narrow-band imaging, and molecular imaging. White light cystoscopy is inadequate and imperfect for bladder cancer detection, and thus residual tumors or coexisting flat malignant lesions, especially carcinoma in situ, would be ignored during conventional resection. The bladder, a hollow organ with high compliance, provides an ideal closed operation darkroom for endoscopic molecular imaging free from interference of external light sources. Also, intravesical instillation of a molecular fluorescent tracer is simple and convenient before surgery through the urethra. Molecular fluorescent tracer has high sensitivity and specificity to tumor cells, and its mediated molecular imaging allows small or occult tumor lesion detection while minimizing false-positive results. Meanwhile, endoscopic molecular imaging provides a real-time and dynamic image during surgery, which helps urologists to perform high-quality and complete tumor resection through accurate judgment of tumor boundaries and depth of invasion. Photoimmunotherapy is a novel molecular targeted therapeutic pattern of photodynamic therapy that kills malignant cells selectively and minimizes the cytotoxicity to normal tissues. The combination of endoscopic molecular imaging and photoimmunotherapy used in initial treatment may avoid the need of repeat transurethral resection in strictly selected patients and improve oncological outcomes such as recurrence-free survival and overall survival after operation.
Collapse
Affiliation(s)
- Yongjun Yang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chao Liu
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaofeng Yang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
26
|
Zhao P, Liu S, Wang L, Liu G, Cheng Y, Lin M, Sui K, Zhang H. Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance. Carbohydr Polym 2020; 241:116344. [PMID: 32507204 DOI: 10.1016/j.carbpol.2020.116344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t1/2) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology.
Collapse
Affiliation(s)
- Pin Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Shuwei Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Lu Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Guojian Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Yanru Cheng
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Min Lin
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China.
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China.
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
27
|
Putz AM, Ianăși C, Dudás Z, Coricovac D, Watz C(F, Len A, Almásy L, Sacarescu L, Dehelean C. SiO 2-PVA-Fe(acac) 3 Hybrid Based Superparamagnetic Nanocomposites for Nanomedicine: Morpho-textural Evaluation and In Vitro Cytotoxicity Assay. Molecules 2020; 25:molecules25030653. [PMID: 32033018 PMCID: PMC7038086 DOI: 10.3390/molecules25030653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/29/2022] Open
Abstract
A facile sol-gel route has been applied to synthesize hybrid silica-PVA-iron oxide nanocomposite materials. A step-by-step calcination (processing temperatures up to 400 °C) was applied in order to oxidize the organics together with the iron precursor. Transmission electron microscopy, X-ray diffraction, small angle neutron scattering, and nitrogen porosimetry were used to determine the temperature-induced morpho-textural modifications. In vitro cytotoxicity assay was conducted by monitoring the cell viability by the means of MTT assay to qualify the materials as MRI contrast agents or as drug carriers. Two cell lines were considered: the HaCaT (human keratinocyte cell line) and the A375 tumour cell line of human melanoma. Five concentrations of 10 µg/mL, 30 µg/mL, 50 µg/mL, 100 µg/mL, and 200 µg/mL were tested, while using DMSO (dimethylsulfoxid) and PBS (phosphate saline buffer) as solvents. The HaCaT and A375 cell lines were exposed to the prepared agent suspensions for 24 h. In the case of DMSO (dimethyl sulfoxide) suspensions, the effect on human keratinocytes migration and proliferation were also evaluated. The results indicate that only the concentrations of 100 μg/mL and 200 μg/mL of the nanocomposite in DMSO induced a slight decrease in the HaCaT cell viability. The PBS based in vitro assay showed that the nanocomposite did not present toxicity on the HaCaT cells, even at high doses (200 μg/mL agent).
Collapse
Affiliation(s)
- Ana-Maria Putz
- ”Coriolan Dragulescu” Institute of Chemistry, Romanian Academy, Mihai Viteazul Bd., No. 24, 300223 Timişoara, Romania; (A.-M.P.); (C.I.)
| | - Cătălin Ianăși
- ”Coriolan Dragulescu” Institute of Chemistry, Romanian Academy, Mihai Viteazul Bd., No. 24, 300223 Timişoara, Romania; (A.-M.P.); (C.I.)
| | - Zoltán Dudás
- Wigner Research Centre for Physics, POB 49 1525 Budapest, Hungary
- Correspondence:
| | - Dorina Coricovac
- Pharmacy II Department, Faculty of Pharmacy, “Victor Babes ¸” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.C.)
| | - Claudia (Farcas) Watz
- Pharmacy II Department, Faculty of Pharmacy, “Victor Babes ¸” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.C.)
| | - Adél Len
- Centre for Energy Research, Konkoly-Thege 29-33, 1121 Budapest, Hungary;
- University of Pécs, Faculty of Engineering and Information technology, Boszorkány St. 2, 7624 Pécs, Hungary
| | - László Almásy
- Wigner Research Centre for Physics, POB 49 1525 Budapest, Hungary
| | - Liviu Sacarescu
- Institute of Macromolecular Chemistry “Petru Poni”, Aleea Grigore Ghica Voda, nr. 41A 700487 Iasi, Romania;
| | - Cristina Dehelean
- Pharmacy II Department, Faculty of Pharmacy, “Victor Babes ¸” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.C.)
| |
Collapse
|
28
|
Liu S, Wang L, Zhao B, Wang Z, Wang Y, Sun B, Liu Y. Doxorubicin-loaded Cu 2S/Tween-20 nanocomposites for light-triggered tumor photothermal therapy and chemotherapy. RSC Adv 2020; 10:26059-26066. [PMID: 35519742 PMCID: PMC9055350 DOI: 10.1039/d0ra03069d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
In clinical tumor therapy, traditional treatments such as surgery, radiotherapy and chemotherapy all have their own limitations. With the development of nanotechnology, new therapeutic methods based on nanomaterials such as photothermal therapy (PTT) have also emerged. PTT takes advantage of the poor thermal tolerance of tumor cells and uses the heat generated by photothermal reagents to kill tumor cells. A transition metal sulfide represented as Cu2S is an ideal photothermal reagent because of its easy preparation, high extinction coefficient and photothermal conversion efficiency. Surface modification of nanoparticles (NPs) is also necessary, which not only can reduce toxicity and improve colloidal stability, but also can provide the possibility of further chemotherapeutic drug loading. In this work, we report the fabrication of Tween-20 (Tw20)-modified and doxorubicin (Dox)-loaded Cu2S NPs (Cu2S/Dox@Tw20 NPs), which significantly improves the performance in tumor therapy. Apart from the enhancement of colloidal stability and biocompatibility, the drug loading rate of Dox in Tw20 reaches 11.3%. Because of the loading of Dox, Cu2S/Dox@Tw20 NPs exhibit chemotherapeutic behaviors and the tumor inhibition rate is 76.2%. Further combined with a near-infrared laser, the high temperature directly leads to the apoptosis of a large number of tumor cells, while the release of chemotherapeutic drugs under heat can not only continue to kill residual tumor cells, but also inhibit tumor recurrence. Therefore, with the combination of PTT and chemotherapy, the tumor was completely eliminated. Both hematological analysis and histopathological analysis proved that our experiments are safe. In clinical tumor therapy, traditional treatments such as surgery, radiotherapy and chemotherapy all have their own limitations.![]()
Collapse
Affiliation(s)
- Shuwei Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Lu Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling
- Jilin University
- Changchun
- P. R. China
| | - Bin Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling
- Jilin University
- Changchun
- P. R. China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yinyu Wang
- School of Stomatology
- Baicheng Medical College
- Baicheng
- P. R. China
| | - Bin Sun
- Department of Oral and Maxillofacial Surgery
- School and Hospital of Stomatology
- Jilin University
- Changchun
- P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|