1
|
Dupouy B, Karpstein T, Häberli C, Cal M, Rottmann M, Mäser P, Keiser J, Elhabiri M, Davioud‐Charvet E. Synthesis of 1,2,3-Triazole-Methyl-Menadione Derivatives: Evaluation of Electrochemical and Antiparasitic Properties against two Blood-Dwelling Parasites. ChemMedChem 2025; 20:e202400731. [PMID: 39676716 PMCID: PMC11911304 DOI: 10.1002/cmdc.202400731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
This study explores the synthesis and evaluation of novel 1,2,3-triazole-methyl-1,4-naphthoquinone hybrids, focusing on their electrochemical properties and antiparasitic efficacies against two human blood-dwelling parasites Plasmodium falciparum and Schistosoma mansoni. Using copper-catalyzed azide-alkyne cycloaddition (CuAAC), a well-established tool in click chemistry, two synthetic routes were assessed to develop α- and β-[triazole-methyl]-menadione derivatives. By optimizing the CuAAC reaction conditions, yields were significantly improved, reaching up to 94 % for key intermediates and resulting in the formation of a library of approximately 30 compounds. Biological evaluation of the compounds in antiparasitic drug assays demonstrated notable antischistosomal potencies, while no significant activity was observed for the same series against P. falciparum parasites. Electrochemical and 'benzylic' oxidation studies confirmed that the active 'benzoyl' metabolite responsible for the antiplasmodial activity of plasmodione cannot be generated. These findings highlight the potential of triazole-linked menadione hybrids as promising early candidates for antischistosomal drug development, and provides insights into structure-activity relationships crucial for future therapeutic strategies.
Collapse
Affiliation(s)
- Baptiste Dupouy
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)Team Bio(IN)organic & Medicinal ChemistryUMR7042 CNRS-Université de Strasbourg-Université Haute-AlsaceEuropean School of Chemistry, Polymers and Materials (ECPM)25, rue BecquerelF-67087StrasbourgFrance
| | - Tanja Karpstein
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Cécile Häberli
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Monica Cal
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Matthias Rottmann
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)Team Bio(IN)organic & Medicinal ChemistryUMR7042 CNRS-Université de Strasbourg-Université Haute-AlsaceEuropean School of Chemistry, Polymers and Materials (ECPM)25, rue BecquerelF-67087StrasbourgFrance
| | - Elisabeth Davioud‐Charvet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)Team Bio(IN)organic & Medicinal ChemistryUMR7042 CNRS-Université de Strasbourg-Université Haute-AlsaceEuropean School of Chemistry, Polymers and Materials (ECPM)25, rue BecquerelF-67087StrasbourgFrance
| |
Collapse
|
2
|
Zhang Y, Feng T, Hu T, Wang Y, Le Y. A New Phenothiazine-Based Fluorescent Probe for Rapid and Specific Detection of Fluoride. J Fluoresc 2024:10.1007/s10895-024-03856-w. [PMID: 39037680 DOI: 10.1007/s10895-024-03856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Fluorescent probes with specific and rapid response to fluoride ions are important mediators for detecting fluoride ions in biological systems. In this study, a phenothiazine-based fluorescent probe, PTC, was designed and synthesized, which undergoes cleavage activation and cyclization induced by fluoride ions targeting Si-O bonds. The probe exhibits strong anti-interference properties and reaches peak fluorescence within 5 min, allowing for quantitative detection of fluoride ions content in the concentration range of 0 to 12.5μM, suitable for live cell fluorescence imaging. The research findings suggest its potential application value in biological systems.
Collapse
Affiliation(s)
- Ying Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Tingting Feng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Taozhu Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yi Le
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China.
- Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, 550025, China.
| |
Collapse
|
3
|
Mengji R, Paladugu D, Saha B, Jana A. Single-Photon Deep-Red Light-Triggered Direct Release of an Anticancer Drug: An Investigative Tumor Regression Study on a Breast Cancer Spheroidal Tumor Model. J Med Chem 2024; 67:11069-11085. [PMID: 38913981 DOI: 10.1021/acs.jmedchem.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Breast adenocarcinoma ranks high among the foremost lethal cancers affecting women globally, with its triple-negative subtype posing the greatest challenge due to its aggressiveness and resistance to treatment. To enhance survivorship and patients' quality of life, exploring advanced therapeutic approaches beyond conventional chemotherapies is imperative. To address this, innovative nanoscale drug delivery systems have been developed, offering precise, localized, and stimuli-triggered release of anticancer agents. Here, we present perylenemonoimide nanoparticle-based vehicles engineered for deep-red light activation, enabling direct chlorambucil release. Synthesized via the reprecipitation technique, these nanoparticles were thoroughly characterized. Light-induced drug release was monitored via spectroscopic and reverse-phase HPLC. The efficacy of the said drug delivery system was evaluated in both two-dimensional and three-dimensional spheroidal cancer models, demonstrating significant tumor regression attributed to apoptotic cell death induced by efficient drug release within cells and spheroids. This approach holds promise for advancing targeted breast cancer therapy, enhancing treatment efficacy and minimizing adverse effects.
Collapse
Affiliation(s)
- Rakesh Mengji
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Dileep Paladugu
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Biswajit Saha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Avijit Jana
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Green MJ, Ge H, Flower SE, Pourzand C, Botchway SW, Wang HC, Kuganathan N, Kociok-Köhn G, Li M, Xu S, James TD, Pascu SI. Fluorescent naphthalimide boronates as theranostics: structural investigations, confocal fluorescence and multiphoton fluorescence lifetime imaging microscopy in living cells. RSC Chem Biol 2023; 4:1082-1095. [PMID: 38033726 PMCID: PMC10685793 DOI: 10.1039/d3cb00112a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/17/2023] [Indexed: 12/02/2023] Open
Abstract
New design and synthetic strategies were developed to generate functional phenyl boronic acid (BA)-based fluorescent probes incorporating the 1,8-naphthalimide (NI) tag. This fluorescent core was anchored onto the BA unit through small organic linkers consisting of nitrogen groups which can arrest, and internally stabilise the phenyl-boronate units. The newly synthesised fluorophores were characterised spectroscopically by NMR spectroscopy and mass spectrometry and evaluated for their ability to bind to a naturally occurring polysaccharide, β-d-glucan in DMSO and simultaneously as act as in vitro cell imaging reagents. The uptake of these new NI-boronic acid derivatives was studied living cancer cells (HeLa, PC-3) in the presence, and absence, of β-d-glucan. Time-correlated single-photon counting (TCSPC) of DMSO solutions and two-photon fluorescence-lifetime imaging microscopy (FLIM) techniques allowed an insight into the probes' interaction with their environment. Their cellular uptake and distributions were imaged using laser scanning confocal fluorescence microscopy under single- and two-photon excitation regimes (λmax 910 nm). FLIM facilitated the estimation of the impact of the probe's cellular surroundings using the fluorophore lifetime. The extent to which this was mediated by the β-d-glucan was visualised by 2-photon FLIM in living cells. The fluorescence lifetime observed under a range of temperatures varied appreciably, indicating that changes in the environment can be sensed by these probes. In all cases, the cellular membrane penetration of these new probes was remarkable even under variable temperature conditions and localisation was widely concentrated in the cellular cytoplasm, without specific organelle trapping: we conclude that these new probes show promise for cellular imaging in living cancer cells.
Collapse
Affiliation(s)
- Megan J Green
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | - Haobo Ge
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | - Stephen E Flower
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath BA2 7AY UK
- Centre for Therapeutic Innovation, University of Bath BA2 7AY UK
| | - Stanley W Botchway
- STFC Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus Harwell Oxfordshire OX11 0QX UK
| | - Hui-Chen Wang
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | | | - Gabriele Kociok-Köhn
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
- Materials and Chemical Characterisation Facility (MC2), University of Bath Calverton Down Bath BA2 7AY UK
| | - Meng Li
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Suying Xu
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University Baoding 071003 P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | - Sofia I Pascu
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
- Centre for Therapeutic Innovation, University of Bath BA2 7AY UK
| |
Collapse
|
5
|
Krupka O, Hudhomme P. Recent Advances in Applications of Fluorescent Perylenediimide and Perylenemonoimide Dyes in Bioimaging, Photothermal and Photodynamic Therapy. Int J Mol Sci 2023; 24:ijms24076308. [PMID: 37047280 PMCID: PMC10094654 DOI: 10.3390/ijms24076308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The emblematic perylenediimide (PDI) motif which was initially used as a simple dye has undergone incredible development in recent decades. The increasing power of synthetic organic chemistry has allowed it to decorate PDIs to achieve highly functional dyes. As these PDI derivatives combine thermal, chemical and photostability, with an additional high absorption coefficient and near-unity fluorescence quantum yield, they have been widely studied for applications in materials science, particularly in photovoltaics. Although PDIs have always been in the spotlight, their asymmetric counterparts, perylenemonoimide (PMI) analogues, are now experiencing a resurgence of interest with new efforts to create architectures with equally exciting properties. Namely, their exceptional fluorescence properties have recently been used to develop novel systems for applications in bioimaging, biosensing and photodynamic therapy. This review covers the state of the art in the synthesis, photophysical characterizations and recently reported applications demonstrating the versatility of these two sister PDI and PMI compounds. The objective is to show that after well-known applications in materials science, the emerging trends in the use of PDI- and PMI-based derivatives concern very specific biomedicinal applications including drug delivery, diagnostics and theranostics.
Collapse
Affiliation(s)
- Oksana Krupka
- Univ. Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
- Correspondence: (O.K.); (P.H.); Tel.: +33-2-41-73-85-59 (O.K.); +33-2-41-73-50-94 (P.H.)
| | - Piétrick Hudhomme
- Univ. Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
- Correspondence: (O.K.); (P.H.); Tel.: +33-2-41-73-85-59 (O.K.); +33-2-41-73-50-94 (P.H.)
| |
Collapse
|
6
|
Khan Z, Sekar N. Deep Red to NIR Emitting Xanthene Hybrids: Xanthene‐Hemicyanine Hybrids and Xanthene‐Coumarin Hybrids. ChemistrySelect 2023. [DOI: 10.1002/slct.202203377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zeba Khan
- Department of Dyestuff Technology (Currently named as Department of Specialty Chemicals Technology) Institute of Chemical Technology, Matunga (E) Mumbai Maharashtra India, PIN 400019
| | - Nagaiyan Sekar
- Department of Dyestuff Technology (Currently named as Department of Specialty Chemicals Technology) Institute of Chemical Technology, Matunga (E) Mumbai Maharashtra India, PIN 400019
| |
Collapse
|
7
|
Mu M, Ke X, Cheng W, Li J, Ji C, Yin M. Perylenemonoimide-Based Colorimetric Probe with High Contrast for Naked-Eye Detection of Fluoride Ions. Anal Chem 2022; 94:11470-11475. [PMID: 35960192 DOI: 10.1021/acs.analchem.2c00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excessive fluoride ions (F-) in drinking water are harmful to the environment and human health. However, most reported probes of F- can only detect fluorocarbons rather than aqueous F-. Herein, a colorimetric and fluorescent probe (PMI-OH) based on perylenemonoimide is designed and synthesized for the detection of aqueous F-, with high sensitivity, good selectivity, and reversibility. The F- causes deprotonation of PMI-OH, leading to a significant red shift of 222 nm (from 520 to 742 nm) of the absorption band. Upon the addition of fluorocarbons, the fluorescence intensities of PMI-OH show good linearity against the concentrations of F-, realizing the quantitative detection of fluorocarbons with a limit of detection as low as 0.495 μM. Finally, PMI-OH is applied to detect F- in drinking water. The color of PMI-OH solution shows remarkable response from pink to green when the concentrations of F- exceed the upper limit set by the World Health Organization (WHO), realizing rapid and naked-eye detection of aqueous F-.
Collapse
Affiliation(s)
- Mengxin Mu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Ke
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenyu Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
8
|
Venkatesh Y, Vangala V, Mengji R, Chaudhuri A, Bhattacharya S, Datta PK, Banerjee R, Jana A, Singh NDP. One- and Two-Photon Uncaging of Carbon Monoxide (CO) with Real-Time Monitoring: On-Demand Carbazole-Based Dual CO-Releasing Platform to Test over Single and Combinatorial Approaches for the Efficient Regression of Orthotopic Murine Melanoma In Vivo. J Med Chem 2022; 65:1822-1834. [PMID: 35019659 DOI: 10.1021/acs.jmedchem.1c00750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, we report three new metal-free, photochemically active single, dual, and combinatorial CORMs (photoCORMs) based on a carbazole-fused 1,3-dioxol-2-one moiety which released one equivalent of CO, two equivalent of CO, and a combination of one equivalent of each CO and anticancer drug upon one- and two-photon excitation, respectively. The photoCORMs exhibited good cellular uptake and real-time monitoring ability of CO uncaging by a color change approach in cancerous B16F10 cells. Interestingly, the cytotoxicity assay on B16F10 cells indicated that the dual photoCORM has increased anticancer activity over the single and combinatorial photoCORMs upon irradiation. Our results also showed that CO could accelerate the effectiveness of the well-known anticancer drug (chlorambucil). Finally, the in vivo evaluation of the dual photoCORM on an established murine melanoma tumor (C57BL/6J mouse model) manifested a significant regression of tumor volume and led to significant improvement (>50%) in the overall survivability.
Collapse
Affiliation(s)
- Yarra Venkatesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Venugopal Vangala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Mengji
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrita Chaudhuri
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sayantan Bhattacharya
- Department of Physics, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Prasanta Kumar Datta
- Department of Physics, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Rajkumar Banerjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avijit Jana
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
9
|
Li J, Ma Y, Liu S, Mao Z, Chi Z, Qian PC, Wong WY. Soft salts based on platinum(II) complexes with high emission quantum efficiencies in the near infrared region for in vivo imaging. Chem Commun (Camb) 2020; 56:11681-11684. [PMID: 33000795 DOI: 10.1039/d0cc05366j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two soft salts (S1 and S2) based on platinum(ii) complexes with a near-infrared emission have been designed and synthesized. It has been demonstrated that S2 has a high photostability and a low cytotoxicity, and it has been successfully applied to in vivo imaging for the first time.
Collapse
Affiliation(s)
- Jun Li
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, P. R. China
| | - Yun Ma
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China. and The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P. R. China and Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Suyi Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Zhu Mao
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Peng-Cheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, Institute of New Materials & Industry, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wai-Yeung Wong
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, P. R. China and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China. and The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P. R. China
| |
Collapse
|