1
|
Yigit MB, Cebeci A. Highly Potent New Probiotic Strains from Traditional Turkish Fermented Foods. Curr Microbiol 2025; 82:97. [PMID: 39833458 DOI: 10.1007/s00284-024-04045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Traditional Turkish fermented foods like boza, pickles, and tarhana are recognized for their nutritional and health benefits, yet the probiotic potential of lactic acid bacteria (LAB) strains isolated from them remains underexplored. Sixty-six LAB strains were isolated from fermented foods using bacterial morphology, Gram staining, and catalase activity. The isolates were differentiated at strain level by RAPD-PCR (Random Amplification of Polymorphic DNA-Polymerase Chain Reaction) and twenty-five strains were selected for further evaluation of acid and bile salt tolerance. Among these, ten strains exhibited high tolerance and were subsequently assessed for adhesion to Caco-2 colorectal carcinoma cells, antimicrobial activity, exopolysaccharide (EPS) production, lysozyme resistance, and hemolytic activity. Using k-means clustering, three strains: Lactiplantibacillus plantarum ES-3, Pediococcus pentosaceus N-1, and Enterococcus faecium N-2 demonstrated superior probiotic characteristics, including significant acid (100% survival at pH3.0) and 0.3% bile salt tolerance (57%, 64%, 67%), strong adhesion to intestinal cells (65%, 88%, 91%), high lysozyme resistance (88%, 88%, 77%), and produced high amounts of EPS. These strains show promising potential as probiotics and warrant further investigation to confirm their functional properties and potential applications.
Collapse
Affiliation(s)
- Mehmet Burak Yigit
- Department of Molecular Biology and Genetics, Abdullah Gul University, Kayseri, Türkiye
| | - Aysun Cebeci
- Department of Nanotechnology Engineering, Abdullah Gul University, Kayseri, Türkiye.
| |
Collapse
|
2
|
Zeng C, Sun Y, Lin H, Li Z, Zhang Q, Cai T, Xiang W, Tang J, Yasurin P. D-Limonene Inhibits Pichia kluyveri Y-11519 in Sichuan Pickles by Disrupting Metabolism. Molecules 2024; 29:3561. [PMID: 39124965 PMCID: PMC11314558 DOI: 10.3390/molecules29153561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The Pichia kluyveri, a proliferation commonly found in Sichuan pickles (SCPs), can accelerate the growth and reproduction of spoilage bacteria, causing off-odor development and decay. Although D-limonene, a common natural preservative, effectively restricts P. kluyveri, its inhibitory mechanism remains unclear. This study aimed to elucidate this molecular mechanism by investigating the impact on basic P. kluyveri metabolism. The findings revealed that D-limonene inhibited P. kluyveri growth and disrupted the transcription of the genes responsible for encoding the enzymes involved in cell wall and membrane synthesis, oxidative phosphorylation, glycolysis, and the tricarboxylic acid (TCA) cycle pathway. The results indicated that these events disrupted crucial metabolism such as cell wall and membrane integrity, adenosine triphosphate (ATP) synthesis, and reactive oxygen species (ROS) balance. These insights provided a comprehensive understanding of the inhibitory effect of D-limonene on the growth and reproduction of P. kluyveri while highlighting its potential application in the SCP industry.
Collapse
Affiliation(s)
- Chaoyi Zeng
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Yue Sun
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Haoran Lin
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Ziyu Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Qing Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Ting Cai
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Wenliang Xiang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Patchanee Yasurin
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
| |
Collapse
|
3
|
Gizachew S, Van Beeck W, Spacova I, Dekeukeleire M, Alemu A, Mihret W, Lebeer S, Engidawork E. Characterization of potential probiotic starter cultures of lactic acid bacteria isolated from Ethiopian fermented cereal beverages, Naaqe, and Cheka. J Appl Microbiol 2023; 134:lxad237. [PMID: 37858306 DOI: 10.1093/jambio/lxad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
AIMS To test the in vitro probiotic potential and starter culture capacity of lactic acid bacteria (LAB) isolated from Naaqe and Cheka, cereal-based Ethiopian traditional fermented beverages. METHODS AND RESULTS A total of 44 strains were isolated from spontaneously fermented Ethiopian cereal-based beverages, Naaqe and Cheka with 24 putatively identified as LAB and 14 identified up to the species level. The species Limosilactobacillus fermentum (6/12; 50%) and Weissella confusa (5/12, 41.67%) were the predominant species identified from Naaqe, while the two Cheka isolates were L. fermentum and Pediococcus pentosaceus. Six LAB strains inhibited eight of the nine gastrointestinal indicator key pathogens in Ethiopia, including Escherichia coli, Salmonella enterica subsp. enterica var. Typhimurium, Staphylococcus aureus, Shigella flexneri, and Listeria monocytogenes. Three of the LAB isolates exhibited strain-specific immunostimulation in human monocytes. Based on these probiotic properties and growth, six strains were selected for in situ evaluation in a mock fermentation of Naaqe and Cheka. During primary fermentations, L. fermentum 73B, P. pentosaceus 74D, L. fermentum 44B, W. confusa 44D, L. fermentum 82C, and Weissella cibaria 83E and their combinations demonstrated higher pH-lowering properties and colony-forming unit counts compared to the control spontaneous fermentation. The same pattern was also observed in the secondary mock fermentation by the Naaqe LAB isolates. CONCLUSIONS In this study, we selected six LAB strains with antipathogenic, immunostimulatory, and starter culture potentials that can be used as autochthonous probiotic starters for Naaqe and Cheka fermentations once their health benefit is ascertained in a clinical trial as a next step.
Collapse
Affiliation(s)
- Seyoum Gizachew
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Wannes Van Beeck
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Irina Spacova
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Max Dekeukeleire
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ashenafi Alemu
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Wude Mihret
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Sarah Lebeer
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Cai Y, Yang X, Chen S, Tian K, Xu S, Deng R, Chen M, Yang Y, Liu T. Regular consumption of pickled vegetables and fermented bean curd reduces the risk of diabetes: a prospective cohort study. Front Public Health 2023; 11:1155989. [PMID: 37181698 PMCID: PMC10173413 DOI: 10.3389/fpubh.2023.1155989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/14/2023] [Indexed: 05/16/2023] Open
Abstract
Objective The global incidence of diabetes is rising, in part due to the widespread adoption of poor dietary habits. Fermented vegetables have numerous health benefits and are generally affordable. Here, we examined whether regular consumption of pickled vegetables or fermented bean curd reduces the risk of diabetes. Methods A total of 9,280 adults (≥18 years of age) were recruited via multi-stage sampling from 48 townships in China between 2010 and 2012 for this 10-year prospective study. In addition to demographic information, monthly consumption levels of pickled vegetables and fermented bean curd were recorded. Participants were then monitored for diabetes onset. After the final follow-up, logistic regression analyses with multiple covariant corrections were conducted to estimate the changes in diabetes risk associated with consumption of pickled vegetables and fermented bean curd compared to non-consumption. Results A total of 6,640 subjects without diabetes at the start of the study were followed up for a median period of 6.49 years, among whom 714 were diagnosed with diabetes during the study. According to a regression model with multivariable adjustment, diabetes risk was significantly reduced by consumption of 0-0.5 kg/month of pickled vegetables (OR = 0.77, 95% CI: 0.63, 0.94) and further reduced by consumption of >0.5 kg/month of pickled vegetables (OR = 0.37, 95% CI: 0.23, 0.60) compared to no consumption (both P-trend < 0.001). Consumption of fermented bean curd also reduced diabetes risk (OR = 0.68, 95% CI: 0.55, 0.84). Conclusion Regular consumption of pickled vegetables and/or fermented bean curd can reduce the long-term risk of diabetes.
Collapse
Affiliation(s)
- Yulan Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoxia Yang
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Siju Chen
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunming Tian
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Renli Deng
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Min Chen
- Department of Chronic Disease Prevention and Control, Guizhou Disease Prevention and Control, Guiyang, Guizhou, China
| | - Yan Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- *Correspondence: Yan Yang
| | - Tao Liu
- Department of Chronic Disease Prevention and Control, Guizhou Disease Prevention and Control, Guiyang, Guizhou, China
- Tao Liu
| |
Collapse
|
5
|
Souza LV, Martins E, Moreira IMFB, de Carvalho AF. Strategies for the Development of Bioprotective Cultures in Food Preservation. Int J Microbiol 2022; 2022:6264170. [PMID: 37645592 PMCID: PMC10462446 DOI: 10.1155/2022/6264170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 08/31/2023] Open
Abstract
Consumers worldwide are increasingly demanding food with fewer ingredients, preferably without chemical additives. The trend called "Clean Label" has stimulated the development and commercialization of new types of bioprotective bacterial cultures. These bacteria are not considered new, and several cultures have been available on the market. Additionally, new bioprotective bacteria are being identified to service the clean label trend, extend the shelf life, and, mainly, improve the food safety of food. In this context, the lactic acid bacteria (LAB) have been extensively prospected as a bioprotective culture, as they have a long history in food production and their antimicrobial activity against spoilage and pathogenic microorganisms is well established. However, to make LAB cultures available in the market is not that easy, the strains should be characterized phenotypically and genotypically, and studies of safety and technological application are necessary to validate their bioprotection performance. Thus, this review presents information on the bioprotection mechanisms developed by LAB in foods and describes the main strategies used to identify and characterize bioprotective LAB with potential application in the food industry.
Collapse
Affiliation(s)
- Luana Virgínia Souza
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Evandro Martins
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Isabella Maria Fernandes Botelho Moreira
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Antônio Fernandes de Carvalho
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
6
|
Yang Y, Fan Y, Li T, Yang Y, Zeng F, Wang H, Suo H, Song J, Zhang Y. Microbial composition and correlation between microbiota and quality-related physiochemical characteristics in chongqing radish paocai. Food Chem 2022; 369:130897. [PMID: 34455330 DOI: 10.1016/j.foodchem.2021.130897] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023]
Abstract
Chongqing radish paocai (paocai) is produced by fermentation of fresh vegetables. It gained attention for its non-negligible contribution in Sichuan cuisine and potential health benefits. This study explored microbial structures in six home-made paocai using high through-put sequencing. Key microbial communities were identified based on significant correlations with quality-related physiochemical attributes. Results suggest bacterial diversity level significantly decreased during fermentation, while fungal diversity level were inconsistent across different alpha-diversity indexes. Firmicutes and Proteobacteria were the predominant bacterial phylum in all samples. Lactic acid bacteria, namely Lactobacillus and L. plantarum were the predominant bacteria at genus and species levels. Fungi had overall weak correlations with physiochemical attributes, several bacterial species significantly correlated with physiochemical attributes, including Lactobacillus plantarum, Lactobacillus acetotolerans, and Weissella cibaria. Overall, this study identified key microbial communities and discussed their functional roles that could contribute to consistent production of high-quality Chongqing radish paocai.
Collapse
Affiliation(s)
- Yanli Yang
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China; National Teaching Demonstration Center of Food Science and Engineering of Southwest University, Southwest University, Beibei 400700, Chongqing, China
| | - Ying Fan
- General Mills. Inc. Minneapolis, MN 55426, USA
| | - Ting Li
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China
| | - Yang Yang
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China
| | - Fankun Zeng
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China
| | - Hongwei Wang
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China
| | - Huayi Suo
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China
| | - Jiajia Song
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China
| | - Yu Zhang
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China; National Teaching Demonstration Center of Food Science and Engineering of Southwest University, Southwest University, Beibei 400700, Chongqing, China.
| |
Collapse
|
7
|
ZHAO X, HU R, HE Y, LI S, YANG J, ZHANG J, ZHOU J, XUE T. Screening of isolated potential probiotic lactic acid bacteria from Sichuan pickle for cholesterol lowering property and triglycerides lowering activity. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.09122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xingxiu ZHAO
- Sichuan University of Science and Engineering School, China
| | - Rong HU
- Sichuan University of Science and Engineering School, China
| | - Yiguo HE
- Sichuan University of Science and Engineering School, China
| | - Shilu LI
- Sichuan University of Science and Engineering School, China
| | - Jiao YANG
- Sichuan University of Science and Engineering School, China
| | - Jing ZHANG
- Sichuan University of Science and Engineering School, China
| | - Jing ZHOU
- Sichuan University of Science and Engineering School, China
| | - Taiyin XUE
- Sichuan University of Science and Engineering School, China
| |
Collapse
|
8
|
Li Y, Su J, Luo D, Duan Y, Huang Z, He M, Tao J, Xiao S, Xiao Y, Chen X, Shen M. Processed Food and Atopic Dermatitis: A Pooled Analysis of Three Cross-Sectional Studies in Chinese Adults. Front Nutr 2021; 8:754663. [PMID: 34938758 PMCID: PMC8685501 DOI: 10.3389/fnut.2021.754663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/17/2021] [Indexed: 01/06/2023] Open
Abstract
Objective: The effect of processed foods on atopic dermatitis (AD) in adults is unclear. This study was to evaluate the association between processed foods and AD in the Chinese adult population. Design: This study included three population-based cross-sectional studies using cluster sampling by villages, institutions, or factories. Participants underwent dermatological examinations by certificated dermatologists and a food frequency questionnaire survey. A spot urine sample was collected to estimate the daily sodium intake. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were presented as the effect size. Setting: Shiyan city of Hubei province, and Huayuan, Shimen, Hengyang, Zhuzhou, and Changsha of Hunan province. Participants: Automobile manufacture workers from Shiyan of Hubei province, and rural residents and civil servants from Hunan. Results: A total of 15,062 participants, including 3,781 rural residents, 5,111 civil servants, and 6,170 workers, completed all evaluations. Compared to those hardly consumed pickles, consumption of pickles 1–3 times per week was significantly associated with AD (aOR: 1.35; 95% CI: 1.06–1.70). The intake of processed meats 1–3 times per month (aOR: 1.29; 95% CI: 1.05–1.58) and 1–3 times per week (aOR: 1.44; 95% CI: 1.11–1.87) were associated with AD dose-dependently when compared with those who rarely ate processed meats. Compared with non-consumers, the consumption of any processed foods 1–3 times per week (aOR: 1.39; 95% CI: 1.08–1.80) and ≥4 times per week (aOR: 1.41; 95% CI: 1.05–1.89) showed increased risks of AD. A positive association of estimated sodium intake with AD was also observed. Conclusion: Intake of processed foods is associated with AD in Chinese adults.
Collapse
Affiliation(s)
- Yajia Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Luo
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhijun Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Tao
- Department of Dermatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiyuan Xiao
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yi Xiao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Minxue Shen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
9
|
Zhang Y, Liang S, Zhao MD, Yang X, Choi SH, Li GY. Screening and Identification of Latilactobacillus curvatus Z12 From Rumen Fluid of an Adult Female Sika Deer as a Potential Probiotic for Feed Additives. Front Vet Sci 2021; 8:753527. [PMID: 34746287 PMCID: PMC8566888 DOI: 10.3389/fvets.2021.753527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Lactic acid bacteria (LAB) are the main microorganisms used as probiotics against gastrointestinal inflammation. The objective of this study was to evaluate the potential probiotic characteristics (antimicrobial activity, artificial gastrointestinal model resistance, cell surface hydrophobicity, and autoaggregation ability) and safety characteristics (hemolytic activity, antimicrobial resistance, and in vivo safety) of LAB isolated from the rumen fluid of an adult female sika deer. Two isolated strains identified as Latilactobacillus curvatus Z12 and Z19 showed good antimicrobial activity against enteropathogenic Escherichia coli (ATCC25922), Salmonella typhi (ATCC14028), and Staphylococcus aureus (ATCC25923). In addition, L. curvatus Z12 exhibited higher artificial gastrointestinal model resistance, cell surface hydrophobicity and autoaggregation ability than L. curvatus Z19. Therefore, regarding safety characteristics, only L. curvatus Z12 was evaluated. Upon assessment of safety, L. curvatus Z12 was negative for hemolytic activity and susceptible to penicillin G and cefamandole. Furthermore, an in vivo safety assessment showed that high-dose L. curvatus Z12 (109 CFU/mL) supplementation not only had no adverse effects on body weight gain, feed intake, and organ coefficients of treated mice but also played a key role in promoting the immune system maturation of treated mice. This research revealed that L. curvatus Z12 possesses desirable probiotic characteristics and could be used as a potential probiotic feed additive to improve sika deer health.
Collapse
Affiliation(s)
- Yan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Shuang Liang
- Department of Animal Science, College of Animal Sciences, Jilin University, Changchun, China
| | - Meng Di Zhao
- Department of Special Economic Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xue Yang
- Department of Special Economic Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Seong Ho Choi
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Guang Yu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Zhang Z, Jin M, Wang K, Zhang N, Zhang Q, Tao X, Wei H. Short-term intake of Lactiplantibacillus plantarum ZDY2013 fermented milk promotes homoeostasis of gut microbiota under enterotoxigenic Bacillus cereus challenge. Food Funct 2021; 12:5118-5129. [PMID: 33973610 DOI: 10.1039/d1fo00162k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Probiotics have long been used as functional starter cultures for fermented foods and are associated with numerous health benefits. Lactiplantibacillus (L.) plantarum ZDY2013 is an acid-tolerant probiotic candidate owning antagonistic properties against the food-borne pathogen Bacillus (B.) cereus and serves as a potent regulator of the gut microbiota. However, whether it retains these properties when used as dietary supplements in functional foods remains unknown. Accordingly, we investigated the ameliorating effects of L. plantarum fermented milk on disease phenotypes triggered by enterotoxigenic B. cereus in mice. The results revealed that administration of 3.0 × 108 cfu pathogenic B. cereus for one week induced damage to intestinal structures and bowel function, accompanied by an imbalance of gut microbiota. However, before or after B. cereus infection, oral administration of L. plantarum fermented milk mitigated losses of body weight and damage in the histological structure of the gastrointestinal tract, restored serum levels of IL-1β and IL-10, and contributed to significant decreases in platelet counts and uric acid levels. Most importantly, it restored the dissimilarity of gut microbiota and the abundance of bacterial taxa (i.e., reduced the abundance of Deferribacteres and Bacilli and increased the abundance of Lactobacillus and Bifidobacterium) without impacting the taxonomic composition. Combining these results, we speculate that enterotoxigenic B. cereus damages the intestinal epithelium and weakens its adherence capacity for the microbe, which is rescued by the supplementation of L. plantarum fermented milk. Overall, our findings revealed that L. plantarum ZDY2013 has the potential to be a fermented starter in functional foods and retains its antagonism against B. cereus pathogenesis.
Collapse
Affiliation(s)
- Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 30047, China.
| | - Mingliang Jin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kaiming Wang
- Department of Physiology, CEGIIR, University of Alberta, Edmonton T6G 2E1, Canada
| | - Na Zhang
- Sino-German Joint Research Institute, Nanchang University, Nanchang 30047, China
| | - Qimeng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 30047, China.
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 30047, China.
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 30047, China. and Sino-German Joint Research Institute, Nanchang University, Nanchang 30047, China
| |
Collapse
|
11
|
Ayyash MM, Abdalla AK, AlKalbani NS, Baig MA, Turner MS, Liu SQ, Shah NP. Invited review: Characterization of new probiotics from dairy and nondairy products-Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J Dairy Sci 2021; 104:8363-8379. [PMID: 33934857 DOI: 10.3168/jds.2021-20398] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The selection of potential probiotic strains that possess the physiological capacity of performing successfully in the gastrointestinal tract (GIT) is a critical challenge. Probiotic microorganisms must tolerate the deleterious effects of various stresses to survive passage and function in the human GIT. Adhesion to the intestinal mucosa is also an important aspect. Recently, numerous studies have been performed concerning the selection and evaluation of novel probiotic microorganisms, mainly probiotic bacteria isolated from dairy and nondairy products. Therefore, it would be crucial to critically review the assessment methods employed to select the potential probiotics. This article aims to review and discuss the recent approaches, methods used for the selection, and outcomes of the evaluation of novel probiotic strains with the main purpose of supporting future probiotic microbial assessment studies. The findings and approaches used for assessing acid tolerance, bile metabolism and tolerance, and adhesion capability are the focus of this review. In addition, probiotic bile deconjugation and bile salt hydrolysis are explored. The selection of a new probiotic strain has mainly been based on the in vitro tolerance of physiologically related stresses including low pH and bile, to ensure that the potential probiotic microorganism can survive the harsh conditions of the GIT. However, the varied experimental conditions used in these studies (different types of media, bile, pH, and incubation time) hamper the comparison of the results of these investigations. Therefore, standardization of experimental conditions for characterizing and selecting probiotics is warranted.
Collapse
Affiliation(s)
- Mutamed M Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates.
| | - Abdelmoneim K Abdalla
- Food Science Department, College of Agriculture, South Valley University, 83523 Qena, Egypt
| | - Nadia S AlKalbani
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohd Affan Baig
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2 117542, Singapore
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|
12
|
Wang Y, You Y, Tian Y, Sun H, Li X, Wang X, Wang Y, Liu J. Pediococcus pentosaceus PP04 Ameliorates High-Fat Diet-Induced Hyperlipidemia by Regulating Lipid Metabolism in C57BL/6N Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15154-15163. [PMID: 33300795 DOI: 10.1021/acs.jafc.0c05060] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, Pediococcus pentococcus PP04 isolated from the Northeast pickled cabbage had good gastrointestinal tolerance and can colonize in the intestine stably. C57BL/6N mice were fed a high-fat diet to build animal models and treated with Pediococcus pentosaceus PP04 to evaluate the antihyperlipidemia effect. After 8 weeks, the indicators of hyperlipidemia, liver injury, and inflammation were measured. The treatment of P. pentosaceus PP04 reduced the gain of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), free fatty acids (FFAs), leptin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), lipopolysaccharides (LPS), and tumor necrosis factor-α (TNF-α) significantly. The western blotting results suggested P. pentosaceus PP04 ameliorated high-fat diet-induced hyperlipidemia by the AMPK signaling pathway, which stimulated lipolysis via upregulation of PPARα and inhibited lipogenesis by downregulation of SREBP-1c, fatty acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD1) mainly. Furthermore, P. pentosaceus PP04 improved high-fat diet-induced oxidative stress effectively by triggering the Nrf2/CYP2E1 signaling pathway that enhanced the antioxidant activity including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px).
Collapse
Affiliation(s)
- Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Ying You
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Yuan Tian
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Haiyue Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Xiujuan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
13
|
Evaluation of the Antibacterial Activity and Probiotic Potential of Lactobacillus plantarum Isolated from Chinese Homemade Pickles. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2020. [DOI: 10.1155/2020/8818989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study investigated the antipathogenic activity and probiotic potential of indigenous lactic acid bacteria (LAB) isolated from Chinese homemade pickles. In total, 27 samples were collected from different sites in China. Fifty-nine yielded pure colonies were identified by 16S rRNA gene sequencing as LAB and were initially evaluated for the antibacterial activity in vitro. Initial screening yielded Lactobacillus plantarum GS083, GS086, and GS090, which showed a broad-spectrum antibacterial activity against food-borne pathogens, especially multidrug-resistant pathogens. Meanwhile, organic acids were mainly responsible for the antimicrobial activity of the LAB strains, and the most abundant of these was lactic acid (19.32 ± 0.95 to 24.79 ± 0.40 g/l). Additionally, three L. plantarum strains demonstrated several basic probiotic characteristics including cell surface hydrophobicity, autoaggregation, and survival under gastrointestinal (GI) tract conditions. The safety of these isolates was also evaluated based on their antibiotic susceptibility, hemolytic risk, bile salt hydrolase activity, and existence of virulence or antibiotic resistance genes. All strains were safe at both the genomic and phenotypic levels. Therefore, L. plantarum GS083, GS086, and GS090 are fairly promising probiotic candidates and may be favorable for use as preservatives in the food industry.
Collapse
|
14
|
Wang W, Ma H, Yu H, Qin G, Tan Z, Wang Y, Pang H. Screening of Lactobacillus plantarum Subsp. plantarum with Potential Probiotic Activities for Inhibiting ETEC K88 in Weaned Piglets. Molecules 2020; 25:molecules25194481. [PMID: 33003556 PMCID: PMC7582832 DOI: 10.3390/molecules25194481] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
For screening excellent lactic acid bacteria (LAB) strains to inhibit enterotoxigenic Escherichia coli (ETEC) K88, inhibitory activities of more than 1100 LAB strains isolated from different materials, and kept in the lab, were evaluated in this study. Nine strains with inhibition zones, at least 22.00 mm (including that of a hole puncher, 10.00 mm), and good physiological and biochemical characteristics identified by 16S DNA gene sequencing and recA gene multiple detection, were assigned to Lactobacillus (L.) plantarum subsp. plantarum (5), L. fermentum (1), L. reuteri (1), Weissella cibaria (1) and Enterococcus faecalis (1), respectively. As investigated for their tolerance abilities and safety, only strain ZA3 possessed high hydrophobicity and auto-aggregation abilities, had high survival rate in low pH, bile salt environment, and gastrointestinal (GI) fluids, was sensitive to ampicillin, and resistant to norfloxacin and amikacin, without hemolytic activity, and did not carry antibiotic resistance genes, but exhibited broad spectrum activity against a wide range of microorganisms. Antibacterial substance may attribute to organic acids, especially lactic acid and acetic acid. The results indicated that the selected strain L. plantarum subsp. plantarum ZA3 could be considered a potential probiotic to inhibit ETEC K88 in weaned piglets for further research.
Collapse
Affiliation(s)
- Weiwei Wang
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Hao Ma
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Haojie Yu
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
| | - Guangyong Qin
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
| | - Zhongfang Tan
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
| | - Yanping Wang
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
| | - Huili Pang
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
- Correspondence: ; Tel.: +86-150-3715-1053
| |
Collapse
|