1
|
Liu S, Li N, Jin JJ, Yu YW. Double-edged sword of L-arginine in diabetes: Exploring anti-inflammatory and antioxidant strategies. World J Diabetes 2025; 16:104007. [PMID: 40236855 PMCID: PMC11947932 DOI: 10.4239/wjd.v16.i4.104007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
The article by Mansouri et al provides a comprehensive investigation into the effects of L-arginine (L-Arg) on diabetic cardiomyopathy. The authors conclude that while a low dose (0.5 g/kg) of L-Arg improves lipid profiles and reduces body weight, higher doses (≥ 1 g/kg) exacerbate oxidative stress, inflammation, and myocardial damage. In this letter, we aim to expand on the potential role of anti-inflammatory and antioxidant strategies in mitigating these adverse effects. Specifically, we focus on nuclear factor erythroid 2-related factor 2 activation and nitric oxide synthase modulation. These strategies could enhance the clinical utility of L-Arg by preserving its metabolic benefits while reducing its cardiotoxic risks. We believe this perspective will stimulate future research on L-Arg-based therapies in patients with diabetes, with an emphasis on optimizing dosage and exploring synergistic co-therapies.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Cardiology, The First People’s Hospital of Jiashan, Jiaxing 314100, Zhejiang Province, China
| | - Ning Li
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jia-Jia Jin
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yong-Wei Yu
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
2
|
Chen YH, Li YC, Chang SC, Lin MJ, Lin LJ, Lee TT. Effects of dietary Bacillus velezensis fermented soybean hull supplementation on antioxidant capacity, suppressing pro-inflammatory, and modulating microbiota composition in broilers. Poult Sci 2025; 104:104827. [PMID: 40043671 PMCID: PMC11927686 DOI: 10.1016/j.psj.2025.104827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 03/24/2025] Open
Abstract
This study aimed to ferment soybean hulls (SBH) with Bacillus velezensis and evaluate their effects on broiler diets, specifically focusing on intestinal antioxidant capacity, immune modulation, and microbiota composition. The animal trial involved 400 one-day-old Arbor Acres broilers, randomly assigned to a control group (basic diet, Control) and groups receiving 5 % and 10 % unfermented soybean hulls (5 % USBH, 10 % USBH) and 5 % and 10 % fermented soybean hulls (5 % FSBHB, 10 % FSBHB) as replacements for the basic diet. Each group contained 80 birds, divided into four pens with 20 birds per pen, and the trial lasted for 35 days. In the jejunum, the 5 % FSBHB group tended to suppress pro-inflammatory gene expression, while the 10 % FSBHB group tended to enhance antioxidant gene expression. In terms of jejunum protein levels, the 10 % FSBHB group exhibited significantly lower (P < 0.05) TNF-α protein levels compared to the control and other treatment groups. Furthermore, intestinal microbiota analysis showed that ileum and cecum microbial counts in the 10 % USBH and 10 % FSBHB groups were higher than those in the control group. Species richness indices also revealed that both the 10 % USBH and 10 % FSBHB groups were significantly higher (P < 0.05) than the control group. In conclusion, soybean hulls fermented with Bacillus velezensis improved intestinal antioxidant capacity, suppressed pro-inflammatory gene expression, and modulated microbiota composition in broilers, with the 10 % FSBHB group demonstrating the most pronounced effects.
Collapse
Affiliation(s)
- Yung Hao Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi Chen Li
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; Professional Master Program of Agricultural Business Management, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shen Chang Chang
- Southern Region Branch, Taiwan Livestock Research Institute, Ministry of Agriculture, Executive Yuan, Pingtung 91201, Taiwan
| | - Min Jung Lin
- Bachelor of Program in Scientific Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Li Jen Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; Professional Master Program of Agricultural Business Management, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan; Smart Sustainable New Agriculture Research Center (SMARTer), Taichung 40227, Taiwan.
| |
Collapse
|
3
|
Cui W, Xie Y, Zhang Y, Su X, Cui T, Chen X, Wang Z, Xu F, Zhou H, Xu B. Antioxidant potential of peptides from poultry hemoglobin via probiotic-assisted hydrolysis: Deciphering mechanisms at the cellular level and through molecular dynamics simulations. Food Res Int 2025; 204:115953. [PMID: 39986793 DOI: 10.1016/j.foodres.2025.115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Achieving the therapeutic goal of treating diseases by effectively controlling the excessive accumulation of intracellular free radicals is still very challenging, which motivates researchers to develop efficient novel antioxidant peptides from sustainable resources continuously. This study first pioneered a probiotic-assisted enzymatic hydrolysis of hemoglobin, which obtained 149 peptides. Two antioxidant peptides were rapidly screened using advanced molecular dynamics simulation techniques, revealing their molecular interaction mechanisms with Keap1. It was found that GLWGKV occupied six binding sites for Keap1 to form hydrogen bonds with Nrf2, whereas LIVYPW occupied two binding sites, and the binding free energy of GLWGKV to Keap1 was lower binding more stable. Cellular experiments confirmed that GLWGKV up-regulated the expression of related proteins and increased antioxidant enzyme activities, thereby attenuating H2O2-induced oxidative damage in Caco-2 cells. This research increases the economic added value of animal blood and demonstrates its great potential for development in functional foods.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Xie
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yinghui Zhang
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xinlian Su
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Tianqi Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingguang Chen
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Baocai Xu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
4
|
Obeme-Nmom JI, Abioye RO, Reyes Flores SS, Udenigwe CC. Regulation of redox enzymes by nutraceuticals: a review of the roles of antioxidant polyphenols and peptides. Food Funct 2024; 15:10956-10980. [PMID: 39465304 DOI: 10.1039/d4fo03549f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Redox enzymes are essential components of the cellular defence system against oxidative stress, which is a common factor in various diseases. Therefore, understanding the role of bioactive nutraceuticals in modulating the activity of these enzymes holds immense therapeutic potential. This paper provides a comprehensive review of the regulation of redox enzymes in cell and animal models by food-derived bioactive nutraceuticals, focusing on polyphenols and peptides. Specifically, this paper discusses the regulation of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), NAPDH oxidase, xanthine oxidase (XO), myeloperoxidase (MPO), and haem oxygenase (HO) in cell and animal models. Polyphenols, which are abundant in fruits, vegetables, and beverages, have diverse antioxidant properties, including direct scavenging of reactive oxygen species and regulation of transcription factors such as nuclear factor erythroid 2-related factor 2, which leads to the increased expression of the redoxenzymes SOD, HO, and GPx. Similarly, bioactive peptides from various food proteins can enhance antioxidative enzyme activity by regulating gene expression and directly activating the enzyme CAT. In other cases, an antioxidative response requires the downregulation or inhibition of the redox enzymes XO, MPO, and NAPDH oxidase. This paper highlights the potential of bioactive nutraceuticals in mitigating oxidative stress-related diseases and their mechanisms in modulating the redox enzyme expression or activity. Furthermore, the review highlights the need for further research to uncover new therapeutic strategies using nutraceuticals for enhancing cellular antioxidant defence mechanisms and improving health outcomes.
Collapse
Affiliation(s)
- Joy I Obeme-Nmom
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Raliat O Abioye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Samanta S Reyes Flores
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemical, Food and Environmental Engineering, University of the Americas Puebla, San Andrés Cholula 72810, Puebla, Mexico
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- University Research Chair in Food Properties and Nutrient Bioavailability, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
5
|
Hua Y, Wang H, Chen T, Zhou Y, Chen Z, Zhao X, Mo S, Mao H, Li M, Wang L, Hong M. Antioxidant 1,2,3,4,6-Penta- O-galloyl-β-D-glucose Alleviating Apoptosis and Promoting Bone Formation Is Associated with Estrogen Receptors. Molecules 2024; 29:5110. [PMID: 39519751 PMCID: PMC11547736 DOI: 10.3390/molecules29215110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG) is the main phenolic active ingredient in Paeoniae Radix Alba, which is commonly used for the treatment of osteoporosis (OP). PGG is a potent natural antioxidant, and its effects on OP remain unknown. This study aimed to investigate the effects of PGG on promoting bone formation and explore its estrogen receptor (ER)-related mechanisms. A hydrogen peroxide-induced osteoblast apoptosis model was established in MC3T3-E1 cells. The effects of PGG were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, alkaline phosphatase (ALP) staining, RT-qPCR, and Western blot methods. Furthermore, a prednisolone-induced zebrafish OP model was employed to study the effects in vivo. ER inhibitors and molecular docking methods were used further to investigate the interactions between PGG and ERs. The results showed that PGG significantly enhanced cell viability and decreased cell apoptosis by restoring mitochondrial function, attenuating reactive oxygen species levels, decreasing the mitochondrial membrane potential, and enhancing ATP production. PGG enhanced ALP expression and activity and elevated osteogenic differentiation. PGG also promoted bone formation in the zebrafish model, and these effects were reversed by ICI182780. These results provide evidence that the effects of PGG in alleviating apoptosis and promoting bone formation may depend on ERs. As such, PGG is considered a valuable candidate for treating OP.
Collapse
Affiliation(s)
- Yongqing Hua
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haili Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yeru Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiyuan Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinyue Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shaoqin Mo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongyun Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Miao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Linxia Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Hong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Dai J, Liu Z, Ma L, Yang C, Bai L, Han D, Song Q, Yan H, Wang Z. Identification of procyanidins as α-glucosidase inhibitors, pancreatic lipase inhibitors, and antioxidants from the bark of Cinnamomum cassia by multi-bioactivity-labeled molecular networking. Food Res Int 2024; 192:114833. [PMID: 39147522 DOI: 10.1016/j.foodres.2024.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
This study examined the suppressive effects of 16 selected plant-based foods on α-glucosidase and pancreatic lipase and their antioxidant properties. Among these, the bark of Cinnamomum cassia (Cinnamon, WLN-FM 15) showed the highest inhibitory activity against α-glucosidase and the highest antioxidant activity. Additionally, WLN-FM 15 showed promising results in the other tests. To further identify the bioactive constituents of WLN-FM 15, a multi-bioactivity-labeled molecular networking approach was used through a combination of GNPS-based molecular networking, DPPH-HPLC, and affinity-based ultrafiltration-HPLC. A total of nine procyanidins were identified as antioxidants and inhibitors of α-glucosidase and pancreatic lipase in WLN-FM 15. Subsequently, procyanidins A1, A2, B1, and C1 were isolated, and their efficacy was confirmed through functional assays. In summary, WLN-FM 15 has the potential to serve as a functional food ingredient with the procyanidins as its bioactive constituents. These results also suggest that the multi-bioactivity-labeled molecular networking approach is reliable for identifying bioactive constituents in plant-based foods.
Collapse
Affiliation(s)
- Jun Dai
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zihan Liu
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Lei Ma
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chunliu Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ligai Bai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Qi Song
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Zhiqiang Wang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Lin H, Zhao J, Xie Y, Tang J, Wang Q, Zhao J, Xu M, Liu P. Identification and molecular mechanisms of novel antioxidant peptides from fermented broad bean paste: A combined in silico and in vitro study. Food Chem 2024; 450:139297. [PMID: 38631199 DOI: 10.1016/j.foodchem.2024.139297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/07/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
This study aimed to investigate the antioxidative and cytoprotective activity of antioxidant peptides from fermented broad bean paste (FBBP) and explore their potential molecular mechanisms using a combined in silico and in vitro approach. Seven novel antioxidant peptides (VSRRFIYYL, SPAIPLP, PVPPPGG, KKDGYWWAKFK, LAWY, LGFMQF, and LPGCP) identified by integrated approaches of peptidomics and in silico bioinformatic analysis were synthesized, exhibiting strong antioxidant potential against in vitro radicals. Molecular docking results suggested that these peptides could form stable hydrogen bonds and solvent-accessible surface with key amino acid residues of Keap1, thus potentially regulating the Keap1-Nrf2 pathway by occupying the Nrf2-binding site on Keap1. Additionally, they exhibited strong cellular antioxidant activity and could protect HepG2 cells from AAPH-induced oxidative injury by reducing reactive oxygen species and MDA accumulation. This study firstly unraveled the molecular mechanisms of antioxidant peptides from FBBP, and provided a new theoretical basis for the high-value utilization of FBBP.
Collapse
Affiliation(s)
- Hongbin Lin
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China.
| | - Jianhua Zhao
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Yuqing Xie
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Jie Tang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Jie Zhao
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Min Xu
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Ping Liu
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| |
Collapse
|
8
|
Tian L, Wu Y, Hou Y, Dong Y, Ni K, Guo M. Environmentally Friendly UV Absorbers: Synthetic Characterization and Biosecurity Studies of the Host-Guest Supramolecular Complex. Int J Mol Sci 2024; 25:8476. [PMID: 39126045 PMCID: PMC11312980 DOI: 10.3390/ijms25158476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Isoamyl 4-methoxycinnamate (IMC) is widely used in various fields because of its exceptional UV-filter properties. However, due to its cytotoxicity and anti-microbial degradability, the potential eco-environmental toxicity of IMC has become a focus of attention. In this study, we propose a host-guest supramolecule approach to enhance the functionality of IMC, resulting in a more environmentally friendly and high-performance materials. Sulfobutyl-β-cyclodextrin sodium salt (SBE-β-CD) was used as the host molecule. IMC-SBE-β-CD supramolecular substances were prepared through the "saturated solution method", and their properties and biosecurity were evaluated. Meanwhile, we conducted the AOS tree evaluation system that surpasses existing evaluation approaches based on apoptosis, oxidative stress system, and signaling pathways to investigate the toxicological mechanisms of IMC-SBE-β-CD within human hepatoma SMMC-7721 cells as model organisms. The AOS tree evaluation system aims to offer the comprehensive analysis of the cytotoxic effects of IMC-SBE-β-CD. Our findings showed that IMC-SBE-β-CD had an encapsulation rate of 84.45% and optimal stability at 30 °C. Further, IMC-SBE-β-CD promoted cell growth and reproduction without compromising the integrity of mitochondria and nucleus or disrupting oxidative stress and apoptosis-related pathways. Compared to IMC, IMC-SBE-β-CD is biologically safe and has improved water solubility with the UV absorption property maintained. Our study provides the foundation for the encapsulation of hydrophobic, low-toxicity organic compounds using cyclodextrins and offers valuable insights for future research in this field.
Collapse
Affiliation(s)
| | | | | | | | - Kaijie Ni
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (L.T.); (Y.W.); (Y.H.); (Y.D.)
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (L.T.); (Y.W.); (Y.H.); (Y.D.)
| |
Collapse
|
9
|
Chu Z, Zhu L, Zhou Y, Yang F, Hu Z, Luo Y, Li W, Luo F. Targeting Nrf2 by bioactive peptides alleviate inflammation: expanding the role of gut microbiota and metabolites. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38881345 DOI: 10.1080/10408398.2024.2367570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Inflammation is a complex process that usually refers to the general response of the body to the harmful stimuli of various pathogens, tissue damage, or exogenous pollutants. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates cellular defense against oxidative damage and toxicity by expressing genes related to oxidative stress response and drug detoxification. In addition to its antioxidant properties, Nrf2 is involved in many other important physiological processes, including inflammation and metabolism. Nrf2 can bind the promoters of antioxidant genes and upregulates their expressions, which alleviate oxidation-induced inflammation. Nrf2 has been shown to upregulate heme oxygenase-1 expression, which promotes NF-κB activation and is closely related with inflammation. Nrf2, as a key factor in antioxidant response, is closely related to the expressions of pro-inflammatory factors, NF-κB pathway and cell metabolism. Bioactive peptides come from a wide range of sources and have many biological functions. Increasing evidence indicates that bioactive peptides have potential anti-inflammatory activities. This article summarized the sources, absorption and utilization of bioactive peptides and their role in alleviating inflammation via Nrf2 pathway. Bioactive peptides can also regulate gut microbiota and alter metabolites, which regulates the Nrf2 pathway through novel pathway and supplement the anti-inflammatory mechanisms of bioactive peptides. This review provides a reference for further study on the anti-inflammatory effect of bioactive peptides and the development and utilization of functional foods.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lingfeng Zhu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feiyan Yang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wen Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
10
|
Song D, Zhang S, Chen A, Song Z, Shi S. Comparison of the effects of chlorogenic acid isomers and their compounds on alleviating oxidative stress injury in broilers. Poult Sci 2024; 103:103649. [PMID: 38552567 PMCID: PMC10995873 DOI: 10.1016/j.psj.2024.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024] Open
Abstract
The development of large-scale and intensive breeding models has led to increasingly prominent oxidative stress issues in animal husbandry production. Chlorogenic acid (CGA) is an important extract with a variety of biological activities. It is an effective antioxidant drug and shows different antioxidant capacities due to its different chemical structures. Therefore, it is a new research target to determine the proportion of chlorogenic acid isomers with high antioxidant activity to resist the damage caused by oxidative stress. In this experiment, the antioxidant activities of the chlorogenic acid monomer and its compounds were compared by a series of in vitro antioxidant indexes. Based on the above experiments, it was found that LB and LC have superior antioxidant abilities (P < 0.05). Subsequently, 300 healthy 1-day-old Arbor Acres (AA) male broilers with no significant difference in body weight (about 44 g) were randomly selected and randomly divided into 5 groups with 6 replicates in each group and 10 chickens in each replicate. One group was the control group, 1 group was the model group, and the remaining 3 groups were the experimental groups. At 37 d of age, animals in the control group were injected with normal saline, and animals in the other 4 groups were injected with 1 mL/kg 5% hydrogen peroxide (H2O2) through the chest muscle before the supplementation. The control group (control) and the model group (PC) were fed a standard diet. The remaining 3 groups included the CGA group, LB group (CIB), and LC group (CIC). In these groups, 50 g/t chlorogenic acid, LB compound, or LC compound were added to the basal diet, respectively, and the other feeding conditions remained consistent. The addition of the LB complex to the diet could significantly improve the growth performance and antioxidant performance of broilers (P < 0.05), upregulate the expression of Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway-related genes in liver and jejunum (P < 0.05), regulate the disordered intestinal flora, and alleviate the damage caused by oxidative stress. These results suggested for the first time that the LB complex exhibited superior effects in vitro and vivo.
Collapse
Affiliation(s)
- Danping Song
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China; College of Animal Science, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shan Zhang
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China
| | - Ao Chen
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China
| | - Zhigang Song
- College of Animal Science, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.
| |
Collapse
|
11
|
Igbokwe CJ, Feng Y, Louis H, Benjamin I, Quaisie J, Duan Y, Tuly JA, Cai M, Zhang H. Novel antioxidant peptides identified from coix seed by molecular docking, quantum chemical calculations and invitro study in HepG2 cells. Food Chem 2024; 440:138234. [PMID: 38145582 DOI: 10.1016/j.foodchem.2023.138234] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The aim of the study was to identify potent antioxidant peptides sourced from coix seed, analyze the structure-activity relationship through molecular docking and quantum chemical calculation. Molecular docking results showed that among thirteen peptides selected in silico, eight had favourable binding interaction with the Keap1-Kelch domain (2FLU). Promising peptides with significant binding scores were further evaluated using quantum calculation. It was shown that peptide FFDR exhibited exceptional stability, with a high energy gap of 5.24 eV and low Highest Occupied Molecular Orbitals (HOMO) and Lowest Unoccupied Molecular Orbitals (LUMO) values. Furthermore, FFDR displayed the capacity to enhance the expression of Nrf2-Keap1 antioxidant genes (CAT, SOD, GSH-Px) and improved cellular redox balance by increasing reduced glutathione (GSH) while reducing oxidized glutathione (GSSG) and malonaldehyde (MDA) levels. These findings highlight the potential of coix seed peptides in developing novel, effective and stable antioxidant-based functional foods.
Collapse
Affiliation(s)
- Chidimma Juliet Igbokwe
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Department of Food Science and Technology, University of Nigeria Nsukka, Nigeria
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Janet Quaisie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Chemistry and Nutrition Research Division, Food Research Institute, Accra, Ghana
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Jamila A Tuly
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haihua Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
12
|
Jin H, Zhao H, Shi R, Fan F, Cheng W. Unlocking the Therapeutic Potential of a Manila Clam-Derived Antioxidant Peptide: Insights into Mechanisms of Action and Cytoprotective Effects against Oxidative Stress. Foods 2024; 13:1160. [PMID: 38672836 PMCID: PMC11049014 DOI: 10.3390/foods13081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Reactive oxygen species (ROS) are implicated in various pathological conditions due to their ability to induce oxidative damage to cellular components. In this study, we investigated the antioxidant properties of a peptide isolated from the hydrolysate of Manila clam (Ruditapes philippinarum) muscle. Purification steps yielded RPTE2-2-4, exhibiting potent scavenging activities against DPPH•, HO•, and O2•-, akin to Vitamin C. Structural analysis showed that the isolated peptide, LFKKNLLTL, exhibited characteristics associated with antioxidant activity, including a short peptide length and the presence of aromatic and hydrophobic amino acid residues. Moreover, our study demonstrated the cytoprotective effects of the peptide against H2O2-induced oxidative stress in HepG2 cells. Pretreatment with the peptide resulted in a dose-dependent reduction in intracellular ROS levels and elevation of glutathione (GSH) levels, indicating its ability to modulate cellular defense mechanisms against oxidative damage. Furthermore, the peptide stimulated the expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), further reinforcing its antioxidant properties. Overall, our findings highlight the potential of the Manila clam-derived peptide as a natural antioxidant agent with therapeutic implications for oxidative stress-related diseases. Further investigation into its mechanisms of action and in vivo efficacy is warranted to validate its therapeutic potential.
Collapse
Affiliation(s)
- Hong Jin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (H.Z.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huishuang Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (H.Z.)
| | - Rui Shi
- ChiBi Public Inspection and Testing Center, Xianning 437300, China;
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (H.Z.)
| |
Collapse
|
13
|
Zhang X, Geng A, Cao D, Dugarjaviin M. Identification of mulberry leaf flavonoids and evaluating their protective effects on H 2O 2-induced oxidative damage in equine skeletal muscle satellite cells. Front Mol Biosci 2024; 11:1353387. [PMID: 38650596 PMCID: PMC11033687 DOI: 10.3389/fmolb.2024.1353387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction: Horses are susceptible to oxidative stress during strenuous endurance exercise, leading to muscle fatigue and damage. Mulberry leaf flavonoids (MLFs) possess significant antioxidant properties. However, the antioxidant efficacy of MLFs can be influenced by the extraction process, and their impact on H2O2-induced oxidative stress in equine skeletal muscle satellite cells (ESMCs) remains unexplored. Methods: Our study employed three extraction methods to obtain MLFs: ultrasound-assisted extraction (CEP), purification with AB-8 macroporous resin (RP), and n-butanol extraction (NB-EP). We assessed the protective effects of these MLFs on H2O2-induced oxidative stress in ESMCs and analyzed the MLF components using metabolomics. Results: The results revealed that pre-treatment with MLFs dose-dependently protected ESMCs against H2O2-induced oxidative stress. The most effective concentrations were 0.8 mg/mL of CEP, 0.6 mg/mL of RP, and 0.6 mg/mL of NB-EP, significantly enhancing EMSC viability (p < 0.05). These optimized MLF concentrations promoted the GSH-Px, SOD and T-AOC activities (p < 0.05), while reducing MDA production (p < 0.05) in H2O2-induced ESMCs. Furthermore, these MLFs enhanced the gene expression, including Nrf2 and its downstream regulatory genes (TrxR1, GPX1, GPX3, SOD1, and SOD2) (p < 0.05). In terms of mitochondrial function, ESMCs pre-treated with MLFs exhibited higher basal respiration, spare respiratory capacity, maximal respiration, ATP-linked respiration compared to H2O2-induced ESMCs (p < 0.05). Additionally, MLFs enhanced cellular basal glycolysis, glycolytic reserve, and maximal glycolytic capacity (p < 0.05). Metabolomics analysis results revealed significant differences in mulberrin, kaempferol 3-O-glucoside [X-Mal], neohesperidin, dihydrokaempferol, and isobavachalcone among the three extraction processes (p < 0.05). Discussion: Our study revealed that MLFs enhance antioxidant enzyme activity, alleviate oxidative damage in ESMCs through the activation of the Nrf2 pathway, and improve mitochondrial respiration and cell energy metabolism. Additionally, we identified five potential antioxidant flavonoid compounds, suggesting their potential incorporation into the equine diet as a strategy to alleviate exercise-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Manglai Dugarjaviin
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
14
|
Heidari-Kalvani N, Alizadeh-Fanalou S, Yarahmadi S, Fallah S, Alipourfard I, Farahmandian N, Barjesteh F, Bahreini E. Investigation of the effects of catharanthine and Q10 on Nrf2 and its association with MMP-9, MRP1, and Bcl-2 and apoptosis in a model of hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2507-2522. [PMID: 37855932 DOI: 10.1007/s00210-023-02767-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Since the role of Nrf2 in cancer cell survival has been highlighted, the pharmacological modulation of the Nrf2-Keap1 pathway may provide new opportunities for cancer treatment. This study purposed to use ubiquinone (Q10) as an antioxidant and catharanthine alkaloid as a cAMP inducer suppressing HepG2 cells by reducing Nrf2 level. The effects of Q10 and catharanthine on HepG2 cells in terms of viability were analyzed by MTT test. MTT results were used to determine the effective concentration of both drugs for the subsequent treatment and analysis. Subsequently, the effects of Q10 and catharanthine in a single and combined manner on oxidant/antioxidant status, apoptosis, metastasis, and drug resistance of HepG2 cells were investigated by related methods. Both Q10 and catharanthine decreased the level of oxidative stress products and increased antioxidant capacity in HepG2 cells. Nrf2 gene expression decreased by Q10, but catharanthine unexpectedly increased it. Following Nrf2 alterations, the expression levels of MMP-9 and MRP1 involved in metastasis and drug resistance were significantly and dose-dependently decreased by Q10, while catharanthine slightly increased both. However, both drugs increased caspase 3/7 activity and apoptosis rate, and the effect of Q10 on apoptosis was stronger than that of catharanthine. Most of the effects of the combination treatments were similar to those of the Q10 single treatment and indicated the dominant effect over the catharanthine component. Despite the antioxidant and apoptotic properties of both agents, Q10 was better than catharanthine in inducing apoptosis, counteracting drug resistance, and metastasis in HepG2 cells.
Collapse
Affiliation(s)
- Nafiseh Heidari-Kalvani
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sudabeh Fallah
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Navid Farahmandian
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Barjesteh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Jiang K, Liu B, Sun C, Zhou Q, Zheng X, Liu M, Xu G, Jin W, Tian H, Hu H. Promotion of improved intestinal barrier health by soybean-derived bioactive peptides in Chinese mitten crab ( Eriocheir sinensis) fed a low fishmeal diet. Br J Nutr 2024; 131:974-986. [PMID: 37886873 DOI: 10.1017/s0007114523002507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
To alleviate the growth inhibition, and intestinal damage of Chinese mitten crab (Eriocheir sinensis) induced by low fishmeal diets (LF), an 8-week feeding trial was conducted to evaluate the addition of dietary soybean-derived bioactive peptides (SBP) in LF diets on the regulation of growth, digestion and intestinal health. The crabs were fed isonitrogenous and isoenergetic conventional diet and LF diets (10 % fishmeal replaced by soybean meal, LF) supplemented with 0, 1 %, 2 %, 4 % and 6 % SBP, respectively. The results showed that LF diet inhibited growth while inclusion of SBP quadratically remitted the growth inhibition induced by LF. For digestive function, increasing addition level of SBP quadratically improved the α-amylase and trypsin activities. For antioxidant function, LF group significantly increased the malondialdehyde content, while SBP linearly decreased the malondialdehyde level and cubically increased the anti-superoxide anion activity and total antioxidant capacity level. For intestinal health, the peritrophic membrane (PM) almost completely separated from the inner wall of the intestinal lumen, the epithelial cells reduced, the muscularis became thinner and the apoptotic signals increased in LF group; with SBP addition, the intestinal morphology was improved, with the PM adhering to the inner wall of the intestinal lumen, an increase in the number of epithelial cells and an increase in the thickness of the muscularis. Additionally, there was a decrease in apoptotic signals. Dietary SBP also increased the expression of PT and Crustin1 quadratically and decreased the expression of ALF1 linearly, ALF3 and ILF2 quadratically.
Collapse
Affiliation(s)
- Kemeng Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Xiaochuan Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 211700, People's Republic of China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Wu Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Hongyan Tian
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224000, People's Republic of China
| | - He Hu
- Jiangsu FIELD Technology Co., Ltd, Huaian, 214081, People's Republic of China
| |
Collapse
|
16
|
Tang Y, Liang F, Yan Y, Zeng Y, Li Y, Zhou R. Purification and Identification of Peptides from Hydrilla verticillata (Linn. f.) Royle with Cytoprotective and Antioxidative Effect against H 2O 2-Treated HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4170-4183. [PMID: 38358942 DOI: 10.1021/acs.jafc.3c09917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Antioxidant peptides were purified from Hydrilla verticillata (Linn. f.) Royle (HVR) protein hydrolysate by ultrafiltration, gel filtration chromatography, and semipreparative reversed-phase HPLC and identified by UPLC-ESI-MS/MS. Therein, TCLGPK and TCLGER were selected to be synthesized, and they displayed desirable radical-scavenging activity to ABTS (99.20 ± 0.56-99.20 ± 0.43%), DPPH (97.32 ± 0.59-97.56 ± 0.97%), hydroxyl radical (54.32 ± 1.27-70.42 ± 2.01%), and superoxide anion (42.93 ± 1.46-52.62 ± 1.11%) at a concentration of 0.96 μmol/mL. They possessed a cytoprotective effect against H2O2-induced oxidative stress in HepG2 cells in a dose-dependent manner. 1.6 μmol/mL of the two peptides could perfectly protect HepG2 cells from H2O2-induced injury. The TCLGPK exhibited higher antioxidant activity and cytoprotective effect than TCLGER. Western blot and molecular docking results indicated that the two peptides achieved antioxidant ability and cytoprotective effect by combining with Kelch-like ECH-associated protein 1 (Keap1) to activate the Keap1-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response elements signaling pathway, leading to the activity and expression of the related antioxidases in the pathway significantly up-regulating and the intracellular reactive oxygen species level, lipid peroxidation, and cell apoptosis rate significantly down-regulating.
Collapse
Affiliation(s)
- Yufang Tang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Fan Liang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yue Yan
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yanlin Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yuqin Li
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Rong Zhou
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
17
|
Wang L, Li W, Zhang X, Zhang Y, Chen G, Zhou X, Xv D, Wu Q. Resveratrol prevents age-related heart impairment through inhibiting the Notch/NF-κB pathway. Food Sci Nutr 2024; 12:1035-1045. [PMID: 38370061 PMCID: PMC10867470 DOI: 10.1002/fsn3.3817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/20/2024] Open
Abstract
Resveratrol (RSV) is a natural polyphenol compound found in various plants that has been shown to have potential benefits for preventing aging and supporting cardiovascular health. However, the specific signal pathway by which RSV protects the aging heart is not yet well understood. This study aimed to explore the protective effects of RSV against age-related heart injury and investigate the underlying mechanisms using a D-galactose-induced aging model. The results of the study indicated that RSV provided protection against age-related heart impairment in mice. This was evidenced by the reduction of cardiac histopathological changes as well as the attenuation of apoptosis. RSV-induced cardioprotection was linked to a significant increase in antioxidant activity and mitochondrial transmembrane potential, as well as a reduction in oxidative damage. Additionally, RSV inhibited the production of pro-inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Furthermore, the expression of toll-like receptor 4 (TLR4), nuclear factor kappa-B p65 (NF-κB p65), and notch 1 protein were inhibited by RSV, indicating that inhibiting the Notch/NF-κB pathway played a critical role in RSV-triggered heart protection in aging mice. Moreover, further data on intestinal function demonstrated that RSV significantly increased short-chain fatty acids (SCFAs) in intestinal contents and reduced the pH value in the feces of aging mice. RSV alleviated aging-induced cardiac dysfunction through the suppression of oxidative stress and inflammation via the Notch/NF-κB pathway in heart tissue. Furthermore, this therapeutic effect was found to be associated with its protective roles in the intestine.
Collapse
Affiliation(s)
- Le‐Feng Wang
- Jiangxi Province Key Laboratory of Laboratory MedicineDepartment of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of OphthalmologyWest China HospitalSichuan UniversityChengduChina
| | - Wen‐Juan Li
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
| | - Xian‐Yi Zhang
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
| | - Yi‐Chi Zhang
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
| | - Guang‐Feng Chen
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
| | - Xing‐Yu Zhou
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
| | - Dong‐Mei Xv
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
| | - Qiong Wu
- Jiangxi Province Key Laboratory of Laboratory MedicineDepartment of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
18
|
Zhang J, Li W, Li H, Liu W, Li L, Liu X. Selenium-Enriched Soybean Peptides as Novel Organic Selenium Compound Supplements: Inhibition of Occupational Air Pollution Exposure-Induced Apoptosis in Lung Epithelial Cells. Nutrients 2023; 16:71. [PMID: 38201901 PMCID: PMC10780830 DOI: 10.3390/nu16010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The occupational groups exposed to air pollutants, particularly PM2.5, are closely linked to the initiation and advancement of respiratory disorders. The aim of this study is to investigate the potential protective properties of selenium-enriched soybean peptides (Se-SPeps), a novel Se supplement, in mitigating apoptosis triggered by PM2.5 in A549 lung epithelial cells. The results indicate a concentration-dependent reduction in the viability of A549 cells caused by PM2.5, while Se-SPeps at concentrations of 62.5-500 µg/mL showed no significant effect. Additionally, the Se-SPeps reduced the production of ROS, proinflammatory cytokines, and apoptosis in response to PM2.5 exposure. The Se-SPeps suppressed the PM2.5-induced upregulation of Bax/Bcl-2 and caspase-3, while also restoring reductions in p-Akt in A549 cells. The antiapoptotic effects of Se-SPeps have been found to be more effective compared to SPeps, SeMet, and Na2SeO3 when evaluated at an equivalent protein or Se concentration. Our study results furnish evidence that supports the role of Se-SPeps in reducing the harmful effects of PM2.5, particularly in relation to its effect on apoptosis, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wenhui Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
| | - Lu Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
19
|
Ates I, Yılmaz AD, Buttari B, Arese M, Saso L, Suzen S. A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases. Brain Sci 2023; 13:1532. [PMID: 38002492 PMCID: PMC10669303 DOI: 10.3390/brainsci13111532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey
| | - Ayşe Didem Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzae Aldo Moro 5, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| |
Collapse
|
20
|
Pang H, Yue Y, Dong H, Jiang T, Zhang H, Zhao Y, Cai T, Yan M, Shao S. Structural properties of Kudzu protein enzymatic hydrolysate and its repair effect on HepG2 cells damaged by H 2O 2 oxidation. Food Funct 2023; 14:9872-9891. [PMID: 37853837 DOI: 10.1039/d3fo02988c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
We investigated the structural properties, foaming capacity and foaming stability, antioxidant activity, and amino acid composition of Kudzu protein (KP) and Kudzu protein hydrolysate (KPH). The peptide sequence of KPH was analyzed using ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), and the binding ability of the peptide sequence to Keap1 was predicted through molecular docking simulations. The electrophoresis and molecular weight distribution analysis results showed that the molecular weight of KPH was significantly lower than that of KP, with a mean molecular weight of approximately 2000-5000 Da. The structures and properties were characterized using Fourier transform infrared spectroscopy, relative fluorescence, and circular dichroism. The results showed that KP exposed a large number of hydrophobic groups after enzymatic hydrolysis, and its structure changed from α-helical to random coils. KPH has a higher foaming capacity (200%) and foaming stability (97.5%) than KP, which may be related to the change in structure. These results indicate that moderate hydrolysis can improve the functional properties of KP, providing a new opportunity for its application as a food ingredient. The antioxidant assay results showed that KP and KPH had a good hydroxyl radical, superoxide anion, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging capacity and a high reducing capacity. KPH exerted better antioxidant effects than KP. The scavenging rates for DPPH, ABTS, hydroxyl radicals, and superoxide anions were 89.31%, 93.14%, 85.74%, and 58.29%, respectively, and its reducing capacity was 2.191, which may be related to the increase in amino acids with antioxidant activity after enzymolysis. In vitro, KP and KPH could significantly repair H2O2-induced oxidative damage in HepG2 cells, reduce the apoptosis rate, activate the Nrf2-Keap1 signaling pathway, reduce the accumulation of reactive oxygen species and malondialdehyde after oxidative damage, increase the activities of superoxide dismutase and glutathione (GSH) peroxidase, and increase the content of GSH and the total antioxidant capacity. Twenty-one peptide components were identified in KPH using UPLC-MS/MS, and the binding ability of 21 peptide components to Keap1 was analyzed through molecular docking technology. The results showed that all 21 peptides in KPH had good antioxidant activity, and real-time quantitative PCR (qRT-PCR) analysis was conducted to further explain the high antioxidant activity of KPH at the genetic level. These results show that KP and KPH are suitable for preparing antioxidant foods and related health foods to prevent oxidation-related diseases. KPH has more beneficial effects than KP.
Collapse
Affiliation(s)
- Huina Pang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yihan Yue
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongying Dong
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ting Jiang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongyin Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Zhao
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Tiequan Cai
- Center for Food Evaluation, State Administration for Market Regulation, Beijing, China
| | - Mingming Yan
- Changchun University of Chinese Medicine, Changchun, Jilin, China
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| | - Shuai Shao
- Changchun University of Chinese Medicine, Changchun, Jilin, China
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|
21
|
Nair B, Adithya JK, Chandrababu G, Lakshmi PK, Koshy JJ, Manoj SV, Ambiliraj DB, Vinod BS, Sethi G, Nath LR. Modulation of carcinogenesis with selected GRAS nutraceuticals via Keap1-Nrf2 signaling pathway. Phytother Res 2023; 37:4398-4413. [PMID: 37468211 DOI: 10.1002/ptr.7940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Keap1-Nrf2 is a fundamental signaling cascade known to promote or prevent carcinogenesis. Extensive studies identify the key target of modulatory aspects of Keap1-Nrf2 signaling against cancer. Nutraceuticals are those dietary agents with many health benefits that have immense potential for cancer chemoprevention. The nutritional supplements known as nutraceuticals are found to be one of the most promising chemoprevention agents. Upon investigating the dual nature of Nrf2, it became clear that, in addition to shielding normal cells from numerous stresses, Nrf2 may also promote the growth of tumors. In the present review, we performed a systematic analysis of the role of 12 different nutraceuticals like curcumin, sulforaphane, resveratrol, polyunsaturated fatty acids (PUFA) from fish oil, lycopene, soybean, kaempferol, allicin, thymoquinone, quercetin, gingerol, and piperine in modulating the Nrf2/Keap1 signaling mechanism. Among these, 12 Generally Recognized As Safe (GRAS) certified nutraceuticals, sulforaphane is the most extensively studied compound in modulating Keap1-Nrf signaling. Even though there is much evidence at preclinical levels, further high-quality research is still required to validate the potential role of these nutraceuticals in Keap1-Nrf2 modulation.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Jayaprakash K Adithya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Gopika Chandrababu
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - P K Lakshmi
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Joel Joy Koshy
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | | | - D B Ambiliraj
- Department of Chemistry, Sree Narayana College, Chempazhanthy, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
22
|
Xu Z, Hu Q, Xie M, Liu J, Su A, Xu H, Yang W. Protective effects of peptide KSPLY derived from Hericium erinaceus on H2O2-induced oxidative damage in HepG2 cells. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
23
|
Chen X, Liu W, Zhang J, Li H, Liu X. Selenium-enriched peptides identified from selenium-enriched soybean protein hydrolysate: protective effects against heat damage in Caco-2 cells. Food Funct 2023; 14:7882-7896. [PMID: 37489104 DOI: 10.1039/d3fo01103h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Our previous study evaluated the antioxidant and anti-inflammatory activities of selenium-enriched soybean peptides (SePPs) in vivo. In this study, we purified SePPs via gel filtration chromatography and obtained five fractions (F1, F2, F3, F4 and F5), among which F3 displayed the highest antioxidant and anti-inflammatory activities. Nineteen selenium-enriched peptides were identified in F3 by mass spectrometry. Two selenium-enriched peptides with sequences ESeCQIQKL (Sep-1) and SELRSPKSeC (Sep-2) were selected for synthesis based on their score and the number of hydrophobic amino acids, acidic and basic amino acids. Both Sep-1 and Sep-2 exhibited preventive effects on the heat stress-induced impairment of intestinal epithelial cell integrity, oxidative stress and inflammatory responses in a Caco-2 cell model. Pretreatment of the cells with Sep-1 or Sep-2 for 24 h reduced intracellular reactive oxygen species (ROS) generation, prevented the disruption of tight junction (TJ) proteins, and decreased paracellular permeability. Western blot results showed that Sep-1 and Sep-2 could improve the abnormal expressions of Nrf2, Keap1, NLRP3, caspase-1 and ASC/TMS1, thereby enhancing the glutathione (GSH) redox system and reducing IL-1β and IL-18 concentrations. Sep-1 activated the Nrf2-Keap1 signaling pathway significantly more than Sep-2. Molecular docking results indicated that Sep-1 and Sep-2 are both bound to Keap1 and NLRP3 in the form of hydrogen bonds, hydrophobic interactions and salt bridges, which interferes with Nrf2 and NLRP3 signaling. Molecular dynamics simulations suggested that more hydrogen bonds were formed during the resultant process of Sep-1 with Keap1, and the compactness and stability of the complex structure were better than those of Sep-2. These findings confirm the value of both Sep-1 and Sep-2 in the development of dietary supplements as potential alternatives for heat damage and related disease prevention.
Collapse
Affiliation(s)
- Xinwei Chen
- Key Laboratory of Green and Low-carbon Processing Technology for plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Wanlu Liu
- Key Laboratory of Green and Low-carbon Processing Technology for plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - He Li
- Key Laboratory of Green and Low-carbon Processing Technology for plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinqi Liu
- Key Laboratory of Green and Low-carbon Processing Technology for plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
24
|
Han Q, Li H, Zhao F, Gao J, Liu X, Ma B. Auricularia auricula Peptides Nutritional Supplementation Delays H 2O 2-Induced Senescence of HepG2 Cells by Modulation of MAPK/NF-κB Signaling Pathways. Nutrients 2023; 15:3731. [PMID: 37686763 PMCID: PMC10489780 DOI: 10.3390/nu15173731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Auricularia auricula is a traditional medicinal and edible mushroom with anti-aging effects. Many studies focused on polysaccharides and melanin. However, the anti-aging effects and mechanism of the nutritional supplementation of Auricularia auricula peptides (AAPs) were not elucidated. In this study, AAPs were prepared by enzymolysis of flavor protease and the protective effects on H2O2-induced senescence of HepG2 cells were explored for the first time. The potential mechanism was also investigated. AAPs were mostly composed of low molecular weights with less than 1000 Da accounting for about 79.17%, and contained comprehensive amino acids nutritionally, including seven essential amino acids, aromatic, acidic, and basic amino acids. AAPs nutritional supplementation could significantly decrease the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), and increase the activities of antioxidant enzymes (SOD, CAT, and GSH-Px). In addition, the senescence-associated-β-galactosidase (SA-β-gal) activity was restrained, and the expression levels of senescence-associated secretory phenotype (SASP) (IL-6, IL-8, IL-1β, and CXCL2) were also decreased. Ribonucleic acid sequencing (RNA-Seq) was carried out to screen the differentially expressed genes (DEGs) between different groups. GO and KEGG enrichment analysis showed that the mechanism was related to the MAPK/NF-κB signaling pathways. Quantitative real-time PCR (qRT-PCR) analysis and Western blot were carried out to verify the key genes and proteins in the pathways, respectively. AAPs nutritional supplementation resulted a significant down-regulation in key the genes c-fos and c-jun and up-regulation in DUSP1 of the MAPK signaling pathway, and down-regulation in the key genes CXCL2 and IL-8 of the NF-κB signaling pathway. The results of Western blot demonstrate that AAPs nutritional supplementation could inhibit MAPK/NF-κB pathways by reducing the expression levels of IKK, IκB, P65, and phosphorylation of ERK, thus decreasing the inflammatory reaction and delaying cell senescence. It is the first time that AAPs nutritional supplementation was proved to have protective effects on H2O2-induced oxidative damage in HepG2 cells. These results implicate that dietary AAPs could be used as nutrients to reduce the development or severity of aging.
Collapse
Affiliation(s)
- Qianwen Han
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Haiyan Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Fen Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Ji’an Gao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Biao Ma
- Beijing Science Sun Pharmaceutical Co., Ltd., Beijing 100176, China;
| |
Collapse
|
25
|
Boťanská B, Pecníková V, Fogarassyová M, Barančík M. The Role of Heat Shock Proteins and Autophagy in Mechanisms Underlying Effects of Sulforaphane on Doxorubicin-Induced Toxicity in HEK293 Cells. Physiol Res 2023; 72:S47-S59. [PMID: 37294118 DOI: 10.33549/physiolres.935107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Doxorubicin (DOX) is a cytostatic agent belonging to anthracycline group. Important role in mechanism associated with negative effects of DOX plays an oxidative stress. Heat shock proteins (HSPs) are part of mechanisms initiated in response to stressful stimuli and play an important role in cellular responses to oxidative stress through interaction with components of redox signaling. The present work was aimed to study the role of HSPs and autophagy in mechanisms underlying effects of sulforaphane (SFN), a potential activator of Nrf-2, on doxorubicin-induced toxicity in human kidney HEK293 cells. We investigated effects of SFN and DOX on proteins associated with regulation of heat shock response, redox signaling, and autophagy. Results show that SFN significantly reduced cytotoxic effects of DOX. The positive effects of SFN on DOX-induced changes were associated with up-regulation of Nrf-2 and HSP60 protein levels. In the case of another heat shock protein HSP40, SFN increased its levels when was administered alone but not in conditions when cells were exposed to the effects of DOX. Sulforaphane also reversed negative effects of DOX on activities of superoxide dismutases (SODs) and up-regulation of autophagy markers (LC3A/B-II, Atg5, and Atg12). In conclusion, the changes observed in HSP60 are of particular importance in terms of protecting cells from the effects of DOX. Finding that under conditions where SFN reduced cytotoxic effects of DOX were significantly increased protein levels of both Nrf-2 and HSP60 point to the role of HSP60 in mechanisms of redox signaling underlying effects of SFN on DOX-induced toxicity in HEK293 cells. Moreover, data confirmed an important role of autophagy in effects of SFN on DOX-induced toxicity.
Collapse
Affiliation(s)
- B Boťanská
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
26
|
Dong Y, Sun N, Ge Q, Lv R, Lin S. Antioxidant soy peptide can inhibit xanthine oxidase activity and improve LO2 cell damage. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Yi G, Sang X, Zhu Y, Zhou D, Yang S, Huo Y, Liu Y, Safdar B, Bu X. The SWGEDWGEIW from Soybean Peptides Reduces Insulin Resistance in 3T3-L1 Adipocytes by Activating p-Akt/GLUT4 Signaling Pathway. Molecules 2023; 28:molecules28073001. [PMID: 37049764 PMCID: PMC10096037 DOI: 10.3390/molecules28073001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with anti-diabetic properties. Notably, the protective mechanism of the single peptide SWGEDWGEIW (TSP) from soybean peptides (SBPs) on insulin resistance of adipocytes in an inflammatory state was investigated by detecting the lipolysis and glucose absorption and utilization of adipocytes. The results showed that different concentrations of TSP (5, 10, 20 µg/mL) intervention can reduce 3T3-L1 adipocytes’ insulin resistance induced by inflammatory factors in a dose-dependent manner and increase glucose utilization by 34.2 ± 4.6%, 74.5 ± 5.2%, and 86.7 ± 6.1%, respectively. Thus, TSP can significantly alleviate the lipolysis of adipocytes caused by inflammatory factors. Further mechanism analysis found that inflammatory factors significantly reduced the phosphorylation (p-Akt) of Akt, two critical proteins of glucose metabolism in adipocytes, and the expression of GLUT4 protein downstream, resulting in impaired glucose utilization, while TSP intervention significantly increased the expression of these two proteins. After pretreatment of adipocytes with PI3K inhibitor (LY294002), TSP failed to reduce the inhibition of p-Akt and GLUT4 expression in adipocytes. Meanwhile, the corresponding significant decrease in glucose absorption and the increase in the fat decomposition of adipocytes indicated that TSP reduced 3T3-L1 adipocytes’ insulin resistance by specifically activating the p-Akt/GLUT4 signal pathway. Therefore, TSP has the potential to prevent obesity-induced adipose inflammation and insulin resistance.
Collapse
|
28
|
Chen B, Miao J, Ye H, Xia Z, Huang W, Guo J, Liang X, Yin Y, Zheng Y, Cao Y. Purification, Identification, and Mechanistic Investigation of Novel Selenium-Enriched Antioxidant Peptides from Moringa oleifera Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4625-4637. [PMID: 36892038 DOI: 10.1021/acs.jafc.2c08965] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, five novel Se-enriched antioxidant peptides (FLSeML, LSeMAAL, LASeMMVL, SeMLLAA, and LSeMAL) were purified and identified from Se-enriched Moringa oleifera (M. oleifera) seed protein hydrolysate. The five peptides showed excellent cellular antioxidant activity, with respective EC50 values of 0.291, 0.383, 0.662, 0.1, and 0.123 μg/mL. The five peptides (0.025 mg/mL) increased the cell viability from 78.72 to 90.71, 89.16, 93.92, 83.68, and 98.29%, respectively, effectively reducing reactive oxygen species accumulation and significantly increasing superoxide dismutase and catalase activities in damaged cells. Molecular docking results revealed that the five novel Se-enriched peptides interacted with the key amino acid of Keap1, thus directly blocking the interaction of Keap1-Nrf2 and activating the antioxidant stress response to enhance the ability of scavenging free radicals in vitro. In conclusion, Se-enriched M. oleifera seed peptides exhibited significant antioxidant activity and can be expected to find widespread use as a highly active natural functional food additive and ingredient.
Collapse
Affiliation(s)
- Bingbing Chen
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Jianyin Miao
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guilin 541004, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoduo Ye
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Xia
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Wen Huang
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Junbin Guo
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Xingtang Liang
- School Petroleum and Chemical Engineering, Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, Beibu Gulf University, Qinzhou 535011, China
| | - Yanzhen Yin
- School Petroleum and Chemical Engineering, Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, Beibu Gulf University, Qinzhou 535011, China
| | - Yunying Zheng
- School Petroleum and Chemical Engineering, Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, Beibu Gulf University, Qinzhou 535011, China
| | - Yong Cao
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Choi EJ, Kim H, Hong KB, Suh HJ, Ahn Y. Hangover-Relieving Effect of Ginseng Berry Kombucha Fermented by Saccharomyces cerevisiae and Gluconobacter oxydans in Ethanol-Treated Cells and Mice Model. Antioxidants (Basel) 2023; 12:antiox12030774. [PMID: 36979022 PMCID: PMC10045427 DOI: 10.3390/antiox12030774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
This study aimed to evaluate the hangover relieving effect of ginseng berry kombucha (GBK) fermented with Saccharomyces cerevisiae and Gluconobacter oxydans in in vitro and in vivo models. The antioxidant activity and oxidative stress inhibitory effect of GBK were evaluated in ethanol-treated human liver HepG2 cells. In addition, biochemical and behavioral analyses of ethanol treated male ICR mice were performed to confirm the anti-hangover effect of GBK. The radical scavenging activity of GBK was increased by fermentation, and the total ginsenoside content of GBK was 70.24 μg/mL. In HepG2 cells, in which oxidative stress was induced using ethanol, GBK significantly increased the expression of antioxidant enzymes by upregulating the Nrf2/Keap1 pathway. Moreover, GBK (15 and 30 mg/kg) significantly reduced blood ethanol and acetaldehyde concentrations in ethanol-treated mice. GBK significantly increased the levels of alcohol-metabolizing enzymes, including alcohol dehydrogenase and acetaldehyde dehydrogenase. The balance beam test and elevated plus maze test revealed that high-dose GBK significantly ameliorated ethanol-induced behavioral changes. Collectively, GBK exerted a protective effect against ethanol-induced liver damage by regulating the Nrf2/Keap1 pathway.
Collapse
Affiliation(s)
- Eun Jung Choi
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyeongyeong Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
30
|
Li XL, Yin Q, Wang W, Ma RH, Ni ZJ, Thakur K, Zhang JG, Wei ZJ. Effect of ginsenoside CK combined with cisplatin on the proliferation and migration of human cervical cancer HeLa cells via Ras/ERK/MAPK pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
31
|
Zhong X, Lin P, Yao Y, Liu Z, Zhou X, Guan X, Huang J. Effects of dietary supplementation with bioactive peptides derived from rapeseed protein on the growth performance, serum biochemistry and faecal micro‐organism composition of weaned piglets. J Anim Physiol Anim Nutr (Berl) 2022; 107:867-877. [PMID: 36541276 DOI: 10.1111/jpn.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
The present study investigated the effects of supplementing bioactive peptides derived from rapeseed protein (rapeseed peptide, Rsp) on the growth performance, serum biochemistry and faecal micro-organism composition of weaned piglets. Sixty Duroc × Landrace × Yorkshire weaned piglets of similar weights were randomly divided into three groups. The control group (NC) was fed a basal diet, and the two treatment groups, Rsp-1 and Rsp-2, were fed a basal diet supplemented with 1% or 2% Rsp, respectively, for 28 days. Each treatment consisted of five replicates with four piglets per replicate. The results showed that Rsp treatment significantly improved the average daily gain and had a better feed-to-gain ratio (p < 0.05). The diarrhoea incidence and indices of Rsp-1 and Rsp-2 groups were significantly lower than the NC group (p < 0.05), and the effect of Rsp-2 on reducing the incidence of diarrhoea was significantly higher than that of Rsp-1 (p < 0.05). The serum albumin, serum immunoglobulin A and catalase levels of the Rsp-1 and Rsp-2 groups were significantly better than the NC group (p < 0.05). Additionally, Rsp treatment significantly gained the relative abundance of faecal Lactobacillaceae and decreased the relative abundance of faecal Eubacterium_coprostanoligenes_group, Treponema and Coprococcus (p < 0.05). In summary, Rsp supplementation improved the growth performance, ameliorated the diarrhoea, enhanced the immune and antioxidant functions and changed the composition of faecal micro-organisms in piglets. These findings indicate that Rsp positively affected the health of weaned piglets.
Collapse
Affiliation(s)
- Xiaoxia Zhong
- Chongqing Academy of Animal Sciences Chongqing China
| | - Peiwen Lin
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture Chongqing Key Laboratory of Pig Industry Sciences Chongqing China
| | - Yanchu Yao
- Chongqing Academy of Animal Sciences Chongqing China
- College of Animal Science Southwest University Chongqing China
| | - Zhiyun Liu
- Chongqing Academy of Animal Sciences Chongqing China
- College of Animal Science Southwest University Chongqing China
| | - Xiaorong Zhou
- Chongqing Academy of Animal Sciences Chongqing China
- College of Animal Science Southwest University Chongqing China
| | - Xiaofeng Guan
- Chongqing Academy of Animal Sciences Chongqing China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences Chongqing China
- College of Animal Science Southwest University Chongqing China
| |
Collapse
|
32
|
Tao L, Gu F, Liu Y, Yang M, Wu XZ, Sheng J, Tian Y. Preparation of antioxidant peptides from Moringa oleifera leaves and their protection against oxidative damage in HepG2 cells. Front Nutr 2022; 9:1062671. [PMID: 36532523 PMCID: PMC9751868 DOI: 10.3389/fnut.2022.1062671] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 10/20/2023] Open
Abstract
Moringa oleifera leaves are a kind of new food raw materials, rich in functional factors, M. oleifera leaves aqueous extract have antioxidant activity and M. oleifera leave protein is an important active ingredient in the aqueous extract. Numerous studies have shown that peptides have strong antioxidant activity. To reveal the antioxidant effects of M. oleifera (MO) leaves peptides, MO leave antioxidant peptides were isolated and prepared to clarify their antioxidant activity. MLPH1 (<1 kDa), MLPH3 (1~3 kDa), MLPH5 (3~5 kDa), and MLPH10 (5~10 kDa) fractions were obtained by the membrane ultrafiltration classification of MO leaves proteolytic hydrolysate (MLPH). MLPH1 was further separated by centrifugal filters, and the fraction separated by <1 kDa (MLPH1-1) was identified and analyzed by LC-MS/MS. The purpose of this study was to investigate the effect of MO leaves antioxidant peptide pretreatment on H2O2-treated HepG2 cells and to refine the antioxidant activity. The results showed that MLPH1 had the strongest antioxidant activity, and three MO leaves antioxidant peptides (LALPVYN, LHIAALVFQ, and FHEEDDAKLF) were obtained. The peptide with the sequence LALPVYN and a molecular weight of 788.44 Da had the strongest antioxidant activity. After 24 h of LALPVYN pretreatment, the cell viability and the CAT, GSH-Px, and SOD enzyme activity were significantly increased, and the MDA, ROS, and apoptosis rates were significantly decreased. These results provide a theoretical basis for further research on the antioxidant mechanism of MO leaves peptides.
Collapse
Affiliation(s)
- Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Fan Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Yan Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Xing-Zhong Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
33
|
The SWGEDWGEIW from Soybean Peptides Reduce Oxidative Damage-Mediated Apoptosis in PC-12 Cells by Activating SIRT3/FOXO3a Signaling Pathway. Molecules 2022; 27:molecules27217610. [PMID: 36364437 PMCID: PMC9657979 DOI: 10.3390/molecules27217610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The goal of the investigation was to study the protective effects of the SWGEDWGEIW (the single peptide, TSP) from soybean peptides (SBP) on hydrogen peroxide (H2O2)-induced apoptosis together with mitochondrial dysfunction in PC-12 cells and their possible implications to protection mechanism. Meanwhile, the SBP was used as a control experiment. The results suggested that SBP and TSP significantly (p < 0.05) inhibited cellular oxidative damage and ROS-mediated apoptosis. In addition, SBP and TSP also enhanced multiple mitochondrial biological activities, decreased mitochondrial ROS levels, amplified mitochondrial respiration, increased cellular maximal respiration, spare respiration capacity, and ATP production. In addition, SBP and TSP significantly (p < 0.05) raised the SIRT3 protein expression and the downstream functional gene FOXO3a. In the above activity tests, the activity of TSP was slightly higher than that of SBP. Taken together, our findings suggested that SBP and TSP can be used as promising nutrients for oxidative damage reduction in neurons, and TSP is more effective than SBP. Therefore, TSP has the potential to replace SBP and reduce neuronal oxidative damage.
Collapse
|
34
|
Liang X, Cheng W, Liang Z, Zhan Y, McClements DJ, Hu K. Co-Encapsulation of Tannic Acid and Resveratrol in Zein/Pectin Nanoparticles: Stability, Antioxidant Activity, and Bioaccessibility. Foods 2022; 11:3478. [PMID: 36360091 PMCID: PMC9656218 DOI: 10.3390/foods11213478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 09/10/2023] Open
Abstract
Hydrophilic tannic acid and hydrophobic resveratrol were successfully co-encapsulated in zein nanoparticles prepared using antisolvent precipitation and then coated with pectin by electrostatic deposition. The encapsulation efficiencies of the tannic acid and resveratrol were 51.5 ± 1.9% and 77.2 ± 3.2%, respectively. The co-encapsulated nanoparticles were stable against aggregation at the investigated pH range of 2.0 to 8.0 when heated at 80 °C for 2 h and when the NaCl concentration was below 50 mM. The co-encapsulated tannic acid and resveratrol exhibited stronger in vitro antioxidant activity than ascorbic acid, as determined by 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH·) and 2,2'-azinobis (3-ethylberizothiazoline-6-sulfonic acid) radical cation (ABTS+·) scavenging assays. The polyphenols-loaded nanoparticles significantly decreased the malondialdehyde (MDA) concentration and increased the superoxide dismutase (SOD) and catalase (CAT) activities in peroxide-treated human hepatoma cells (HepG2). An in vitro digestion model was used to study the gastrointestinal fate of the nanoparticles. In the stomach, encapsulation inhibited tannic acid release, but promoted resveratrol release. However, in the small intestine, it led to a relatively high bioaccessibility of 76% and 100% for resveratrol and tannic acid, respectively. These results suggest that pectin-coated zein nanoparticles have the potential for the co-encapsulation of both polar and nonpolar nutraceuticals or drugs.
Collapse
Affiliation(s)
- Xiao Liang
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Clinical Medicine Department, Guangdong Maoming Health Vocational College, Maoming 525400, China
| | - Wanting Cheng
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhanhong Liang
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yiling Zhan
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | | | - Kun Hu
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
35
|
Wang C, Cui C, Li N, Sun X, Wen L, Gao E, Wang F. Antioxidant activity and protective effect of wheat germ peptides in an in vitro celiac disease model via Keap1/Nrf2 signaling pathway. Food Res Int 2022; 161:111864. [DOI: 10.1016/j.foodres.2022.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 11/27/2022]
|
36
|
Okagu IU, Udenigwe CC. Transepithelial transport and cellular mechanisms of food-derived antioxidant peptides. Heliyon 2022; 8:e10861. [PMID: 36217466 PMCID: PMC9547200 DOI: 10.1016/j.heliyon.2022.e10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Considering the involvement of oxidative stress in the etiology of many non-communicable diseases, food-derived antioxidant peptides (FDAPs) are strong candidates for nutraceutical development for disease prevention and management. This paper reviews current evidence on the transepithelial transport and cellular mechanisms of antioxidant activities of FDAPs. Several FDAPs have multiple health benefits such as anti-inflammatory and anti-photoaging activities, in addition to antioxidant properties through which they protect cellular components from oxidative damage. Some FDAPs have been shown to permeate the intestinal epithelium, which could facilitate their bioavailability and physiological bioactivities. Molecular mechanisms of FDAPs include suppression of oxidative stress as evidenced by reduction in intracellular reactive oxygen species production, lipid peroxidation and apoptotic protein activation as well as increase in antioxidant defense mechanisms (enzymatic and non-enzymatic). Since many FDAPs have demonstrated promising antioxidant activity, future investigation should focus on further elucidation of molecular mechanisms and human studies to explore their practical application for the prevention and management of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
37
|
Deb PK, Shilkar D, Sarkar B. UHPLC‐ESI‐QTOF‐MS/MS based identification, quantification, and assessment of in‐silico molecular interactions of major phytochemicals from bioactive fractions of Clerodendrum glandulosum Lindl. leaves. Chem Biodivers 2022; 19:e202200617. [DOI: 10.1002/cbdv.202200617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Prashanta Kumar Deb
- Birla Institute of Technology Pharmaceutical Sciences & Technology BIT MesraDept. of Pharmaceutical Sciences Technology 835215 Ranchi INDIA
| | - Deepak Shilkar
- Birla Institute of Technology Pharmaceutical Sciences & Technology BIT MesraDept. of Pharmaceutical Sciences Technology 835215 Ranchi INDIA
| | - Biswatrish Sarkar
- Birla Institute of Technology Pharmaceutical Sciences & Technology BIT Mesra 835215 Ranchi INDIA
| |
Collapse
|
38
|
Shi Y, Zhong L, Fan Y, Zhang J, Dai J, Zhong H, Fu G, Hu Y. Taurine inhibits hydrogen peroxide-induced oxidative stress, inflammatory response and apoptosis in liver of Monopterus albus. FISH & SHELLFISH IMMUNOLOGY 2022; 128:536-546. [PMID: 35988713 DOI: 10.1016/j.fsi.2022.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Fish are extremely vulnerable to environmental stimulation and produce oxidative stress. Among them, hydrogen peroxide is an oxidative stress source that cannot be ignored in fish, which can cause physical disorders, inflammation and even death. Taurine was revealed to reduce oxidative damage and inflammation caused by toxic substances, but whether it can reduce toxicity of rice field eel caused by H2O2 has not been determined. Thus, the intervention effects of taurine on H2O2-induced oxidative stress, inflammation, apoptosis, and autophagy in rice field eel. The results showed that oxidative injury in the liver was determined after H2O2 injection, as indicated by enhanced serum AST and ALT activities, inhibited the antioxidant function (increased MDA and ROS contents, decreased antioxidant enzymes, inhibited nrf2 transcription level), and induced inflammatory response (upregulated il-1β, il-6, il-8, and il-12β gene expression, downregulated tgf-β1 gene expression, activated the transcription level of nf-κb, tlr-3, and tlr-7). In addition, bax, caspase3, beclin1, and Lc3B gene expression were significantly upregulated after H2O2 injection, while bcl2 and p62 gene expression were downregulated, leading to the occurrence of apoptosis and autophagy. In contrast, adding 0.2 and 0.5% taurine to feed significantly alleviated this damage, as indicated by the recovery of the aforementioned bioindicators, and the effect of 0.5% taurine addition is better than 0.2%. Overall, these results suggested that taurine can relieve the liver toxicity induced by H2O2, which enriched the toxic mechanism of H2O2 on fish and provided evidence for the protective effect of taurine on liver.
Collapse
Affiliation(s)
- Yong Shi
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhong
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Junzhi Zhang
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Jihong Dai
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Huan Zhong
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Guihong Fu
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Hu
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
39
|
Zhai Z, Huang Y, Zhang Y, Zhao L, Li W. Clinical Research Progress of Small Molecule Compounds Targeting Nrf2 for Treating Inflammation-Related Diseases. Antioxidants (Basel) 2022; 11:1564. [PMID: 36009283 PMCID: PMC9405369 DOI: 10.3390/antiox11081564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Studies have found that inflammation is a symptom of various diseases, such as coronavirus disease 2019 (COVID-19) and rheumatoid arthritis (RA); it is also the source of other diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), lupus erythematosus (LE), and liver damage. Nrf2 (nuclear factor erythroid 2-related factor 2) is an important multifunctional transcription factor in cells and plays a central regulatory role in cellular defense mechanisms. In recent years, several studies have found a strong association between the activation of Nrf2 and the fight against inflammation-related diseases. A number of small molecule compounds targeting Nrf2 have entered clinical research. This article reviews the research status of small molecule compounds that are in clinical trials for the treatment of COVID-19, rheumatoid arthritis, Alzheimer's disease, Parkinson's disease, lupus erythematosus, and liver injury.
Collapse
Affiliation(s)
- Zhenzhen Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanxin Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yawei Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, China
| |
Collapse
|
40
|
Xie T, Kong F, Wang W, Wang Y, Yang H, Cao Z, Li S. In vitro and in vivo Studies of Soybean Peptides on Milk Production, Rumen Fermentation, Ruminal Bacterial Community, and Blood Parameters in Lactating Dairy Cows. Front Vet Sci 2022; 9:911958. [PMID: 36032283 PMCID: PMC9403479 DOI: 10.3389/fvets.2022.911958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Soybean peptides (SPs), a feed additive derived from soybean, exhibit nutritional function and biological activity in monogastric animals, but limited studies have been conducted in dairy cows. Our experiments were conducted to evaluate the effects of SPs on the nutrient degradability of dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) in vitro and milk production, rumen fermentation and bacterial community, and blood parameters of dairy cows. For in vitro experiment, ruminal fluids were collected from three ruminal cannulated Holstein dairy cows. A total of three levels of SPs (0, 0.38, and 1.92 g/kg DM of SPs) were added to the total mixed ration (TMR). Nutrient degradability and fermentation fluid pH were determined at 24 and 48 h using 3.0 g samples of the substrate. Gas production after 48 h was recorded by an automated trace gas recording system using 0.5 g samples of the substrate. The results showed that DM, NDF, ADF (p < 0.01), and CP (p < 0.05) degradabilities were significantly increased at 1.92 g/kg DM of SPs at 24 h, and asymptotic gas production (p = 0.05) was increased at 48 h. For in vivo experiment, 110 lactating Holstein cows (209.7 ± 65.2 DIM; 37.2 ± 6.4 kg/d milk yield) were randomly assigned to 0 (control group, CON) or 50 g/head/day SPs (SP-supplemented group). Yields of milk (p < 0.05), milk protein (p < 0.05), and milk lactose (0.05 < p < 0.10) increased on SPs supplementation; however, the milk fat percentage decreased (p < 0.05). The concentrations of individual volatile fatty acids (VFAs) (p < 0.05) and superoxide dismutase (SOD) (p < 0.01) were also increased. Rumen bacterial diversity in SP-supplemented cows was higher (p < 0.05). The relative abundances of Rikenellaceae_RC9_gut_group, Butyrivibrio, Selenomonas, and Shuttleworthia were significantly increased and that of Coprococcus was decreased (p < 0.05). Our results showed that supplementing 1.92 g/kg DM of SPs could improve the nutrient degradability in vitro and 50 g/head/day of SPs could improve milk production and antioxidant ability of dairy cows. The rumen bacterial diversity was also enhanced by SP supplementation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Alleviating Effects of Black Soybean Peptide on Oxidative Stress Injury Induced by Lead in PC12 Cells via Keap1/Nrf2/TXNIP Signaling Pathway. Nutrients 2022; 14:nu14153102. [PMID: 35956280 PMCID: PMC9370349 DOI: 10.3390/nu14153102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Many researchers have found that Pb exposure can cause oxidative stress damage to the body’s tissue. Black soybean peptide (BSP) has a variety of physiological functions, especially in terms of oxidative stress. Nevertheless, the mitigation function of BSPs on Pb-induced oxidative stress damage in PC12 cells has not been clearly defined. In this study, cell viability was detected by CCK8. Oxidative stress indicators, such as ROS, GSH/GSSG, MDA, SOD, CAT, GPx, and GR, were tested with biochemical kit. Protein expression of Keap1, Nrf2, and TXNIP was measured by Western blot. Compared with the control group, Pb reduced the cell viability of PC12 cells. However, BSP treatment significantly increased the viability of PC12 cells induced by lead exposure (p < 0.05). Lead can enrich the contents of MDA and ROS, but decrease the amount of CAT, SOD, GR, GPx, and GSH/GSSG in PC12 cells, while BSP can alleviate it (p < 0.05). Lead can enhance the expression of Keap1 and TXNIP proteins, but reduce Nrf2 expression. In contrast, BSPs reversed this phenomenon (p < 0.05). BSPs can alleviate oxidative stress injury induced by lead in PC12 cells through the Keap1/Nrf2/TXNIP signaling pathway.
Collapse
|
42
|
Chanajon P, Noisa P, Yongsawatdigul J. Prolyl oligopeptidase inhibition and cellular antioxidant activities of a corn gluten meal hydrolysate. Cereal Chem 2022. [DOI: 10.1002/cche.10586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Phiromya Chanajon
- School of Food Technology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon Ratchasima30000Thailand
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon Ratchasima30000Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon Ratchasima30000Thailand
| |
Collapse
|
43
|
Gao M, Qi Z, Deng M, Huang H, Xu Z, Guo G, Jing J, Huang X, Xu M, Kloeber JA, Liu S, Huang J, Lou Z, Han J. The deubiquitinase USP7 regulates oxidative stress through stabilization of HO-1. Oncogene 2022; 41:4018-4027. [PMID: 35821281 DOI: 10.1038/s41388-022-02403-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Heme oxygenase-1 (HO-1) is an inducible heme degradation enzyme that plays a cytoprotective role against various oxidative and inflammatory stresses. However, it has also been shown to exert an important role in cancer progression through a variety of mechanisms. Although transcription factors such as Nrf2 are involved in HO-1 regulation, the posttranslational modifications of HO-1 after oxidative insults and the underlying mechanisms remain unexplored. Here, we screened and identified that the deubiquitinase USP7 plays a key role in the control of redox homeostasis through promoting HO-1 deubiquitination and stabilization in hepatocytes. We used low-dose arsenic as a stress model which does not affect the transcriptional level of HO-1, and found that the interaction between USP7 and HO-1 is increased after arsenic exposure, leading to enhanced HO-1 expression and attenuated oxidative damages. Furthermore, HO-1 protein is ubiquitinated at K243 and subjected to degradation under resting conditions; whereas when after arsenic exposure, USP7 itself can be ubiquitinated at K476, thereafter promoting the binding between USP7 and HO-1, finally leading to enhanced HO-1 deubiquitination and protein accumulation. Moreover, depletion of USP7 and HO-1 inhibit liver tumor growth in vivo, and USP7 positively correlates with HO-1 protein level in clinical human hepatocellular carcinoma (HCC) specimens. In summary, our findings reveal a critical role of USP7 as a HO-1 deubiquitinating enzyme in the regulation of oxidative stresses, and suggest that USP7 inhibitor might be a potential therapeutic agent for treating HO-1 overexpressed liver cancers.
Collapse
Affiliation(s)
- Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zijuan Qi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, 250014, Shandong, China
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, Chinese Academy of Medical Sciences, 100021, Beijing, China
| | - Hongyang Huang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiajun Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaofeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Jinxiang Han
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, 250014, Shandong, China.
| |
Collapse
|
44
|
Shi Y, Zhong L, Chen K, Fan Y, Xie K, Zhang J, Dai J, Hu Y. Sanguinarine attenuates hydrogen peroxide-induced toxicity in liver of Monopterus albus: Role of oxidative stress, inflammation and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2022; 125:190-199. [PMID: 35569777 DOI: 10.1016/j.fsi.2022.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
In aquatic animals, hydrogen peroxide (H2O2), which is a source of oxidative stress, can cause physiological dysfunction, inflammation, and death. Sanguinarine (SAN) is a plant extract known to improve antioxidant and immune capacity. However, the roles of SAN in H2O2-induced liver tissue toxicity is unclear. The effects on hepatic oxidative damage, inflammatory response, and apoptosis were investigated by feeding rice field eel with 0, 375, and 750 μg/kg of SAN for eight weeks and then intraperitoneally injected with H2O2. The results showed that after 24 h of H2O2 injection, the activities of ALT and AST in serum were significantly increased, oxidative damage and inflammatory response occurred in the liver, and apoptosis was induced, which indicated that H2O2 induced liver damage in rice field eel. However, dietary supplemented with 375 or 750 μg/kg SAN significantly decreased the activities of ALT and AST in serum, and significantly increased the antioxidant function (decreased ROS, MDA, and antioxidant enzymes levels, downregulated antioxidant-related gene expression, and inhibited the transcription level of nrf2). The addition of SAN at 375 or 750 μg/kg ameliorated H2O2-induced inflammatory response of liver (upregulated tgf-β1 mRNA expression, downregulated il-1β, il-6, il-8, and il-12β mRNA expression, and inhibited the transcription levels of tlr-3 tlr-7, and nf-κb). In addition, dietary supplemented with 375 or 750 μg/kg SAN alleviated the apoptosis of liver induced by H2O2 (downregulated bax mRNA expression, upregulated caspase3 mRNA expression, and reduced the number of apoptotic cells by TUNEL staining). Overall, these results suggested that SAN could alleviate the liver injury in rice field eel induced by H2O2, mainly by improving antioxidant capacity, alleviating inflammatory response and inhibiting apoptosis, and the effect of 750 μg/kg SAN addition is better than 375 μg/kg.
Collapse
Affiliation(s)
- Yong Shi
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhong
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Kaijian Chen
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Kai Xie
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Junzhi Zhang
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Jihong Dai
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Hu
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
45
|
Han R, Shao S, Zhang H, Qi H, Xiao F, Shen Y, Fan L, Wang H, Zhao D, Li G, Yan M. Physico-chemical properties, antioxidant activity, and ACE inhibitory activity of protein hydrolysates from wild jujube seed. J Food Sci 2022; 87:2484-2503. [PMID: 35502672 PMCID: PMC9325541 DOI: 10.1111/1750-3841.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/02/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
Abstract
Wild jujube seed protein (WJSP) as one kind of functional food material has attracted much attention due to its highly nutritive and medicinal value in anti-inflammatory and improving immunomodulatory ability. However, owing to its large molecular weight and complex structure, biological activities of WJSP were greatly limited and cannot be fully utilized by the human body. Therefore, how to improve the bioavailability of WJSP and develop promising WJSP nutritious materials is a great challenge. In this work, wild jujube seed protein hydrolysates (WJSPHs) were prepared from WJSP via enzymatic hydrolysis method, and their physico-chemical properties, antioxidant activity, and angiotensin converting enzyme (ACE) inhibitory activity in vitro have been investigated for the first time. SDS-PAGE electrophoresis and size-exclusion chromatographic results indicate that WJSPHs have lower molecular weight distribution (< 5,000 Da) than WJSP. Circular dichroism (CD) spectroscopy and Fourier transform infrared spectroscopy (FTIR) results illustrated that random coil is the main secondary structure of WJSPHs. Antioxidant experiments indicate that WJSPHs exhibit high radicals-scavenging ability of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals (94.60%), 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS+ ) radicals (90.84%), superoxide radicals (44.77%), and hydroxyl radicals (47.77%). In vitro, WJSPHs can significantly decrease the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), and increase the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in HepG2 cells. Moreover, ACE activity was found that can be significantly inhibited by WJSPHs (73.02%). Therefore, all previously mentioned results suggest that WJSPHs may be a promising antioxidant food to prevent oxidative-related diseases in future. PRACTICAL APPLICATION: This study shows that WJSPHs exhibit high antioxidant activity and ACE inhibitory activity in vitro, which provide potential application value as antioxidant peptides to prevent oxidative-related diseases.
Collapse
Affiliation(s)
- Rongxin Han
- Changchun University of Chinese Medicine, Changchun, China
| | - Shuai Shao
- Changchun University of Chinese Medicine, Changchun, China
| | - Hongyin Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Changchun University of Chinese Medicine, Changchun, China
| | - Fengqin Xiao
- Changchun University of Chinese Medicine, Changchun, China
| | - Yingxin Shen
- Changchun University of Chinese Medicine, Changchun, China
| | - Lin Fan
- Changchun University of Chinese Medicine, Changchun, China
| | - Haidong Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Changchun University of Chinese Medicine, Changchun, China
| | - Guangzhe Li
- Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mingming Yan
- Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
46
|
Wang CX, Song CC, Liu XT, Qiao BW, Song S, Fu YH. ACE inhibitory activities of two peptides derived from Volutharpa Ampullacea Perryi hydrolysate and their protective effects on H2O2 induced HUVECs injury. Food Res Int 2022; 157:111402. [DOI: 10.1016/j.foodres.2022.111402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023]
|
47
|
The Interplay between Autophagy and Redox Signaling in Cardiovascular Diseases. Cells 2022; 11:cells11071203. [PMID: 35406767 PMCID: PMC8997791 DOI: 10.3390/cells11071203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen and nitrogen species produced at low levels under normal cellular metabolism act as important signal molecules. However, at increased production, they cause damage associated with oxidative stress, which can lead to the development of many diseases, such as cardiovascular, metabolic, neurodegenerative, diabetes, and cancer. The defense systems used to maintain normal redox homeostasis plays an important role in cellular responses to oxidative stress. The key players here are Nrf2-regulated redox signaling and autophagy. A tight interface has been described between these two processes under stress conditions and their role in oxidative stress-induced diseases progression. In this review, we focus on the role of Nrf2 as a key player in redox regulation in cell response to oxidative stress. We also summarize the current knowledge about the autophagy regulation and the role of redox signaling in this process. In line with the focus of our review, we describe in more detail information about the interplay between Nrf2 and autophagy pathways in myocardium and the role of these processes in cardiovascular disease development.
Collapse
|
48
|
Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Fan H, Liao W, Spaans F, Pasha M, Davidge ST, Wu J. Chicken muscle hydrolysate reduces blood pressure in spontaneously hypertensive rats, upregulates ACE2, and ameliorates vascular inflammation, fibrosis, and oxidative stress. J Food Sci 2022; 87:1292-1305. [PMID: 35166385 DOI: 10.1111/1750-3841.16077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Spent hens are egg-laying chicken reaching the end of their egg-laying cycle and are seen as a by-product to the egg industry. A spent hen muscle protein hydrolysate prepared by food-grade thermoase PC10F (SPH-T) has previously shown antihypertensive potential. In the present work, we further investigated its antihypertensive effect and underlying mechanisms in spontaneously hypertensive rats. There are three groups: untreated, low dose (250 mg SPH-T/kg/day body weight), and high dose (1,000 mg SPH-T/kg/day body weight). Oral administration of SPH-T over a period of 20 days reduced systolic blood pressure by 25.7 mm Hg (p < 0.001) and 11.9 mm Hg (p < 0.05), respectively, for the high- and low-dose groups. The high-dose treatment decreased the circulating level of angiotensin II (from 25.0 to 5.7 pg/ml) while increased angiotensin-converting enzyme 2 (ACE2) (from 1.3 to 3.3 IU/ml) and angiotensin (1-7) (from 37.0 to 70.1 pg/ml) significantly (p < 0.05). Furthermore, the high-dose group doubled the aortic expression of ACE2 while reduced the expression of angiotensin (Ang) II type 1 receptor (by 35%). Circulating inflammatory cytokines including tumor necrosis factor alpha and monocyte chemoattractant protein-1 as well as vascular inflammatory proteins including inducible nitric oxide synthase and vascular cell adhesion molecule-1 were attenuated by ∼15%-50% by the treatment; nitrosative stress (35%) and type I collagen synthesis (50%) in the aorta were also attenuated significantly (p < 0.05). Moreover, SPH-T possessed an umami taste (no obvious bitter taste) as analyzed by electronic tongue. PRACTICAL APPLICATION: Hypertension is a global health concern, afflicting more than 20% of adults worldwide. Uncovering the antihypertensive effect of spent hen protein hydrolysate underpinned its functional food nutraceutical applications for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Wang Liao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mazhar Pasha
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.,Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
50
|
Zhang J, Zhang Q, Li H, Chen X, Liu W, Liu X. Antioxidant activity of SSeCAHK in HepG2 cells: a selenopeptide identified from selenium-enriched soybean protein hydrolysates. RSC Adv 2021; 11:33872-33882. [PMID: 35497303 PMCID: PMC9042330 DOI: 10.1039/d1ra06539d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
This paper is aimed at purifying and identifying selenium (Se)-containing antioxidative peptides from Se-enriched soybean peptides (SSP). In this work, the SSP was separated into five fractions (F1 to F5). Fraction F4, displaying the highest antioxidative activity, was further separated, and sub-fractions F4-1 to F4-5 were selected for antioxidative activity evaluation using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethylbenzo-thiazoline-6-sulphonic acid)diammonium salt (ABTS), and OH- radical scavenging assays. The Se-containing antioxidative peptides with sequence Ser-SeC-Ala-His-Lys (SSeCAHK) were identified in sub-fraction F4-1 and chemically synthesized. This Se-containing pentapeptide showed a preventive effect against hydrogen peroxide (H2O2)-induced oxidative stress in HepG2 cells. Pretreating the cells for 2 h with SSeCAHK (0.13-0.50 mg mL-1) induced strong intracellular, reactive oxygen species (ROS) scavenging activity while preventing a decrease in reduced glutathione (GSH) and an increase in malondialdehyde (MDA). Therefore, SSeCAHK treatment improved H2O2-induced oxidative stress in HepG2 cells, demonstrating the significant potential of SSeCAHK as a natural antioxidative functional material for dietary supplementation.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing 100048 China
| | - Qiyue Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing 100048 China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing 100048 China
| | - Xinwei Chen
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing 100048 China
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing 100048 China
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|