1
|
Luo L, Li P, Deng Y, Liu G, Zhang Y, Tang X, Zhou P, Zhao Z, Zhang M. Ultrastable high internal phase Pickering emulsions stabilized by deamidated pea protein: Formation mechanisms and applications in 3D printing. Food Chem 2025; 485:144541. [PMID: 40318339 DOI: 10.1016/j.foodchem.2025.144541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Food-grade high internal phase emulsions (HIPEs) show promise for 3D printing applications, yet stabilizing them with natural ingredients remains challenging. This study investigated enzymatically deamidated pea protein isolate (DPPI) as a novel HIPE stabilizer. Compared to native protein, DPPI-stabilized HIPEs exhibited smaller droplet sizes, higher viscosity, and enhanced viscoelasticity. These emulsions maintained exceptional stability across various pH levels (3-9), high ionic concentrations (Na+ up to 1200 mmol/L, Ca2+ up to 25 mmol/L), heat treatments (up to 120 °C), and oxidative conditions. Interfacial analyses revealed DPPI formed denser interfacial films and stronger cross-linked networks between droplets, with optimal contact angles (90.35°) maximizing stability. DPPI-stabilized HIPEs demonstrated excellent 3D printing performance, producing precise structures with superior hardness and adhesiveness. Additionally, these emulsions showed higher lipid digestion rates (51.25 %), suggesting improved nutrient bioavailability. This plant-based stabilizer provides significant advantages for innovative food applications while addressing growing demand for sustainable protein alternatives.
Collapse
Affiliation(s)
- Lijuan Luo
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiaojun Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Pengfei Zhou
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhihao Zhao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
2
|
Zheng C, Du X, Wang Q, Yan J, Zhang Y, Zhang X, Wang Y, Wang Z, Zhang L. Improving thickening and emulsification performances of cellulose nanocrystals by alkylation modification for enhanced oil recovery. Int J Biol Macromol 2025; 306:141369. [PMID: 39988166 DOI: 10.1016/j.ijbiomac.2025.141369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Improving the thickening and emulsification performances of cellulose nanocrystals (CNCs) is crucial for their effective application in enhanced oil recovery (EOR). In this study, three kinds of amphiphilic Cn-CNCs (n = 8, 12 and 16, n represents the number of carbon atoms in the alkyl chain) were successfully prepared by alkylation-modified CNCs. Compared to CNCs, Cn-CNCs exhibited a stronger performance of thickening the viscosity of aqueous phase, especially C12-CNCs. When the concentration was 1 wt% and at a fixed shear rate (10 rad/s), the viscosity of CNC dispersions was 13.1 mPa·s, while the viscosity of C12-CNC dispersions was 33.7 mPa·s. The enhanced thickening was attributed to hydrophobic association in addition to hydrogen bonding. In addition, C12-CNCs also exhibited superior emulsification performance due to the lower interfacial tension (IFT) and the thicker oil-water interfacial film. Furthermore, the oil displacement performance of C12-CNC dispersions was better than that of CNC dispersions, which was attributed to the improvement of sweep efficiency and oil-washing efficiency. This study provided the guidance for the effective application of CNCs in EOR.
Collapse
Affiliation(s)
- Cailing Zheng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xinjuan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Qiuxia Wang
- China National Offshore Oil Corporation China Ltd, Tianjin Branch, Tianjin 300459, China
| | - Jinlun Yan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xinying Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yanping Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zi Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
| | - Longli Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
| |
Collapse
|
3
|
Araújo JF, Fernandes JM, Madalena D, Gonçalves RFS, Vieira JM, Martins JT, Vicente AA, Pinheiro AC. Development of 3D-printed foods incorporating riboflavin-loaded whey protein isolate nanostructures: characterization and in vitro digestion. Food Funct 2025; 16:2124-2135. [PMID: 39976479 DOI: 10.1039/d4fo05102e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
3D printing has emerged as a groundbreaking technology, aiming to enhance sensory attributes and improving nutritional/functional aspects. Simultaneously, nano-delivery systems have emerged as an opportunity to protect bioactive compounds against degradation and improve their bioaccessibility. Therefore, a novel concept is underway, involving the 3D printing of perishable healthy foods previously fortified with bioactive compound-loaded nanostructures. As a model concept, whey protein isolate (WPI) nanostructures were associated with riboflavin with an efficiency of 59.2%. Carrot pastes with adequate printability, shape retention and rheological characteristics were formulated. Riboflavin-WPI loaded nanostructures were incorporated into carrot inks and submitted to a static in vitro digestion. There was a notable increase in riboflavin bioaccessibility (+23.1%), suggesting a synergistic interaction between WPI nanostructures and carrot matrix. These results may contribute to validating the use of WPI nanostructures as effective encapsulating systems allied with 3D food printing towards the development of functional foods with personalized structure and nutrition profile.
Collapse
Affiliation(s)
- João F Araújo
- CEB - Centre of Biological Engineering, University of Minho, Portugal.
| | | | - Daniel Madalena
- CEB - Centre of Biological Engineering, University of Minho, Portugal.
| | | | - Jorge M Vieira
- CEB - Centre of Biological Engineering, University of Minho, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana T Martins
- CEB - Centre of Biological Engineering, University of Minho, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana C Pinheiro
- CEB - Centre of Biological Engineering, University of Minho, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
4
|
Li H, Cao Y, Wang L, Wang F, Xiong L, Shen X, Song H. Pickering high internal phase emulsions stabilized by soy protein isolate/κ-carrageenan complex for enhanced stability, bioavailability, and absorption mechanisms of nobiletin. Carbohydr Polym 2025; 351:123117. [PMID: 39779025 DOI: 10.1016/j.carbpol.2024.123117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Nobiletin (NOB), a lipid-soluble polymethoxyflavone with potent antioxidant, antimicrobial, and anti-inflammatory properties, suffers from poor stability and pH sensitivity, limiting its bioavailability. In this study, Pickering high internal phase emulsions (HIPEs) stabilized by soy protein isolate (SPI) and κ-carrageenan (KC) were developed to encapsulate and protect NOB. The emulsions, containing a 75 % medium-chain triglyceride (MCT) volume fraction, were optimized by investigating the effects of pH and KC concentration on the key properties such as the creaming index, particle size, zeta potential, microstructure, and rheology. Results showed that under optimal conditions (pH 7 and 1.0 % KC), the SPI/KC HIPEs exhibited improved physicochemical properties. Furthermore, encapsulation of NOB in HIPEs significantly improved its stability against UV exposure, heat, and storage conditions. Additionally, simulated gastrointestinal digestion studies revealed that the SPI/KC HIPEs improved the digestion stability and bioaccessibility of NOB, with controlled release in the intestinal phase. Moreover, the SPI/KC HIPEs facilitated increased cellular uptake and bioavailability of NOB, with clathrin-mediated endocytosis and macropinocytosis as primary absorption pathways. The encapsulated NOB also showed enhanced inhibition of inflammatory markers, including NO, IL-6, and TNF-α. These findings suggested that SPI/KC HIPEs provided a promising delivery system for improving the bioavailability and bioactivity of hydrophobic compounds.
Collapse
Affiliation(s)
- Hong Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yubo Cao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
5
|
Yan X, Peng X, McClements DJ, Ma C, Liu X, Liu F. Interfacial engineering of Pickering emulsions stabilized by pea protein-alginate microgels for encapsulation of hydrophobic bioactives. Food Chem 2024; 460:140761. [PMID: 39137575 DOI: 10.1016/j.foodchem.2024.140761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
This study aims to investigate the effects of interfacial layer composition and structure on the formation, physicochemical properties and stability of Pickering emulsions. Interfacial layers were formed using pea protein isolate (PPI), PPI microgel particles (PPIMP), a mixture of PPIMP and sodium alginate (PPIMP-SA), or PPIMP-SA conjugate. The encapsulation and protective effects on different hydrophobic bioactives were then evaluated within these Pickering emulsions. The results demonstrated that the PPIMP-SA conjugate formed thick and robust interfacial layers around the oil droplet surfaces, which increased the resistance of the emulsion to coalescence, creaming, and environmental stresses, including heating, light exposure, and freezing-thawing cycle. Additionally, the emulsion stabilized by the PPIMP-SA conjugate significantly improved the photothermal stability of hydrophobic bioactives, retaining a higher percentage of their original content compared to those in non-encapsulated forms. Overall, the novel protein microgels and the conjugate developed in this study have great potential for improving the physicochemical stability of emulsified foods.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoke Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Zhao J, Chen Y, Xu S, Fang X, Yang F, Li Y. High internal phase emulsion stabilized by soy protein isolate-Rutin complex: Rheological properties, bioaccessibility and in vitro release kinetics. Int J Biol Macromol 2024; 280:135748. [PMID: 39299418 DOI: 10.1016/j.ijbiomac.2024.135748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
High internal phase emulsions (HIPEs) are promising carrier materials for encapsulating and delivering hydrophobic bioactive compounds. By strategically adjusting the composition, particle size, or charge of HIPEs, it is possible to enhance both their stability and the bioaccessibility of hydrophobic polyphenols encapsulated within them. In this study, different soy protein isolate (SPI)-rutin (SPI-R) complexes (formed under various preheating temperatures) were used to stabilize HIPEs, while the particle size, and charge of HIPEs was further adjusted through different homogenization rates. The results demonstrated that an optimal preheating temperature of 70 °C for the complex and a homogenization rate of 15,000 rpm for HIPEs enhanced the stability of the entire emulsion system by producing more uniform and smaller droplet distribution with improved rheological properties. Furthermore, in vitro digestion experiments showed that HIPEs stabilized by the SPI-R complexes (HSR) at optimal homogenization rate had better loading efficiency (98.68 %) and bioaccessibility compared to other groups. Additionally, fitting results from release kinetics confirmed that rutin encapsulated by HSR could achieve sustained release effect. Overall, these findings suggest that HSR has great potential as an effective vehicle for delivering hydrophobic bioactive compounds like rutin within the food industry.
Collapse
Affiliation(s)
- Juyang Zhao
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China; Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China.
| | - Yiyu Chen
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China
| | - Shuo Xu
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China
| | - Xuwei Fang
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China
| | - Feiran Yang
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China
| | - Yuanyuan Li
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| |
Collapse
|
7
|
Liu K, Li Y, Li J, Yu X, Zhong X, Su W, Tan M. Alleviation effect of lutein Pickering emulsion formed by casein-dextran conjugates through Maillard reaction against blue light retinal degeneration. Int J Biol Macromol 2024; 282:136878. [PMID: 39454917 DOI: 10.1016/j.ijbiomac.2024.136878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
With the increasing prevalence of electronic devices, awareness of the risks linked to blue light exposure has significantly heightened. Lutein, a powerful antioxidant, safeguards eye tissue by filtering blue light, while supplementation with docosahexaenoic acid (DHA) enhances retinal function. Adequate intake of these nutrients can help reduce the potential damage from prolonged blue light exposure. The protective effects of lutein and algal oil stabilized with Pickering emulsion were investigated using casein-dextran (CD) conjugates via Maillard reaction. Microstructural analysis revealed a three-dimensional network structure surrounding oil droplets formed by CD conjugates. With the increase of the oil phase ratio from 55 % to 80 %, the average size of Pickering emulsion droplets decreased. Pickering emulsion demonstrated higher viscoelasticity, excellent recovery, thixotropy, and good thermal stability as the oil phase ratio increased. The retention of lutein in CD-75 % Pickering emulsions showed significant improvement under various conditions. Simulated gastrointestinal digestion demonstrated that CD-75 % Pickering emulsions effectively enhanced the lutein bioaccessibility from 19.97 % to 48.99 %. In vivo experiments showed that lutein-loaded Pickering emulsion could effectively relieve blue light-induced retinal degeneration in mice. These findings suggested that Pickering emulsion can serve as a delivery system to protect lutein, offering a nutritional intervention to mitigate blue light-induced retinal degeneration.
Collapse
Affiliation(s)
- Kangjing Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Yu Li
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Jiaxuan Li
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Xiaoting Yu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Xu Zhong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China.
| |
Collapse
|
8
|
Jiang L, Zhang Z, Qiu C, Wen J. A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods 2024; 13:2453. [PMID: 39123644 PMCID: PMC11312236 DOI: 10.3390/foods13152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The efficacy of many edible bioactive agents is limited by their low water dispersibility and chemical instability in foods, as well as by their poor bioaccessibility, low absorption, and metabolism within the human gastrointestinal tract. Whey proteins are amphiphilic molecules that can be used to construct a variety of edible carrier systems that can improve the performance of bioactive ingredients. These carrier systems are being used by the food and biomedical industries to encapsulate, protect, and deliver a variety of bioactive agents. In this article, we begin by providing an overview of the molecular and functional characteristics of whey proteins, and then discuss their interactions with various kinds of bioactive agents. The ability of whey proteins to be used as building blocks to assemble different kinds of carrier systems is then discussed, including nanoparticles, hydrogels, oleogels, bigels, nanofibers, nanotubes, and nanoemulsions. Moreover, applications of these carrier systems are highlighted. Different kinds of whey protein-based carriers can be used to encapsulate, protect, and deliver bioactive agents. Each kind of carrier has its own characteristics, which make them suitable for different application needs in foods and other products. Previous studies suggest that whey protein-based carriers are particularly suitable for protecting chemically labile bioactive agents and for prolonging their release profiles. In the future, it is likely that the applications of whey protein-based carriers in the food and pharmaceutical fields will expand.
Collapse
Affiliation(s)
- Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| |
Collapse
|
9
|
Liu K, Li Y, Zhong X, Hou Y, Fei S, Chen E, Tan M. Protection effect of lutein-loaded Pickering emulsion prepared via ultrasound-assisted Maillard reaction conjugates on dry age-related macular degeneration. Food Funct 2024; 15:6347-6358. [PMID: 38768294 DOI: 10.1039/d4fo00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss among the elderly, and the treatment options for dry AMD (dAMD) are severely limited. Lutein has a favorable effect on the treatment of dAMD. Algae oil, rich in docosahexaenoic acid (DHA), is considered an effective intervention for eye diseases. In this study, casein-mannose conjugates were prepared to form algal oil-in-water Pickering emulsions by ultrasound-assisted Maillard reaction. As the ultrasound time increased from 0 to 25 min, the droplet size decreased to 648.2 ± 21.18 nm, which substantially improved the stability of the Pickering emulsions. The retention of lutein in the Pickering emulsions under ultrasonic treatment for 20 min was significantly improved under different conditions. The simulated gastrointestinal digestion revealed that ultrasound-assisted Pickering emulsions are an effective method for improving the bioaccessibility of lutein (19.76%-53.34%). In vivo studies elucidated that the lutein-loaded Pickering emulsions could effectively alleviate retinal thinning induced by sodium iodate (NaIO3) in mice with dAMD. Mechanistically, lutein-loaded Pickering emulsions significantly reduced oxidative stress by decreasing the MDA level, increasing the SOD production, and reducing the retinal ROS production. These findings explored the protective effects of lutein-loaded Pickering emulsions on dAMD and offered promising prospects for the nutritional intervention of dAMD.
Collapse
Affiliation(s)
- Kangjing Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yu Li
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xu Zhong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yitong Hou
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Fei
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Entao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
10
|
Fan Y, Gan C, Li Y, Kang L, Yi J. Fabrication of bovine serum albumin nanofibrils: Physicochemical characteristics, emulsifying and foaming activities. Int J Biol Macromol 2024; 271:132549. [PMID: 38782331 DOI: 10.1016/j.ijbiomac.2024.132549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Bovine serum albumin nanofibrils (BSNs) were fabricated under thermal treatment (85 °C) at acidic condition (pH 2.0) and the incubation time on the structural, and physicochemical characteristics were probed. The formation and development of BSNs have been detected and confirmed by Thioflavin T (ThT) fluorescence and circular dichroism (CD) measurements. The structural alterations of bovine serum albumin (BSA) have also been investigated using intrinsic fluorescence and Congo red (CGR) UV-vis spectroscopy. Atomic force microscopy (AFM) outcomes displayed the morphologies of BSNs at varied time, with a diameter of about 3 nm and a contour length of about 200 nm at 24 h. The apparent viscosities of BSNs at three different pH were in the following order: pH 3.0 > pH 5.0 > pH 7.0. Emulsifying and foaming properties of BSA were pronouncedly enhanced through fibrillation, which was highly correlated with the interfacial properties and structural characteristics. Highest EAI 54.2 m2/g was attained at 48 h and no pronounced alterations were observed for EAI at 24 h and 48 h. Maximum value of FC was obtained at 48 h for BSA. This study will provide some useful information in understanding the formation of BSNs and broaden their application in food systems as functional food ingredients.
Collapse
Affiliation(s)
- Yuting Fan
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Chao Gan
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanmei Li
- Yining Customs Technology Center, Yining, Xinjiang 835000, China
| | - Ling Kang
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiang Yi
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
11
|
Li S, Zhu Y, Hao X, Su H, Chen X, Yao Y. High internal phase Pickering emulsions stabilized by the complexes of ultrasound-treated pea protein isolate/mung bean starch for delivery of β-carotene. Food Chem 2024; 440:138201. [PMID: 38104448 DOI: 10.1016/j.foodchem.2023.138201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized by edible colloid particles have gained great interest. In this study, ultrasound-treated pea protein isolate and mung bean starch complexes (UPPI/MS) were prepared and used in stabilization of HIPPEs. The emulsifying properties of UPPI/MS were found to be superior to those of pea protein isolate (PPI), as evidenced by a smaller particle size and higher surface hydrophobicity. HIPPEs stabilized by UPPI/MS displayed a higher viscoelastic and gel-like structure. Low-Field NMR (LF-NMR) revealed that HIPPEs stabilized by UPPI60/MS (UPPI60/MS-HIPPEs) showed better ability to restrict the mobility of water. UPPI60/MS-HIPPEs also revealed the best environmental stability attributed a stronger three-dimensional network structure. Encapsulation of β-carotene within HIPPEs resulted in improving stability, with UPPI60/MS-HIPPEs exhibiting the highest retention rate of 73.58 %. Moreover, β-carotene encapsulated in HIPPEs displayed enhanced bioaccessibility, with UPPI60/MS-HIPPEs achieving the highest value of 25.37 %. This research highlighted the potential of UPPI60/MS complexes as effective stabilizers for HIPPEs and provided new insights on HIPPEs in nutrient delivery systems.
Collapse
Affiliation(s)
- Shiyu Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yingying Zhu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Xiyu Hao
- Heilongjiang Feihe Dairy Co., Ltd., C-16, Beijing 100015, China.
| | - Hang Su
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yang Yao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
12
|
Rayees R, Gani A, Noor N, Ayoub A, Ashraf ZU. General approaches to biopolymer-based Pickering emulsions. Int J Biol Macromol 2024; 267:131430. [PMID: 38599428 DOI: 10.1016/j.ijbiomac.2024.131430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Pickering emulsion is a type of emulsion that uses solid particles or colloidal particles as emulsifiers rather than surfactants to adhere at oil-water interface. Pickering emulsions have gathered significant research attention recently due to their excellent stability and wide range of potential uses compared to traditional emulsions. Major advancements have been made in development of innovative Pickering emulsions using different colloidal particles by various techniques including homogenization, emulsification and ultrasonication. Use of biopolymer particles gives Pickering emulsions a more escalating possibilities. In this review paper, we seek to present a critical overview of development in food-grade particles that have been utilized to create Pickering emulsions with a focus on techniques and application of Pickering emulsions. Particularly, we have evaluated protein, lipid, polysaccharide-based particles and microalgal proteins that have emerged in recent years with respect to their potential to stabilize and add novel functionalities to Pickering emulsions. Some preparation methods of Pickering emulsions in brief, applications of Pickering emulsions are also highlighted. Encapsulation and delivery of bioactive compounds, fat substitutes, film formation and catalysis are potential applications of Pickering emulsions. Pickering double emulsions, nutraceutical and bioactive co-delivery, and preparation of porous materials are among research trends of food-grade Pickering emulsions.
Collapse
Affiliation(s)
- Rahiya Rayees
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India.
| | - Nairah Noor
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Aneesa Ayoub
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Zanoor Ul Ashraf
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| |
Collapse
|
13
|
Fu DW, Fu JJ, Xu H, Shao ZW, Zhou DY, Zhu BW, Song L. Glycation-induced enhancement of yeast cell protein for improved stability and curcumin delivery in Pickering high internal phase emulsions. Int J Biol Macromol 2024; 257:128652. [PMID: 38065454 DOI: 10.1016/j.ijbiomac.2023.128652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Pickering high internal phase emulsions (HIPEs) have gained significant attention for various applications within the food industry. Yeast cell protein (YCP), derived from spent brewer's yeast, stands out as a preferred stabilizing agent due to its cost-effectiveness, abundance, and safety profile. However, challenges persist in utilizing YCP, notably its instability under high salt concentration, thermal processing, and proximity to its isoelectric point. This study aimed to enhance YCP's emulsifying properties through glycation with glucose and evaluate its efficacy as a stabilizer for curcumin (CUR)-loaded HIPEs. The results revealed that glycation increased YCP's surface hydrophobicity, exposing hydrophobic groups. This augmentation, along with steric hindrance from grafted glucose molecules, improved emulsifying properties, resulting in a thicker interfacial layer around oil droplets. This fortified interfacial layer, in synergy with steric hindrance, bolstered resistance to pH changes, salt ions, and thermal degradation. Moreover, HIPEs stabilized with glycated YCP exhibited reduced oxidation rates and improved CUR protection. In vitro digestion studies demonstrated enhanced CUR bioaccessibility, attributed to a faster release of fatty acids. This study underscores the efficacy of glycation as a strategic approach to augment the applicability of biomass proteins, exemplified by glycated YCP, in formulating stable and functional HIPEs for diverse food applications.
Collapse
Affiliation(s)
- Dong-Wen Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Jing-Jing Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, PR China
| | - Hang Xu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Zhen-Wen Shao
- Qingdao Seawit Life Science Co. Ltd., Qingdao, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China.
| |
Collapse
|
14
|
Niu X, Wan Z, Mhatre SE, Ye Y, Lu Y, Gao G, Bai L, Rojas OJ. Structured Emulgels by Interfacial Assembly of Terpenes and Nanochitin. ACS NANO 2023; 17:25542-25551. [PMID: 38078623 DOI: 10.1021/acsnano.3c09533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Interfacial assemblies formed by colloidal complexation are effective in multiphase stabilization, as shown in structured liquids and Pickering emulgels. Herein, we demonstrate a type of biobased colloidal system that spontaneously stabilizes an organic phase in a continuous hydrogel phase. Specifically, a triterpene extracted from bark (betulin, BE) is added to an organic phase containing a coniferous resin (rosin acid, a diterpene). BE is shown to take part in strong noncovalent interactions with the nanochitin dispersed in the aqueous (hydrogel) phase, leading to a complex of high interfacial activity. The viscoelastic response of the system is rationalized by the presence of a superstable structured dual network. When used as a templating material, the emulgel develops into structured liquids and cryogels. The herein introduced all-biobased type of nanoparticle surfactant system forms a gel ("emulsion-filled" with "aggregated droplets") that features the functional benefits of both betulin and nanochitin.
Collapse
Affiliation(s)
- Xun Niu
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Wood Science and Department of Chemistry, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Wood Science and Department of Chemistry, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sameer E Mhatre
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Wood Science and Department of Chemistry, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuhang Ye
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Wood Science and Department of Chemistry, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Wood Science and Department of Chemistry, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Guang Gao
- Life Sciences Institute Imaging Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Long Bai
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Wood Science and Department of Chemistry, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
15
|
Kuzhithariel Remanan M, Zhu F. Encapsulation of ferulic acid in high internal phase Pickering emulsions stabilized using nonenyl succinic anhydride (NSA) and octenyl succinic anhydride (OSA) modified quinoa and maize starch nanoparticles. Food Chem 2023; 429:136748. [PMID: 37467669 DOI: 10.1016/j.foodchem.2023.136748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized using modified starch nanoparticles (SNPs) were studied as a delivery system for ferulic acid (FA). The quinoa (Q, 153 nm) and maize (M, 221 nm) SNPs were prepared by sono-precipitation and modified with nonenyl succinic anhydride (NSA) and octenyl succinic acid (OSA). The FA-encapsulated HIPPEs obtained showed neither coalescence nor Ostwald ripening, as reflected by emulsion index and droplet size measurements. Confocal laser scanning microscopy revealed FA entrapped droplets surrounded by the SNPs layer. The rheological measurements confirmed strong network formation and long-term stability. In vitro studies (pH 7.4, 96 h) showed sustained release of FA from the gel network. After 15 days, the encapsulation efficiencies for HIPPEs stabilized with both NSA and OSA modified QSNPs and MSNPs were close to 99%. The results showed that FA could be feasibly encapsulated in HIPPEs stabilized using modified SNPs.
Collapse
Affiliation(s)
- Mejo Kuzhithariel Remanan
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
16
|
Liu C, Cheng S, Wang H, Tan M. Pickering emulsion stabilized by Haematococcus pluvialis protein particles and its application in dumpling stuffing. Food Res Int 2023; 170:112957. [PMID: 37316005 DOI: 10.1016/j.foodres.2023.112957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/25/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
In this study, the oil-in-water Pickering emulsions were prepared using Haematococcus Pluvialis protein (HPP) particles as an emulsifier by a simple one-step emulsification method. The internal oil phase was as high as 70 % due to the excellent emulsifying properties of HPP, and the average size of oil droplets in the emulsion was around 20 μm. The emulsion prepared by 2.5 % HPP with the oil phase ratio of 70 % showed the best stability after 14 days of storage, and the emulsion could maintain stability at acidic condition, high ionic strength, low and high temperatures. However, all emulsion samples exhibited shear thinning phenomenon, and the higher HPP concentration and oil phase ratio led to greater G' and G″ modulus. NMR relaxation results showed that high concentration HPP could limit the mobility of free water in the emulsion and improve the emulsion stability. The HPP-stabilized emulsion could inhibit the oxidation of oil phase during storage due to the DPPH and ABTS radical scavenging activity of astaxanthin (AST) in HPP. Finally, the nutritional microspheres based on HPP-stabilized emulsion showed good stability in traditional dumplings and could reduce the loss of AST and DHA in algae oil during the boiling of dumplings.
Collapse
Affiliation(s)
- Chenyue Liu
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shasha Cheng
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Haitao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
17
|
Liu R, Li Y, Zhou C, Tan M. Pickering emulsions stabilized with a spirulina protein-chitosan complex for astaxanthin delivery. Food Funct 2023; 14:4254-4266. [PMID: 37067860 DOI: 10.1039/d3fo00092c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Astaxanthin (AXT) is a lipid-soluble carotenoid with good anti-oxidation, hepatic steatosis reduction, anti-inflammation, and intestinal microbiota regulation ability, whose poor stability and pH vulnerability limit its bioavailability. Spirulina protein (SP) derived from spirulina has good emulsifying ability with potential application in nutraceuticals, medicines, and cosmetics. In this study, Pickering emulsions were prepared using a SP-chitosan (CS) complex as an emulsifier. The particle size, zeta potential, and three-phase contact angle of the SP-CS complex with different SP to CS ratios were investigated. A mass ratio of 1 : 2.5 SP-CS complex showed a good emulsifying ability in preparing Pickering emulsion. A higher storage modulus and viscoelasticity were observed with higher SP-CS complex concentrations and oil fractions. The SP-CS Pickering emulsion significantly improved the stability of AXT in different environments. The lipid release rate and AXT bioavailability after digestion of 3 wt% SP-CS complex-stabilized Pickering emulsion reached 70.54 ± 1.59% and 36.60 ± 3.44%, respectively. The results indicated that the SP-CS complex could act as a Pickering emulsion stabilizer and had the potential to deliver protective hydrophobic AXT.
Collapse
Affiliation(s)
- Ronggang Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Chengfu Zhou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| |
Collapse
|
18
|
Li X, Zhang M, Zhou L, Liu J, Marchioni E. Construction of whey protein gels prepared by three methods to stabilize high internal phase Pickering emulsions loaded with CoQ10 under different pH. Food Chem 2023; 421:136192. [PMID: 37130448 DOI: 10.1016/j.foodchem.2023.136192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/08/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023]
Abstract
The aim of this study was to investigate the effect of whey protein gel particles (WPGPs) prepared by heat-induced method, enzyme cross-linking method and calcium ion cross-linking method on the structural properties and intrinsic linkage of their stable high internal phase Pickering emulsions (HIPPEs) under different pH conditions. The effects of different pH and preparation methods on the internal interaction forces, particle size, ζ-potential, wettability and secondary structure of gels was investigated. The results indicated that the construction of HIPPEs system was successfully constructed at pH 3, 5 or 7. The WPGPs stabilized HIPPEs can maintain stable state at 4 °C for 28 days. Coenzyme Q10 (CoQ10) loaded with HIPPEs increased the bioavailability from 13.2% to 79.4%, which was demonstrated in in vitro digestion experiments.
Collapse
Affiliation(s)
- Xiang Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, (South-Central MinZu University), Wuhan 430074, PR China
| | - Minghao Zhang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, (South-Central MinZu University), Wuhan 430074, PR China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, (South-Central MinZu University), Wuhan 430074, PR China.
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, (South-Central MinZu University), Wuhan 430074, PR China.
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| |
Collapse
|
19
|
Wen J, Jin H, Wang L, Zhang Y, Jiang L, Sui X. Fabrication and characterization of high internal phase Pickering emulsions based on pH-mediated soy protein-epigallocatechin-3-gallate hydrophobic and hydrophilic nano-stabilizer. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
20
|
Borba CM, de Moraes Soares Araújo G, Contessa CR, Dora CL, de Medeiros Burkert JF. Influence of β-Carotene Nanoemulsions on Technological Parameters and Stability in Food Matrices. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
21
|
Cheng H, Chen W, Jiang J, Khan MA, Wusigale, Liang L. A comprehensive review of protein-based carriers with simple structures for the co-encapsulation of bioactive agents. Compr Rev Food Sci Food Saf 2023; 22:2017-2042. [PMID: 36938993 DOI: 10.1111/1541-4337.13139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/28/2023] [Accepted: 02/21/2023] [Indexed: 03/21/2023]
Abstract
The rational design and fabrication of edible codelivery carriers are important to develop functional foods fortified with a plurality of bioactive agents, which may produce synergistic effects in increasing bioactivity and functionality to target specific health benefits. Food proteins possess considerable functional attributes that make them suitable for the delivery of a single bioactive agent in a wide range of platforms. Among the different types of protein-based carriers, protein-ligand nanocomplexes, micro/nanoparticles, and oil-in-water (O/W) emulsions have increasingly attracted attention in the codelivery of multiple bioactive agents, due to the simple and convenient preparation procedure, high stability, matrix compatibility, and dosage flexibility. However, the successful codelivery of bioactive agents with diverse physicochemical properties by using these simple-structure carriers is a daunting task. In this review, some effective strategies such as combined functional properties of proteins, self-assembly, composite, layer-by-layer, and interfacial engineering are introduced to redesign the carrier structure and explore the encapsulation of multiple bioactive agents. It then highlights success stories and challenges in the co-encapsulation of multiple bioactive agents within protein-based carriers with a simple structure. The partition, protection, and release of bioactive agents in these protein-based codelivery carriers are considered and discussed. Finally, safety and application as well as challenges of co-encapsulated bioactive agents in the food industry are also discussed. This work provides a state-of-the-art overview of protein-based particles and O/W emulsions in co-encapsulating bioactive agents, which is essential for the design and development of novel functional foods containing multiple bioactive agents.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanwen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiang Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Zhao Q, Fan L, Li J. Biopolymer-based pickering high internal phase emulsions: Intrinsic composition of matrix components, fundamental characteristics and perspective. Food Res Int 2023; 165:112458. [PMID: 36869475 DOI: 10.1016/j.foodres.2023.112458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Pickering HIPEs have received tremendous attention in recent years due to their superior stability and unique solid-like and rheological properties. Biopolymer-based colloidal particles derived from proteins, polysaccharides and polyphenols have been demonstrated to be safety stabilizers for the construction of Pickering HIPEs, which can meet the demands of consumers for "all-natural" products and provide "clean-label" foods. Furthermore, the functionality of these biopolymers can be further extended by forming composite, conjugated and multi-component colloidal particles, which can be used to modulate the properties of the interfacial layer, thereby adjusting the performance and stability of Pickering HIPEs. In this review, the factors affecting the interfacial behavior and adsorption characteristics of colloidal particles are discussed. The intrinsic composition of matrix components and fundamental characteristics of Pickering HIPEs are emphatically summarized, and the emerging applications of Pickering HIPEs in the food industry are reviewed. Inspired by these findings, future perspectives concerning this field are also put forward, including (1) the exploration of the interactions between biopolymers used to produce Pickering HIPEs and target food ingredients, and the influence of the added biopolymers on the flavor and mouthfeel of the products, (2) the investigation of the digestion properties of Pickering HIPEs under oral administration, and (3) the fabrication of stimulus-responsive or transparent Pickering HIPEs. This review will give a reference for exploring more natural biopolymers for Pickering HIPEs application development.
Collapse
Affiliation(s)
- Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
23
|
Cassani L, Prieto MA, Gomez-Zavaglia A. Effect of food-grade biopolymers coated Pickering emulsions on carotenoids' stability during processing, storage, and passage through the gastrointestinal tract. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
24
|
Preparation of Pangasius hypophthalmus protein-stabilized pickering emulsions and 3D printing application. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Song Y, Zhou L, Zhang D, Wei Y, Jiang S, Chen Y, Ye J, Shao X. Stability and release of peach polyphenols encapsulated by Pickering high internal phase emulsions in vitro and in vivo. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
26
|
High-internal-phase emulsions stabilized solely by chitosan hydrochloride: Fabrication and effect of pH on stabilization mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Zhang M, Li X, Zhou L, Chen W, Marchioni E. Protein-Based High Internal Phase Pickering Emulsions: A Review of Their Fabrication, Composition and Future Perspectives in the Food Industry. Foods 2023; 12:482. [PMID: 36766011 PMCID: PMC9914728 DOI: 10.3390/foods12030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Protein-based high internal phase Pickering emulsions (HIPEs) are emulsions using protein particles as a stabilizer in which the volume fraction of the dispersed phase exceeds 74%. Stabilizers are irreversibly adsorbed at the interface of the oil phase and water phase to maintain the droplet structure. Protein-based HIPEs have shown great potential for a variety of fields, including foods, due to the wide range of materials, simple preparation, and good biocompatibility. This review introduces the preparation routes of protein-based HIPEs and summarizes and classifies the preparation methods of protein stabilizers according to their formation mechanism. Further outlined are the types and properties of protein stabilizers used in the present studies, the composition of the oil phase, the encapsulating substances, and the properties of the constituted protein-based HIPEs. Finally, future development of protein-based HIPEs was explored, such as the development of protein-based stabilizers, the improvement of emulsification technology, and the quality control of stabilizers and protein-based HIPEs.
Collapse
Affiliation(s)
- Minghao Zhang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Xiang Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Weilin Chen
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Eric Marchioni
- Inst Pluridisciplinaire Hubert Curien, CNRS, Equipe Chim Analyt Mol Bioact & Pharmacognoise, UMR 7178, UDS, F-67400 Illkirch Graffenstaden, France
| |
Collapse
|
28
|
Fan Y, Li G, Yi J, Huang H. Structural characteristics, emulsifying and foaming properties of laccase-crosslinked bovine α-lactalbumin mediated by caffeic acid. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Fan Y, Luo D, Yi J. Resveratrol-loaded α-lactalbumin-chitosan nanoparticle-encapsulated high internal phase Pickering emulsion for curcumin protection and its in vitro digestion profile. Food Chem X 2022; 15:100433. [PMID: 36211747 PMCID: PMC9532759 DOI: 10.1016/j.fochx.2022.100433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
RES-ALA-CHI colloidal particles were fabricated as CUR-loaded HIPPEs stabilizers. RES-ALA-CHI nanoparticle pronouncedly enhanced the chemical stability of CUR. Lipolysis of HIPPEs can be controlled with RES-ALA-CHI colloidal particles. CUR bioaccessibility can be controlled with RES-ALA-CHI colloidal particles.
The use of antioxidant-loaded protein-polysaccharide nanoparticle in stabilizing and delivering curcumin with high internal phase Pickering emulsions is comparatively scarce. Resveratrol (RES)-loaded α-lactalbumin (ALA)-chitosan (CHI) particles were fabricated and used for curcumin-loaded high internal phase Pickering emulsions (HIPPEs) stabilization and delivery. CLSM illustrated that RES-ALA-CHI nanoparticles were effectively adsorbed on oil/water (O/W) interface and a gel-like structure was formed surrounding oil droplets. All HIPPEs exhibited excellent physical stability. CUR retention was 75.4 % for HIPPEs with RES-ALA-CHI colloidal particles, which was appreciably higher than that with ALA-CHI colloidal particles (63.9 %) after 30 days storage. Compared to bulk medium-chain triglyceride (MCT), both lipolysis extent and curcumin (CUR) bioaccessibility were pronouncedly enhanced with HIPPEs-based delivery systems. But both HIPPEs (51.4 % and 43.7 %) exhibited lower extent of lipolysis than conventional emulsions (90.4 %). The occurrence of RES significantly restrained the lipolysis. These results demonstrated that HIPPEs could be excellent delivery systems for delivering lipophilic curcumin.
Collapse
Affiliation(s)
- Yuting Fan
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Dixue Luo
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiang Yi
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Corresponding author.
| |
Collapse
|
30
|
Zhang L, Zaky AA, Zhou C, Chen Y, Su W, Wang H, Abd El-Aty A, Tan M. High internal phase Pickering emulsion stabilized by sea bass protein microgel particles: Food 3D printing application. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Zhou B, Drusch S, Hogan SA. Confined flow behavior under high shear rates and stability of oil/water high internal phase emulsions (HIPEs) stabilized by whey protein isolate: Role of protein concentration and pH. Food Res Int 2022; 160:111674. [DOI: 10.1016/j.foodres.2022.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
32
|
Liu Y, Liu Y. Construction of lipid-biomacromolecular compounds for loading and delivery of carotenoids: Preparation methods, structural properties, and absorption-enhancing mechanisms. Crit Rev Food Sci Nutr 2022; 64:1653-1676. [PMID: 36062817 DOI: 10.1080/10408398.2022.2118229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the unstable chemical properties and poor water solubility of carotenoids, their processing adaptation and oral bioavailability are poor, limiting their application in hydrophilic food systems. Lipid-biomacromolecular compounds can be excellent carriers for carotenoid delivery by taking full advantage of the solubilization of lipids to non-polar nutrients and the water dispersion and gastrointestinal controlled release properties of biomacromolecules. This paper reviewed the research progress of lipid-biomacromolecular compounds as encapsulation and delivery carriers of carotenoids and summarized the material selection and preparation methods for biomacromolecular compounds. By considering the interaction between the two, this paper briefly discussed the effect of these compounds on carotenoid water solubility, stability, and bioavailability, emphasizing their delivery effect on carotenoids. Finally, various challenges and future trends of lipid-biomacromolecular compounds as carotenoid delivery carriers were discussed, providing new insight into efficient loading and delivery of carotenoids.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
33
|
Guo J, Cui L, Huang Y, Meng Z. Spirulina platensis protein isolate nanoparticle stabilized O/W Pickering emulsions: Interfacial adsorption and bulk aggregation. Food Res Int 2022; 161:111815. [DOI: 10.1016/j.foodres.2022.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
|
34
|
Zhou C, Zhang L, Zaky AA, Tie S, Cui G, Liu R, El-Aty AA, Tan M. High internal phase Pickering emulsion by Spanish mackerel proteins-procyanidins: Application for stabilizing astaxanthin and surimi. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Zhang M, Zhu J, Zhou L, Kan J, Zhao M, Huang R, Liu J, Marchioni E. Antarctic krill oil high internal phase Pickering emulsion stabilized by bamboo protein gels and the anti-inflammatory effect in vitro and in vivo. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
Jie Y, Chen F, Zhu T, Lv D. High internal phase emulsions stabilized solely by carboxymethyl chitosan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Zheng R, Zhao T, Lin X, Chen Z, Li B, Zhang Y. Fabrication, characterization, and application of Pickering emulsion stabilized by tea ( Camellia sinensis (L.) O. Kuntze) waste microcrystalline cellulose. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2063883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ruiting Zheng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tong Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
38
|
Jia H, He J, Xu Y, Wang T, Zhang L, Wang B, Jiang X, Li X, Zhang X, Lv K. Synergistic effects of AlOOH and sodium benzenesulfonate on the generation of Pickering emulsions and their application for enhanced oil recovery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
|
40
|
Effect of ultrasound and coagulant types on properties of β-carotene bulk emulsion gels stabilized by soy protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Liu J, Guo J, Zhang H, Liao Y, Liu S, Cheng D, Zhang T, Xiao H, Du Z. The fabrication, characterization, and application of chitosan-NaOH modified casein nanoparticles and their stabilized long-term stable high internal phase Pickering emulsions. Food Funct 2022; 13:1408-1420. [PMID: 35048100 DOI: 10.1039/d1fo02202d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The demand for facile delivery systems from natural biopolymers with long-term storage stability to deliver liposoluble nutraceuticals such as β-carotene (BC) is increasing. In this work, a facile and reliable emulsifier of chitosan (CS)-NaOH-modified casein (CA) nanoparticles (NPs) was fabricated for the stabilization of high internal phase Pickering emulsions (HIPPEs) with versatile stability. Dynamic light scattering, TEM, FTIR, and interface tension results indicated that CS-CA NPs exhibited nanoscale (109-373 nm), positive charge (22-38 mV), pH-response, spherical in shape, assembled spontaneously by non-covalent interactions, and high surface activity. Optical microscopy, confocal laser scanning microscopy (CLSM), and rheometer results demonstrated that HIPPEs were emulsified by a dense and compact 3D network between the continuous phase and the interfacial region. Hence, the CS-CA NP-stabilized HIPPEs showed long-term storage stability (over 18 months at ambient temperature) and thermostabilization (1 month at 80 °C). The robust and compact CS-CA NPs dramatically declined the contents of primary and secondary oxidation production in HIPPEs than that by corn oil. Moreover, CS-CA NPs stabilized HIPPEs appreciably enhanced the bioaccessibility (2.56 times) and chemical stability (thermal, UV-light, and storage) of BC. This research evidenced that CS-protein or polysaccharide-CA-based systems could be an encouraging formulation to commercially construct tunable HIPPEs with adorable stability for liposoluble nutraceuticals with enhanced attributes.
Collapse
Affiliation(s)
- Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Jian Guo
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Yinan Liao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Shuaiyan Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Dahao Cheng
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
42
|
DENG W, LI Y, WU L, CHEN S. Pickering emulsions stabilized by polysaccharides particles and their applications: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.24722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Wei DENG
- Fujian Agriculture and Forestry University, China
| | - Yibin LI
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Li WU
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | | |
Collapse
|
43
|
Sun Y, Zhong M, Zhao X, Li Y, Qi B, Jiang L. Stability and digestion characteristics of pickering high internal phase emulsions formed by acid-induced soy lipophilic protein, β-conglycinin, and globulin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Cao Y, Dai Y, Lu X, Li R, Zhou W, Li J, Zheng B. Formation of Shelf-Stable Pickering High Internal Phase Emulsion Stabilized by Sipunculus nudus Water-Soluble Proteins (WSPs). Front Nutr 2021; 8:770218. [PMID: 34888338 PMCID: PMC8650626 DOI: 10.3389/fnut.2021.770218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022] Open
Abstract
To form a stable emulsion system, the water-soluble proteins (WSPs) of Sipunculus nudus were prepared as the sole effective stabilizer for the high internal phase emulsion (HIPEs), of which the influence of the WSPs concentration and environmental stability was investigated. The HIPEs were fabricated using a simple one-pot homogenization process (10,000 rpm/min, 3 min) that involved blending the WSPs (0.1, 1, 2, 3, 4, and 5 wt%) with soybean oil (60, 65, 70, 75, 80, 85, and 90%). The microstructure and properties of stable HIPEs were characterized by particle size, ζ-potential, visual observations, optical microscopy, and dynamic rheology property measurements. As the concentration of WSPs increases, the mean particle diameter of HIPEs decreases, on the contrary, the apparent viscosity and storage modulus gradually increase. At a given emulsifier concentration (3 wt%), the stable and gel-like HIPEs were formed at the oil internal phase (ϕ) values of 70–75%, all the pH range in values from 3 to 9, and the ionic strength from 100 to 500 mM. Furthermore, the HIPEs that were stabilized formed a gel-like state that was relatively stable to heat and storage (30 days). And there was a new phenomenon that the destabilized HIPE of the freeze-thaw treatments could still return to a gel-like state again after homogenizing. The study results suggest that the WSPs of S. nudus as a natural emulsifier could be widely used in the food industry.
Collapse
Affiliation(s)
- Yupo Cao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
45
|
Zhang L, Zhou C, Na X, Chen Y, Tan M. High internal phase Pickering emulsions stabilized by a cod protein-chitosan nanocomplex for astaxanthin delivery. Food Funct 2021; 12:11872-11882. [PMID: 34735562 DOI: 10.1039/d1fo02117f] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized by a food protein have attracted widespread attention. In this study, a novel cod protein-chitosan nanocomplex was prepared through electrostatic interactions and used as a particle emulsifier to stabilize the oil-water interface. The application of the cod protein-chitosan nanocomplex was demonstrated in the formation of stable HIPPEs with an internal phase as high as 84%. The influence of the system composition on the stability, microstructure and rheology of the HIPPEs was determined. The HIPPEs stabilized by the cod protein-chitosan nanocomplex formed a compact three-dimensional network structure, which gave the emulsion a higher storage modulus, viscoelasticity and good thixotropy. Interestingly, the chemical stability of astaxanthin was significantly improved by the developed HIPPEs. The bioavailability of astaxanthin in the HIPPEs stabilized by the nanocomplexes of 2.0% (w/w) cod protein and 0.1% (w/w) chitosan reached 49%. In summary, these results demonstrated that the food-grade cod protein-chitosan nanocomplex had potential in the development of HIPPEs, which could be used as carriers for hydrophobic bioactive compound delivery.
Collapse
Affiliation(s)
- Lijuan Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Chengfu Zhou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiaokang Na
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yannan Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
46
|
Yi J, He Q, Fan Y. Protection of menhaden oil from oxidation in Pickering emulsion-based delivery systems with α-lactalbumin-chitosan colloidal nanoparticle. Food Funct 2021; 12:11366-11377. [PMID: 34671789 DOI: 10.1039/d1fo02322e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study, α-lactalbumin-chitosan (ALA-CHI) colloidal nanoparticles were spontaneously formed mainly through electrostatic interactions for stabilizing Pickering emulsion loaded with health-beneficial but unstable menhaden oil. The oxidative stability of menhaden oil was supposed to be significantly enhanced with Pickering emulsion-based delivery systems with ALA-CHI colloidal particles. The film of ALA-CHI colloidal nanoparticles had higher surface hydrophobicity than ALA at pH 5.0, and 6.5. A near-neutral wettability (89.6°) of ALA-CHI nanoparticles was observed at pH 5.0. Stable Pickering emulsions (60% menhaden oil fraction, w/w) were successfully fabricated with only 0.12% (w/w) of ALA-CHI nanoparticles. Pickering emulsions exhibited superior storage, heat, and centrifugation stability. The formation of gel-like structures was confirmed by rheological results. The viscosity and storage modulus in the frequency range of 0.1 to 10 Hz with a 1.0% strain exhibited remarkable increases with increasing colloidal particle concentration or oil fraction. Increasing oil fractions from 20% to 60% (w/w) or colloidal particle concentrations 0.12% to 2.40% (w/w) can pronouncedly facilitate the inhibition of lipid oxidation, as confirmed by detecting the formation of primary and secondary oxidation products.
Collapse
Affiliation(s)
- Jiang Yi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Qingyu He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Yuting Fan
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
47
|
Exploration of the Microstructure and Rheological Properties of Sodium Alginate-Pectin-Whey Protein Isolate Stabilized Β-Carotene Emulsions: To Improve Stability and Achieve Gastrointestinal Sustained Release. Foods 2021; 10:foods10091991. [PMID: 34574098 PMCID: PMC8465917 DOI: 10.3390/foods10091991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Sodium alginate (SA)-pectin (PEC)-whey protein isolate (WPI) complexes were used as an emulsifier to prepare β-carotene emulsions, and the encapsulation efficiency for β-carotene was up to 93.08%. The confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) images showed that the SA-PEC-WPI emulsion had a compact network structure. The SA-PEC-WPI emulsion exhibited shear-thinning behavior and was in a semi-dilute or weak network state. The SA-PEC-WPI stabilized β-carotene emulsion had better thermal, physical and chemical stability. A small amount of β-carotene (19.46 ± 1.33%) was released from SA-PEC-WPI stabilized β-carotene emulsion in simulated gastric digestion, while a large amount of β-carotene (90.33 ± 1.58%) was released in simulated intestinal digestion. Fourier transform infrared (FTIR) experiments indicated that the formation of SA-PEC-WPI stabilized β-carotene emulsion was attributed to the electrostatic and hydrogen bonding interactions between WPI and SA or PEC, and the hydrophobic interactions between β-carotene and WPI. These results can facilitate the design of polysaccharide-protein stabilized emulsions with high encapsulation efficiency and stability for nutraceutical delivery in food and supplement products.
Collapse
|
48
|
Bai L, Huan S, Rojas OJ, McClements DJ. Recent Innovations in Emulsion Science and Technology for Food Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8944-8963. [PMID: 33982568 DOI: 10.1021/acs.jafc.1c01877] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Emulsion technology has been used for decades in the food industry to create a diverse range of products, including homogenized milk, creams, dips, dressings, sauces, desserts, and toppings. Recently, however, there have been important advances in emulsion science that are leading to new approaches to improving food quality and functionality. This article provides an overview of a number of these advanced emulsion technologies, including Pickering emulsions, high internal phase emulsions (HIPEs), nanoemulsions, and multiple emulsions. Pickering emulsions are stabilized by particle-based emulsifiers, which may be synthetic or natural, rather than conventional molecular emulsifiers. HIPEs are emulsions where the concentration of the disperse phase exceeds the close packing limit (usually >74%), which leads to novel textural properties and high resistance to gravitational separation. Nanoemulsions contain very small droplets (typically d < 200 nm), which leads to useful functional attributes, such as high optical clarity, resistance to gravitational separation and aggregation, rapid digestion, and high bioavailability. Multiple emulsions contain droplets that have smaller immiscible droplets inside them, which can be used for reduced-calorie, encapsulation, and delivery purposes. This new generation of advanced emulsions may lead to food and beverage products with improved quality, health, and sustainability.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Siqi Huan
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Post Office Box 16300, FI-00076 Aalto, Espoo, Finland
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
49
|
Qin XS, Gao QY, Luo ZG. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus Plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106658] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Yi J, Huang H, Wen Z, Fan Y. Fabrication of chitosan-gallic acid conjugate for improvement of physicochemical stability of β-carotene nanoemulsion: Impact of Mw of chitosan. Food Chem 2021; 362:130218. [PMID: 34087713 DOI: 10.1016/j.foodchem.2021.130218] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
In this research, three various Mw of chitosan (CS)-gallic acid (GA) conjugates were synthesized, characterized, and used for improvement of physicochemical stability of β-carotene (BC) nanoemulsion (NE) by layer-by-layer technique. GA conjugation degrees were in the following order: HCS (125.6 mg/g) > MCS (102.3 mg/g) > LCS (74.6 mg/g) at GA:CS mass ratio of 0.5:1. Three varying Mw of CS-GA conjugates exhibited pronouncedly higher antioxidant abilities than native CS. For native CS, antioxidant abilities increased with the decrease of Mw. However, HCS-GA conjugate showed the highest antioxidant activity, due to the higher GA conjugation degrees and decreased intramolecular hydrogen bonds and crystallinity in HCS-GA conjugate. CS-GA conjugates substantially improved BC chemical stability in NE than CS and BC retentions were in the following order: HCS-GA (76.8%) > MCS-GA (68.3%) > LCS-GA (53.4%) after 30 days storage. The results obtained may provide some useful information for the applications of CS-GA conjugates for nutraceuticals stabilization in food systems.
Collapse
Affiliation(s)
- Jiang Yi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Huimin Huang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhen Wen
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yuting Fan
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, China.
| |
Collapse
|