1
|
Liu C, Xu X. Droplet Microfluidics for Advanced Single-Cell Analysis. SMART MEDICINE 2025; 4:e70002. [PMID: 40303868 PMCID: PMC11970111 DOI: 10.1002/smmd.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
Droplet microfluidics has emerged as a breakthrough technology that is changing our comprehension of single-cell and their associated research. By separating individual cells within tiny droplets, ranging from nanoliters to picoliters using microfluidic devices, this innovative approach has revolutionized investigations at the single-cell level. Each of these droplets serves as a distinct experimental reaction vessel, enabling thorough exploration of cellular phenotypic variations, interactions between cells or cell-microorganisms as well as genomic insights. This review paper presents a comprehensive overview of the current state-of-the-art in droplet microfluidics, which has made single-cell analysis a practical approach for biological research. The review delves into the technological advancements in single-cell encapsulation techniques within droplet microfluidics, elucidating their applications in high-throughput single-cell screening, intercellular and cell-microorganism interactions, and genomic analysis. Furthermore, it discusses the advantages and constraints of droplet microfluidic technology, shedding light on critical factors such as throughput and versatile integration. Lastly, the paper outlines the potential avenues for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Chang Liu
- College of Chemistry and Material ScienceShandong Agricultural UniversityTaianChina
| | - Xiaoyu Xu
- College of Chemistry and Material ScienceShandong Agricultural UniversityTaianChina
| |
Collapse
|
2
|
Luo S, Notaro A, Lin L. ATLAS-seq: a microfluidic single-cell TCR screen for antigen-reactive TCRs. Nat Commun 2025; 16:216. [PMID: 39746936 PMCID: PMC11696065 DOI: 10.1038/s41467-024-54675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Discovering antigen-reactive T cell receptors (TCRs) is central to developing effective engineered T cell immunotherapies. However, the conventional technologies for isolating antigen-reactive TCRs (i.e., major histocompatibility complex (MHC) multimer staining) focus on high-affinity interactions between the TCR and MHC-antigen complex, and may fail to identify TCRs with high efficacy for activating T cells. Here, we develop a microfluidic single-cell screening method for antigen-reactive T cells named ATLAS-seq (Aptamer-based T Lymphocyte Activity Screening and SEQuencing). This technology isolates and characterizes activated T cells via an aptamer-based fluorescent molecular sensor, which monitors the cytotoxic cytokine IFNγ secretion from single T cells upon antigen stimulation, followed by single-cell RNA and single-cell TCR sequencing. We use ATLAS-seq to screen TCRs reactive to cytomegalovirus (CMV) or prostate specific antigen (PSA) from peripheral blood mononuclear cells (PBMCs). ATLAS-seq identifies distinct TCR clonotype populations with higher T cell activation levels compared to TCRs recovered by MHC multimer staining. Select TCR clonotypes from ATLAS-seq are more efficient in target cell killing than those from MHC multimer staining. Collectively, ATLAS-seq provides an efficient and broadly applicable technology to screen antigen-reactive TCRs for engineered T cell immunotherapy.
Collapse
Affiliation(s)
- Siwei Luo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amber Notaro
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lan Lin
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Azuaje-Hualde E, Alonso-Cabrera JA, de Pancorbo MM, Benito-Lopez F, Basabe-Desmonts L. Integration of secreted signaling molecule sensing on cell monitoring platforms: a critical review. Anal Bioanal Chem 2024; 416:7249-7266. [PMID: 39048740 PMCID: PMC11584473 DOI: 10.1007/s00216-024-05435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Monitoring cell secretion in complex microenvironments is crucial for understanding cellular behavior and advancing physiological and pathological research. While traditional cell culture methods, including organoids and spheroids, provide valuable models, real-time monitoring of cell secretion of signaling molecules remains challenging. Integrating advanced monitoring technologies into these systems often disrupts the delicate balance of the microenvironment, making it difficult to achieve sensitivity and specificity. This review explored recent strategies for integrating the monitoring of cell secretion of signaling molecules, crucial for understanding and replicating cell microenvironments, within cell culture platforms, addressing challenges such as non-adherent cell models and the focus on single-cell methodologies. We highlight advancements in biosensors, microfluidics, and three-dimensional culture methods, and discuss their potential to enhance real-time, multiplexed cell monitoring. By examining the advantages, limitations, and future prospects of these technologies, we aim to contribute to the development of integrated systems that facilitate comprehensive cell monitoring, ultimately advancing biological research and pharmaceutical development.
Collapse
Affiliation(s)
- Enrique Azuaje-Hualde
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Juncal A Alonso-Cabrera
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa, Spain.
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| |
Collapse
|
4
|
Kiel Rasmussen AC, Hulen T, Petersen D, Jacobsen M, Mikkelsen M, Met Ö, Donia M, Chamberlain C, Mouritzen P. Analyzing functional heterogeneity of effector cells for enhanced adoptive cell therapy applications. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 24:100738. [PMID: 39629159 PMCID: PMC11613168 DOI: 10.1016/j.iotech.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cellular effector function assays traditionally rely on bulk cell populations that mask complex heterogeneity and rare subpopulations. The Xdrop® droplet technology facilitates high-throughput compartmentalization of viable single cells or single-cell pairs in double-emulsion droplets, enabling the study of single cells or cell-cell interactions at an individual level. Effector cell molecule secretion and target cell killing can be evaluated independently or in combination. Compatibility with a wide range of commercial assay reagents allows for single-cell level readouts using common laboratory techniques such as flow cytometry or microscopy. Moreover, individual cells of interest can be viably isolated for further investigation or expansion. Here we demonstrate the application of the double-emulsion droplet technology with a range of cell types commonly utilized for adoptive cell therapy of cancer: natural killer cells, blood-derived T cells, tumor-infiltrating lymphocytes, and chimeric antigen receptor T cells. Single-cell compartmentalization offers unparalleled resolution, serving as a valuable tool for advancing the development and understanding of cellular therapy products.
Collapse
Affiliation(s)
- AC. Kiel Rasmussen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
- Samplix ApS, Birkerød, Denmark
| | - T.M. Hulen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | | | | | | | - Ö. Met
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - M. Donia
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - C.A. Chamberlain
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | | |
Collapse
|
5
|
Cong L, Guo X, Wang J, Meng F, Zhao J, Xu W, Shi W, Liang C, Shi Z, Xu S. In-droplet multiplex immunoassays for hypoxia-induced single-cell cytokines. Talanta 2024; 278:126548. [PMID: 39008932 DOI: 10.1016/j.talanta.2024.126548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Cytokine expression is an important biomarker in understanding hypoxia microenvironments in tumor growth and metastasis. In-droplet-based immunoassays performed above the target cell membrane were employed to track the cytokines of single cells with the aid of three types of immuno-nanoprobes (one capture nanoprobe and two reporter nanoprobes). Single cells and nanoprobes were co-packaged in water-in-oil microdroplets (about 100 μm in diameter) using a cross-shaped microfluidic chip. In each droplet, capture nanoprobes would be first fixed to the cell surface by linking to membrane proteins that have been streptavidinized. Then, the capture nanoprobes can collect cell-secreted cytokines (VEGF and IL-8) by the antibodies, followed by two reporter nanoprobes that emit distinguishable fluorescence. Fluorescence imaging was utilized to record the signal outputs of two reporter probes, which reflect cytokine expressions secreted by a single tumor cell. The cytokine levels at different degrees of hypoxia induction were assessed. Multiple chemometric methods were adopted to distinguish differences in the secretion of two cytokines and the results demonstrated a positive correlation. This study developed an in-droplet, dual-target, simultaneous biosensing strategy for a single cell, which is helpful for understanding the impacts of hypoxia microenvironments on cell cytokines that are vital for assessing early cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Lili Cong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xiaolei Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jiaqi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Fanxiang Meng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Junyi Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Wei Shi
- Key Lab for Molecular Enzymology & Engineering of Ministry of Education, Jilin University, Changchun, 130012, PR China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun, 130021, PR China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China; Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
6
|
Bartkova S, Zapotoczna M, Sanka I, Scheler O. A Guide to Biodetection in Droplets. Anal Chem 2024; 96:9745-9755. [PMID: 38842026 PMCID: PMC11190884 DOI: 10.1021/acs.analchem.3c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Droplet-based methods for optical biodetection enable unprecedented high-throughput experimental parameters. The methods, however, remain underused due to the accompanying multidisciplinary and complicated experimental workflows. Here, we provide a tutorial for droplet-based optical biodetection workflows with a focus on the key aspect of label selection. By discussing and guiding readers through recent state-of-the-art studies, we aim to make droplet-based approaches more accessible to the general scientific public.
Collapse
Affiliation(s)
- Simona Bartkova
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia
| | - Marta Zapotoczna
- Faculty
of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Immanuel Sanka
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia
| | - Ott Scheler
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
7
|
Yuan Y, Ellis P, Tao Y, Bikos DA, Loveday EK, Thomas MM, Wilking JN, Chang CB, Ye F, Weitz DA. Digital droplet RT-LAMP increases speed of SARS-CoV-2 viral RNA detection. SMART MEDICINE 2024; 3:e20240008. [PMID: 39188696 PMCID: PMC11235653 DOI: 10.1002/smmd.20240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 08/28/2024]
Abstract
Nucleic acid amplification testing (NAAT) remains one of the most reliable methods for pathogen identification. However, conventional bulk NAATs may not be sufficiently fast or sensitive enough for the detection of clinically-relevant pathogens in point-of-care testing. Here, we have developed a digital droplet RT-LAMP (ddRT-LAMP) assay that rapidly and quantitatively detects the SARS-CoV-2 viral E gene in microfluidic drops. Droplet partitioning using ddRT-LAMP significantly accelerates detection times across a wide range of template concentrations compared to bulk RT-LAMP assays. We discover that a reduction in droplet diameter decreases assay times up to a certain size, upon which surface adsorption of the RT-LAMP polymerase reduces reaction efficiency. Optimization of drop size and polymerase concentration enables rapid, sensitive, and quantitative detection of the SARS-CoV-2 E gene in only 8 min. These results highlight the potential of ddRT-LAMP assays as an excellent platform for quantitative point-of-care testing.
Collapse
Affiliation(s)
- Yuan Yuan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Perry Ellis
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Ye Tao
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Dimitri A. Bikos
- Department of Chemical and Biological EngineeringMontana State UniversityBozemanMontanaUSA
- Center for Biofilm EngineeringMontana State UniversityBozemanMontanaUSA
| | - Emma K. Loveday
- Department of Chemical and Biological EngineeringMontana State UniversityBozemanMontanaUSA
- Center for Biofilm EngineeringMontana State UniversityBozemanMontanaUSA
| | - Mallory M. Thomas
- Department of Chemical and Biological EngineeringMontana State UniversityBozemanMontanaUSA
- Center for Biofilm EngineeringMontana State UniversityBozemanMontanaUSA
| | - James N. Wilking
- Department of Chemical and Biological EngineeringMontana State UniversityBozemanMontanaUSA
- Center for Biofilm EngineeringMontana State UniversityBozemanMontanaUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Connie B. Chang
- Department of Chemical and Biological EngineeringMontana State UniversityBozemanMontanaUSA
- Center for Biofilm EngineeringMontana State UniversityBozemanMontanaUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Department of PhysicsHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| |
Collapse
|
8
|
Li Y, Li W, Chen J, Qiu S, Liu Y, Xu L, Tian T, Li JP. Deciphering single-cell protein secretion and gene expressions by constructing cell-antibody conjugates. Bioorg Chem 2024; 143:106987. [PMID: 38039927 DOI: 10.1016/j.bioorg.2023.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/03/2023]
Abstract
Secreted proteins play critical roles in regulating immune responses, exerting cytotoxic effects on tumor cells, promoting inflammatory processes, and influencing cellular metabolism. Deciphering the intricate relationship between the heterogeneity of secreted proteins and their transcriptional states is pivotal in the study of cellular heterogeneity. Here we proposed a cell-antibody conjugate-based sequencing methodology (Cellab-seq) for joint characterization of secreted proteins and transcriptome. Cellab-seq utilizes a chemoenzymatic strategy to construct cell-antibody conjugates, which enables the capture of secreted proteins and their signal transduction with the incorporation of barcode detection antibodies. We applied Cellab-seq to investigate how gene expression influences the activity of secreted proteins in NK cells. Altogether, this strategy facilitates a nuanced understanding of cellular dynamics under diverse physiological conditions, ultimately contributing to the prevention, diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yachao Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Wannan Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jiashang Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Shuang Qiu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yilong Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Lingjie Xu
- Vazyme Biotech, Red Maple Hi-tech Industry Park, Kechuang Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Tian Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
9
|
Xu Y, Wu KC, Jiang W, Hou Y, Cheow LF, Lee VHF, Chen CH. Single-Cell Secretion Analysis via Microfluidic Cell Membrane Immunosorbent Assay for Immune Profiling. Anal Chem 2024; 96:49-58. [PMID: 38109488 DOI: 10.1021/acs.analchem.3c02562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Single-cell multiplexed phenotypic analysis expands the biomarkers for diagnosis, heralding a new era of precision medicine. Cell secretions are the primary measures of immune function, but single-cell screening remains challenging. Here, a novel cell membrane-based assay was developed using cholesterol-linked antibodies (CLAbs), integrating immunosorbent assays and droplet microfluidics to develop a flexible high-throughput single-cell secretion assay for multiplexed phenotyping. CLAb-grafted single cells were encapsulated in water-in-oil droplets to capture their own secretions. Subsequently, the cells were extracted from droplets for fluorescence labeling and screening. Multiple secretions and surface proteins were simultaneously measured from single cells by flow cytometry. To validate the approach, THP-1 cells, THP-1-derived M1 macrophages, and dendritic cells were assayed, indicating the differentiation efficiency of THP-1 cells under different chemical stimulations. Moreover, peripheral blood mononuclear cells from healthy donors under various stimuli showed varied active immune cell populations (6.62-47.14%). The peripheral blood mononuclear cells (PBMCs) of nasopharyngeal carcinoma patients were analyzed to identify a higher percentage of actively cytokine-secreted single cells in the basal state (2.82 ± 1.48%), compared with that in the health donors (0.70 ± 0.29%).
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen Virtual University Park, Shenzhen 518057, China
| | - Ka-Chun Wu
- Department of Clinical Oncology, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Wenxin Jiang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen Virtual University Park, Shenzhen 518057, China
| | - Yi Hou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR 999077, China
| | - Lih Feng Cheow
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen Virtual University Park, Shenzhen 518057, China
| |
Collapse
|
10
|
Gong L, Cretella A, Lin Y. Microfluidic systems for particle capture and release: A review. Biosens Bioelectron 2023; 236:115426. [PMID: 37276636 DOI: 10.1016/j.bios.2023.115426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Microfluidic technology has emerged as a promising tool in various applications, including biosensing, disease diagnosis, and environmental monitoring. One of the notable features of microfluidic devices is their ability to selectively capture and release specific cells, biomolecules, bacteria, and particles. Compared to traditional bulk analysis instruments, microfluidic capture-and-release platforms offer several advantages, such as contactless operation, label-free detection, high accuracy, good sensitivity, and minimal reagent requirements. However, despite significant efforts dedicated to developing innovative capture mechanisms in the past, the release and recovery efficiency of trapped particles have often been overlooked. Many previous studies have focused primarily on particle capture techniques and their efficiency, disregarding the crucial role of successful particle release for subsequent analysis. In reality, the ability to effectively release trapped particles is particularly essential to ensure ongoing, high-throughput analysis. To address this gap, this review aims to highlight the importance of both capture and release mechanisms in microfluidic systems and assess their effectiveness. The methods are classified into two categories: those based on physical principles and those using biochemical approaches. Furthermore, the review offers a comprehensive summary of recent applications of microfluidic platforms specifically designed for particle capture and release. It outlines the designs and performance of these devices, highlighting their advantages and limitations in various target applications and purposes. Finally, the review concludes with discussions on the current challenges faced in the field and presents potential future directions.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Andrew Cretella
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
11
|
Zhang L, Parvin R, Chen M, Hu D, Fan Q, Ye F. High-throughput microfluidic droplets in biomolecular analytical system: A review. Biosens Bioelectron 2023; 228:115213. [PMID: 36906989 DOI: 10.1016/j.bios.2023.115213] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Droplet microfluidic technology has revolutionized biomolecular analytical research, as it has the capability to reserve the genotype-to-phenotype linkage and assist for revealing the heterogeneity. Massive and uniform picolitre droplets feature dividing solution to the level that single cell and single molecule in each droplet can be visualized, barcoded, and analyzed. Then, the droplet assays can unfold intensive genomic data, offer high sensitivity, and screen and sort from a large number of combinations or phenotypes. Based on these unique advantages, this review focuses on up-to-date research concerning diverse screening applications utilizing droplet microfluidic technology. The emerging progress of droplet microfluidic technology is first introduced, including efficient and scaling-up in droplets encapsulation, and prevalent batch operations. Then the new implementations of droplet-based digital detection assays and single-cell muti-omics sequencing are briefly examined, along with related applications such as drug susceptibility testing, multiplexing for cancer subtype identification, interactions of virus-to-host, and multimodal and spatiotemporal analysis. Meanwhile, we specialize in droplet-based large-scale combinational screening regarding desired phenotypes, with an emphasis on sorting for immune cells, antibodies, enzymatic properties, and proteins produced by directed evolution methods. Finally, some challenges, deployment and future perspective of droplet microfluidics technology in practice are also discussed.
Collapse
Affiliation(s)
- Lexiang Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Rokshana Parvin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Mingshuo Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Dingmeng Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qihui Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
12
|
Tian Y, Hu R, Du G, Xu N. Microfluidic Chips: Emerging Technologies for Adoptive Cell Immunotherapy. MICROMACHINES 2023; 14:877. [PMID: 37421109 DOI: 10.3390/mi14040877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 07/09/2023]
Abstract
Adoptive cell therapy (ACT) is a personalized therapy that has shown great success in treating hematologic malignancies in clinic, and has also demonstrated potential applications for solid tumors. The process of ACT involves multiple steps, including the separation of desired cells from patient tissues, cell engineering by virus vector systems, and infusion back into patients after strict tests to guarantee the quality and safety of the products. ACT is an innovative medicine in development; however, the multi-step method is time-consuming and costly, and the preparation of the targeted adoptive cells remains a challenge. Microfluidic chips are a novel platform with the advantages of manipulating fluid in micro/nano scales, and have been developed for various biological research applications as well as ACT. The use of microfluidics to isolate, screen, and incubate cells in vitro has the advantages of high throughput, low cell damage, and fast amplification rates, which can greatly simplify ACT preparation steps and reduce costs. Moreover, the customizable microfluidic chips fit the personalized demands of ACT. In this mini-review, we describe the advantages and applications of microfluidic chips for cell sorting, cell screening, and cell culture in ACT compared to other existing methods. Finally, we discuss the challenges and potential outcomes of future microfluidics-related work in ACT.
Collapse
Affiliation(s)
- Yishen Tian
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Rong Hu
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Guangshi Du
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Na Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
13
|
Gebreyesus ST, Muneer G, Huang CC, Siyal AA, Anand M, Chen YJ, Tu HL. Recent advances in microfluidics for single-cell functional proteomics. LAB ON A CHIP 2023; 23:1726-1751. [PMID: 36811978 DOI: 10.1039/d2lc01096h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-cell proteomics (SCP) reveals phenotypic heterogeneity by profiling individual cells, their biological states and functional outcomes upon signaling activation that can hardly be probed via other omics characterizations. This has become appealing to researchers as it enables an overall more holistic view of biological details underlying cellular processes, disease onset and progression, as well as facilitates unique biomarker identification from individual cells. Microfluidic-based strategies have become methods of choice for single-cell analysis because they allow facile assay integrations, such as cell sorting, manipulation, and content analysis. Notably, they have been serving as an enabling technology to improve the sensitivity, robustness, and reproducibility of recently developed SCP methods. Critical roles of microfluidics technologies are expected to further expand rapidly in advancing the next phase of SCP analysis to reveal more biological and clinical insights. In this review, we will capture the excitement of the recent achievements of microfluidics methods for both targeted and global SCP, including efforts to enhance the proteomic coverage, minimize sample loss, and increase multiplexity and throughput. Furthermore, we will discuss the advantages, challenges, applications, and future prospects of SCP.
Collapse
Affiliation(s)
- Sofani Tafesse Gebreyesus
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | | | - Asad Ali Siyal
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Mihir Anand
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
14
|
Udani S, Langerman J, Koo D, Baghdasarian S, Cheng B, Kang S, Soemardy C, de Rutte J, Plath K, Carlo DD. Secretion encoded single-cell sequencing (SEC-seq) uncovers gene expression signatures associated with high VEGF-A secretion in mesenchymal stromal cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523110. [PMID: 36711480 PMCID: PMC9881958 DOI: 10.1101/2023.01.07.523110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cells secrete numerous bioactive molecules essential for the function of healthy organisms. However, there are no scalable methods to link individual cell secretions to their transcriptional state. By developing and using secretion encoded single-cell sequencing (SEC-seq), which exploits hydrogel nanovials to capture individual cells and their secretions, we simultaneously measured the secretion of vascular endothelial growth factor A (VEGF-A) and the transcriptome for thousands of individual mesenchymal stromal cells (MSCs). We found that VEGF-A secretion is heterogeneous across the cell population and lowly correlated with the VEGFA transcript level. While there is a modest population-wide increase in VEGF-A secretion by hypoxic induction, highest VEGF-A secretion across normoxic and hypoxic culture conditions occurs in a subpopulation of MSCs characterized by a unique gene expression signature. Taken together, SEC-seq enables the identification of specific genes involved in the control of secretory states, which may be exploited for developing means to modulate cellular secretion for disease treatment.
Collapse
Affiliation(s)
- Shreya Udani
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Justin Langerman
- Department of Biological Chemistry, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Doyeon Koo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Sevana Baghdasarian
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Brian Cheng
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Simran Kang
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Citradewi Soemardy
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | | | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Partillion Bioscience, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Miwa H, Dimatteo R, de Rutte J, Ghosh R, Di Carlo D. Single-cell sorting based on secreted products for functionally defined cell therapies. MICROSYSTEMS & NANOENGINEERING 2022; 8:84. [PMID: 35874174 PMCID: PMC9303846 DOI: 10.1038/s41378-022-00422-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 05/13/2023]
Abstract
Cell therapies have emerged as a promising new class of "living" therapeutics over the last decade and have been particularly successful for treating hematological malignancies. Increasingly, cellular therapeutics are being developed with the aim of treating almost any disease, from solid tumors and autoimmune disorders to fibrosis, neurodegenerative disorders and even aging itself. However, their therapeutic potential has remained limited due to the fundamental differences in how molecular and cellular therapies function. While the structure of a molecular therapeutic is directly linked to biological function, cells with the same genetic blueprint can have vastly different functional properties (e.g., secretion, proliferation, cell killing, migration). Although there exists a vast array of analytical and preparative separation approaches for molecules, the functional differences among cells are exacerbated by a lack of functional potency-based sorting approaches. In this context, we describe the need for next-generation single-cell profiling microtechnologies that allow the direct evaluation and sorting of single cells based on functional properties, with a focus on secreted molecules, which are critical for the in vivo efficacy of current cell therapies. We first define three critical processes for single-cell secretion-based profiling technology: (1) partitioning individual cells into uniform compartments; (2) accumulating secretions and labeling via reporter molecules; and (3) measuring the signal associated with the reporter and, if sorting, triggering a sorting event based on these reporter signals. We summarize recent academic and commercial technologies for functional single-cell analysis in addition to sorting and industrial applications of these technologies. These approaches fall into three categories: microchamber, microfluidic droplet, and lab-on-a-particle technologies. Finally, we outline a number of unmet needs in terms of the discovery, design and manufacturing of cellular therapeutics and how the next generation of single-cell functional screening technologies could allow the realization of robust cellular therapeutics for all patients.
Collapse
Affiliation(s)
- Hiromi Miwa
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Partillion Bioscience, Los Angeles, CA 90095 USA
| | - Rajesh Ghosh
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
16
|
Cong L, Wang J, Li X, Tian Y, Xu S, Liang C, Xu W, Wang W, Xu S. Microfluidic Droplet-SERS Platform for Single-Cell Cytokine Analysis via a Cell Surface Bioconjugation Strategy. Anal Chem 2022; 94:10375-10383. [PMID: 35815899 DOI: 10.1021/acs.analchem.2c01249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A microfluidic-based surface-enhanced Raman scattering (SERS) platform for analyzing cytokines secreted by single cells is reported based on the elaborate bioconjugation of the immuno-sandwich complex on the probed cell surface. This platform integrates the dual functions of microfluidic droplet separation of single cells and SERS measurement. Two immune nanoprobes (capture probe and SERS probe) are introduced into a microfluidic droplet along with a single cell. They were anchored to the cell membrane protein surface by capturing secreted cytokines to form an immune sandwich structure, realizing the enrichment effect of cytokines above the cell membrane surface and the amplification effect of SERS detection probes. This single-cell analytical platform was applied to track specific cell-secreted vascular endothelial growth factor (VEGF) of different cell lines (MCF-7, SGC, and T24), and highly sensitive detection of VEGF was achieved. Chemometric methods (principal component analysis and t-distributed stochastic neighbor embedding) were adopted for the SERS data analysis, and the support vector machine (SVM) discriminant model was established to test the data. These chemometric methods successfully identify significant differences in the secreting ability of cytokines among three kinds of cancer cell lines, revealing cell heterogeneity. In addition, the behavior of single cells secreting VEGF was monitored time-dependently and was shown to increase with time. This work demonstrates the importance of tracking specific cells secreting cytokines based on the cell surface bioconjugation strategy. Our developed platform provides guidelines for using the single-cell exocytosis factors as biomarkers to assess the early diagnosis of cancer and provide physiological cues for learning single-cell secretions.
Collapse
Affiliation(s)
- Lili Cong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinli Li
- HOOKE Instruments Ltd., Changchun 130033, P. R. China
| | - Yu Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shizhi Xu
- Institute of Frontier Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Weigang Wang
- No. 2 Department of Urology, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
17
|
Lin WN, Tay MZ, Wong JXE, Lee CY, Fong SW, Wang CI, Ng LFP, Renia L, Chen CH, Cheow LF. Rapid microfluidic platform for screening and enrichment of cells secreting virus neutralizing antibodies. LAB ON A CHIP 2022; 22:2578-2589. [PMID: 35694804 DOI: 10.1039/d2lc00018k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As part of the body's immune response, antibodies (Abs) have the ability to neutralize pathogenic viruses to prevent infection. To screen for neutralizing Abs (nAbs) from the immune repertoire, multiple screening techniques have been developed. However, conventional methods have a trade-off between screening throughput and the ability to screen for nAbs via their functional efficacy. Although droplet microfluidic platforms have the ability to bridge this disparity, the majority of such reported platforms still rely on Ab-binding assays as a proxy for function, which results in irrelevant hits. Herein, we report the multi-module Droplet-based Platform for Effective Antibody RetrievaL (DROP-PEARL) platform, which can achieve high-throughput enrichment of Ab-secreting cells (ASCs) based on the neutralizing activity of secreted nAbs against the a target virus. In this study, in-droplet Chikungunya virus (CHIKV) infection of host cells and neutralization was demonstrated via sequential delivery of viruses and host cells via picoinjection. In addition, we demonstrate the ability of the sorting system to accurately discriminate and isolate uninfected droplets from a mixed population of droplets at a rate of 150 000 cells per hour. As a proof of concept, a single-cell neutralization assay was performed on two populations of cells (nAb-producing and non-Ab producing cells), and up to 2.75-fold enrichment of ASCs was demonstrated. Finally, we demonstrated that DROP-PEARL is able to achieve similar enrichment for low frequency (∼2%) functional nAb-producing cells in a background of excess cells secreting irrelevant antibodies, highlighting its potential prospect as a first round enrichment platform for functional ASCs. We envision that the DROP-PEARL platform could potentially be used to accelerate the discovery of nAbs against other pathogenic viral targets, and we believe it will be a useful in the ongoing fight against biological threats.
Collapse
Affiliation(s)
- Weikang Nicholas Lin
- Department of Biomedical Engineering, National University of Singapore, Singapore.
| | - Matthew Zirui Tay
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joel Xu En Wong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Lisa Fong Poh Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Laurent Renia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chia-Hung Chen
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, National University of Singapore, Singapore.
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
- Institute for Health Innovation & Technology (iHealthtech), Singapore
| |
Collapse
|
18
|
Cong L, Tian Y, Huo Z, Xu W, Hou C, Shi W, Wang W, Liang C, Xu S. Single-Cell VEGF Analysis by Fluorescence Imaging-Microfluidic Droplet Platform: An Immunosandwich Strategy on the Cell Surface. Anal Chem 2022; 94:6591-6598. [PMID: 35446550 DOI: 10.1021/acs.analchem.2c00695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite recent advances in single-cell analysis techniques, the ability of single-cell analysis platforms to track specific cells that secreted cytokines remains limited. Here, we report a microfluidic droplet-based fluorescence imaging platform that can analyze single cell-secreted vascular endothelial growth factor (VEGF), an important regulator of physiological and pathological angiogenesis, to explore cellular physiological clues at the single-cell level. Two kinds of silica nanoparticle (NP)-based immunoprobes were developed, and they were bioconjugated to the membrane proteins of the probed cell surface via the bridging of secreted VEGF. Thus, an immunosandwich assay was built above the probed cell via fluorescence imaging analysis of each cell in isolated droplets. This analytical platform was used to compare the single-cell VEGF secretion ability of three cell lines (MCF-7, HeLa, and H8), which experimentally demonstrates the cellular heterogeneity of cells in secreting cytokines. The uniqueness of this method is that the single-cell assay is carried out above the cell of interest, and no additional carriers (beads or reporter cells) for capturing analytes are needed, which dramatically improves the availability of microdroplets. This single-cell analytical platform can be applied for determining other secreted cytokines at the single-cell level by changing other immune pairs, which will be an available tool for exploring single-cell metabonomics.
Collapse
Affiliation(s)
- Lili Cong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zepeng Huo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Shi
- Key Lab for Molecular Enzymology & Engineering of Ministry of Education, Jilin University, Changchun 130012, P. R. China
| | - Weigang Wang
- No. 2 Department of Urology, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
19
|
Dimatteo R, Di Carlo D. IL-2 secretion-based sorting of single T cells using high-throughput microfluidic on-cell cytokine capture. LAB ON A CHIP 2022; 22:1576-1583. [PMID: 35293406 PMCID: PMC9013285 DOI: 10.1039/d1lc01098k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Secreted proteins are critical for the coordination of potent immune defenses, such as in engineered T cell therapies, however, there are few widely accessible approaches to accurately analyze and sort large numbers of cells based on their secretory functions. We report a workflow for the rapid screening and sorting of single individual T cells based on IL-2 secretion accumulated at high concentrations in nanoliter droplets and encoded back onto the secreting cell's surface. In our method, droplets are used solely to partition cells, enabling rapid accumulation of signals onto cell surfaces, and eliminating diffusive crosstalk between neighbors. All downstream sorting leverages conventional high-throughput and readily accessible flow cytometry after the emulsion is disrupted. We achieve monodisperse droplet generation (CV < 10%) at flow rates up to 200 μL min-1 using step emulsification, enabling processing of entire libraries of cells within tens of minutes without significant secretion crosstalk. In comparison to our approach, strong mitogenic activation overwhelmed the conventional bulk on-cell cytokine assay, rendering labeled, non-activated cells indistinguishable from actively secreting neighbors within one hour. Processing of identical cell mixtures following droplet encapsulation yielded no apparent crosstalk even after three hours. Instead, IL-2 production spanning several orders of magnitude was observed from roughly 20% of analyzed activated lymphocytes, representing an at least 10-fold increase in dynamic range compared to unencapsulated cells. Secreting cells could also be sorted using fluorescence activated cell sorting (FACS). The approach can ultimately enable sorting of cells based on functional properties with higher accuracy in a more accessible format to life science researchers.
Collapse
Affiliation(s)
- Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, P.O. Box 951592, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, P.O. Box 951600, Los Angeles, CA 90095, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, P.O. Box 951600, Los Angeles, CA 90095, USA.
- California Nano Systems Institute, 570 Westwood Plaza, Building 114, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Zhang L, Rokshana P, Yu Y, Zhao Y, Ye F. Near-Infrared Responsive Droplet for Digital PCR. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107858. [PMID: 35212452 DOI: 10.1002/smll.202107858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Digital PCR (dPCR) surpasses the performance of earlier PCR formats because of highly precise, absolute quantification and other unique merits. A simple thermocycling approach and durable microcarrier are of great value for dPCR advancement and application. Herein, a near-infrared (NIR) controlled thermocycling approach by embedding magnetic graphene oxide (GO) composite into the agarose microcarriers is developed. The core-shell composite is constructed by sequentially encapsulating GO and silica outside the magnetic nanocores. Benefiting from these additives, the resultant composite agarose gains appealing features as light-driven temperature changing, switchable gel-sol phase transforming, biocompatibility, and magnetic traction. By further emulsifying into droplets via the microfluidics method, the influence of typical parameters including material loading amount, laser intensity, and droplet diameter at various ranges is investigated for assembling microcarriers with different responsiveness. Then a paradigm of the NIR program can be easily tailored for PCR thermocycling. Finally, the feasibility of the approach is verified by detecting statistically diluted Klebsiella pneumoniae DNA samples, from 0.1 to 2 copies per drop. It is anticipated that this method has promising prospects for dPCR-based and other temperature-controlled applications.
Collapse
Affiliation(s)
- Lexiang Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & Wenzhou Institute-University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Parvin Rokshana
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & Wenzhou Institute-University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yunru Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & Wenzhou Institute-University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & Wenzhou Institute-University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & Wenzhou Institute-University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
21
|
Abstract
Cell manipulation in droplets has emerged as one of the great successes of microfluidic technologies, with the development of single-cell screening. However, the droplet format has also served to go beyond single-cell studies, namely by considering the interactions between different cells or between cells and their physical or chemical environment. These studies pose specific challenges linked to the need for long-term culture of adherent cells or the diverse types of measurements associated with complex biological phenomena. Here we review the emergence of droplet microfluidic methods for culturing cells and studying their interactions. We begin by characterizing the quantitative aspects that determine the ability to encapsulate cells, transport molecules, and provide sufficient nutrients within the droplets. This is followed by an evaluation of the biological constraints such as the control of the biochemical environment and promoting the anchorage of adherent cells. This first part ends with a description of measurement methods that have been developed. The second part of the manuscript focuses on applications of these technologies for cancer studies, immunology, and stem cells while paying special attention to the biological relevance of the cellular assays and providing guidelines on improving this relevance.
Collapse
Affiliation(s)
- Sébastien Sart
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gustave Ronteix
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Shreyansh Jain
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gabriel Amselem
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Charles N Baroud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
22
|
Ghaznavi A, Lin Y, Douvidzon M, Szmelter A, Rodrigues A, Blackman M, Eddington D, Carmon T, Deych L, Yang L, Xu J. A Monolithic 3D Printed Axisymmetric Co-Flow Single and Compound Emulsion Generator. MICROMACHINES 2022; 13:188. [PMID: 35208313 PMCID: PMC8877394 DOI: 10.3390/mi13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
We report a microfluidic droplet generator which can produce single and compound droplets using a 3D axisymmetric co-flow structure. The design considered for the fabrication of the device integrated a user-friendly and cost-effective 3D printing process. To verify the performance of the device, single and compound emulsions of deionized water and mineral oil were generated and their features such as size, generation frequency, and emulsion structures were successfully characterized. In addition, the generation of bio emulsions such as alginate and collagen aqueous droplets in mineral oil was demonstrated in this study. Overall, the monolithic 3D printed axisymmetric droplet generator could offer any user an accessible and easy-to-utilize device for the generation of single and compound emulsions.
Collapse
Affiliation(s)
- Amirreza Ghaznavi
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA;
| | - Mark Douvidzon
- Physics Department and Solid-State Institute, Technion, Haifa 3200000, Israel;
| | - Adam Szmelter
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; (A.S.); (A.R.); (D.E.)
| | - Alannah Rodrigues
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; (A.S.); (A.R.); (D.E.)
| | - Malik Blackman
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - David Eddington
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; (A.S.); (A.R.); (D.E.)
| | - Tal Carmon
- School of Electrical Engineering, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Lev Deych
- Physics Department, Queens College of CUNY, New York, NY 11367, USA;
| | - Lan Yang
- Department of Electrical and Systems Engineering, Washington University, St. Louis, MO 63130, USA;
| | - Jie Xu
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
23
|
Luo X, Chen JY, Ataei M, Lee A. Microfluidic Compartmentalization Platforms for Single Cell Analysis. BIOSENSORS 2022; 12:58. [PMID: 35200319 PMCID: PMC8869497 DOI: 10.3390/bios12020058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
Many cellular analytical technologies measure only the average response from a cell population with an assumption that a clonal population is homogenous. The ensemble measurement often masks the difference among individual cells that can lead to misinterpretation. The advent of microfluidic technology has revolutionized single-cell analysis through precise manipulation of liquid and compartmentalizing single cells in small volumes (pico- to nano-liter). Due to its advantages from miniaturization, microfluidic systems offer an array of capabilities to study genomics, transcriptomics, and proteomics of a large number of individual cells. In this regard, microfluidic systems have emerged as a powerful technology to uncover cellular heterogeneity and expand the depth and breadth of single-cell analysis. This review will focus on recent developments of three microfluidic compartmentalization platforms (microvalve, microwell, and microdroplets) that target single-cell analysis spanning from proteomics to genomics. We also compare and contrast these three microfluidic platforms and discuss their respective advantages and disadvantages in single-cell analysis.
Collapse
Affiliation(s)
- Xuhao Luo
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; (X.L.); (J.-Y.C.)
| | - Jui-Yi Chen
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; (X.L.); (J.-Y.C.)
| | - Marzieh Ataei
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA;
| | - Abraham Lee
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; (X.L.); (J.-Y.C.)
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA;
| |
Collapse
|
24
|
Liu D, Sun M, Zhang J, Hu R, Fu W, Xuanyuan T, Liu W. Single-cell droplet microfluidics for biomedical applications. Analyst 2022; 147:2294-2316. [DOI: 10.1039/d1an02321g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on the recent advances in the fundamentals of single-cell droplet microfluidics and its applications in biomedicine, providing insights into design and establishment of single-cell microsystems and their further performance.
Collapse
Affiliation(s)
- Dan Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Meilin Sun
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinwei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Rui Hu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenzhu Fu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Tingting Xuanyuan
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
25
|
Han Y, Zhang Y, Zhang M, Chen B, Chen X, Hou X. Photothermally induced liquid gate with navigation control of the fluid transport. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
26
|
Tiemeijer BM, Sweep MWD, Sleeboom JJF, Steps KJ, van Sprang JF, De Almeida P, Hammink R, Kouwer PHJ, Smits AIPM, Tel J. Probing Single-Cell Macrophage Polarization and Heterogeneity Using Thermo-Reversible Hydrogels in Droplet-Based Microfluidics. Front Bioeng Biotechnol 2021; 9:715408. [PMID: 34722475 PMCID: PMC8552120 DOI: 10.3389/fbioe.2021.715408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Human immune cells intrinsically exist as heterogenous populations. To understand cellular heterogeneity, both cell culture and analysis should be executed with single-cell resolution to eliminate juxtacrine and paracrine interactions, as these can lead to a homogenized cell response, obscuring unique cellular behavior. Droplet microfluidics has emerged as a potent tool to culture and stimulate single cells at high throughput. However, when studying adherent cells at single-cell level, it is imperative to provide a substrate for the cells to adhere to, as suspension culture conditions can negatively affect biological function and behavior. Therefore, we combined a droplet-based microfluidic platform with a thermo-reversible polyisocyanide (PIC) hydrogel, which allowed for robust droplet formation at low temperatures, whilst ensuring catalyzer-free droplet gelation and easy cell recovery after culture for downstream analysis. With this approach, we probed the heterogeneity of highly adherent human macrophages under both pro-inflammatory M1 and anti-inflammatory M2 polarization conditions. We showed that co-encapsulation of multiple cells enhanced cell polarization compared to single cells, indicating that cellular communication is a potent driver of macrophage polarization. Additionally, we highlight that culturing single macrophages in PIC hydrogel droplets displayed higher cell viability and enhanced M2 polarization compared to single macrophages cultured in suspension. Remarkably, combining phenotypical and functional analysis on single cultured macrophages revealed a subset of cells in a persistent M1 state, which were undetectable in conventional bulk cultures. Taken together, combining droplet-based microfluidics with hydrogels is a versatile and powerful tool to study the biological function of adherent cell types at single-cell resolution with high throughput.
Collapse
Affiliation(s)
- B. M. Tiemeijer
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - M. W. D. Sweep
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - J. J. F. Sleeboom
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Laboratory of Soft Tissue Engineering and Biomechanics, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - K. J. Steps
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - J. F. van Sprang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Laboratory of Soft Tissue Engineering and Biomechanics, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - P. De Almeida
- Department of System Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - R. Hammink
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Oncode Institute, Radboud University Medical Center, Nijmegen, Netherlands
| | - P. H. J. Kouwer
- Department of System Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - A. I. P. M. Smits
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Laboratory of Soft Tissue Engineering and Biomechanics, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - J. Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
27
|
Sotoudegan MS, Arnold JJ, Cameron CE. Single-cell analysis for the study of viral inhibitors. Enzymes 2021; 49:195-213. [PMID: 34696832 DOI: 10.1016/bs.enz.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stochastic outcomes of viral infections are attributed in large part to multiple layers of intrinsic and extrinsic heterogeneity that exist within a population of cells and viruses. Traditional methods in virology often lack the ability to demonstrate cell-to-cell variability in response to the invasion of viruses, and to decipher the sources of heterogeneities that are reflected in the variable infection dynamics. To overcome this challenge, the field of single-cell virology emerged less than a decade ago, enabling researchers to reveal the behavior of single, isolated, infected cells that has been masked in population-based assays. The use of microfluidics in single-cell virology, in particular, has resulted in the development of high-throughput devices that are capable of capturing, isolating, and monitoring single infected cells over the duration of an infection. Results from the studies of viral infection dynamics presented in this chapter indicate how single-cell data provide a more accurate prediction of the start time, replication rate, duration, and yield of infection when compared to population-based data. Additionally, single-cell analysis reveals striking differences between genetically distinct viruses that are almost indistinguishable in population methods. Importantly, both the efficacy and distinct mechanisms of action of antiviral compounds can be elucidated by using single-cell analysis.
Collapse
Affiliation(s)
- Mohamad S Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Jamie J Arnold
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Craig E Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States.
| |
Collapse
|
28
|
Liu C, Chu D, Kalantar‐Zadeh K, George J, Young HA, Liu G. Cytokines: From Clinical Significance to Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004433. [PMID: 34114369 PMCID: PMC8336501 DOI: 10.1002/advs.202004433] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Cytokines are critical mediators that oversee and regulate immune and inflammatory responses via complex networks and serve as biomarkers for many diseases. Quantification of cytokines has significant value in both clinical medicine and biology as the levels provide insights into physiological and pathological processes and can be used to aid diagnosis and treatment. Cytokines and their clinical significance are introduced from the perspective of their pro- and anti-inflammatory effects. Factors affecting cytokines quantification in biological fluids, native levels in different body fluids, sample processing and storage conditions, sensitivity to freeze-thaw, and soluble cytokine receptors are discussed. In addition, recent advances in in vitro and in vivo assays, biosensors based on different signal outputs and intracellular to extracellular protein expression are summarized. Various quantification platforms for high-sensitivity and reliable measurement of cytokines in different scenarios are discussed, and commercially available cytokine assays are compared. A discussion of challenges in the development and advancement of technologies for cytokine quantification that aim to achieve real-time multiplex cytokine analysis for point-of-care situations applicable for both biomedical research and clinical practice are discussed.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Dewei Chu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Jacob George
- Storr Liver CentreWestmead Institute of Medical ResearchUniversity of Sydney and Department of Gastroenterology and HepatologyWestmead HospitalWestmeadNSW2145Australia
| | - Howard A. Young
- Laboratory of Cancer ImmunometabolismCenter for Cancer ResearchNational Cancer Institute at FrederickFrederickMD21702USA
| | - Guozhen Liu
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P. R. China
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
29
|
Bucheli OTM, Sigvaldadóttir I, Eyer K. Measuring single-cell protein secretion in immunology: Technologies, advances, and applications. Eur J Immunol 2021; 51:1334-1347. [PMID: 33734428 PMCID: PMC8252417 DOI: 10.1002/eji.202048976] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
The dynamics, nature, strength, and ultimately protective capabilities of an active immune response are determined by the extracellular constitution and concentration of various soluble factors. Generated effector cells secrete such mediators, including antibodies, chemo‐ and cytokines to achieve functionality. These secreted factors organize the individual immune cells into functional tissues, initiate, orchestrate, and regulate the immune response. Therefore, a single‐cell resolved analysis of protein secretion is a valuable tool for studying the heterogeneity and functionality of immune cells. This review aims to provide a comparative overview of various methods to characterize immune reactions by measuring single‐cell protein secretion. Spot‐based and cytometry‐based assays, such as ELISpot and flow cytometry, respectively, are well‐established methods applied in basic research and clinical settings. Emerging novel technologies, such as microfluidic platforms, offer new ways to measure and exploit protein secretion in immune reactions. Further technological advances will allow the deciphering of protein secretion in immunological responses with unprecedented detail, linking secretion to functionality. Here, we summarize the development and recent advances of tools that allow the analysis of protein secretion at the single‐cell level, and discuss and contrast their applications within immunology.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Ingibjörg Sigvaldadóttir
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Bacon K, Lavoie A, Rao BM, Daniele M, Menegatti S. Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomater 2020; 112:29-51. [PMID: 32442784 PMCID: PMC10364325 DOI: 10.1016/j.actbio.2020.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Progress in cell purification technology is critical to increase the availability of viable cells for therapeutic, diagnostic, and research applications. A variety of techniques are now available for cell separation, ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice of cell purification method is crucial, since every method offers a different balance between yield, purity, and bioactivity of the cell product. For most applications, the requisite purity is only achievable through affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and current methods for developing cell-targeting affinity ligands and their application in cell purification, along with the benefits and challenges associated with different purification formats. We further present new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improving the viability and throughput of cell products for tissue engineering and regenerative medicine. Our comparative analysis provides guidance in the multifarious landscape of cell separation techniques and highlights new technologies that are poised to play a key role in the future of cell purification in clinical settings and the biotech industry. STATEMENT OF SIGNIFICANCE: Technologies for cell purification have served science, medicine, and industrial biotechnology and biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting the scope and relevance of all known methods for cell isolation, old and new alike. The first section covers the main classes of target cells and compares traditional non-affinity and affinity-based purification techniques, focusing on established ligands and chromatographic formats. The second section presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview of new technologies and emerging trends, highlighting how the progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high-throughput and high-purity cell isolation processes. This review is designed to guide scientists and engineers in their choice of suitable cell purification techniques for research or bioprocessing needs.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|