1
|
Ramos-Valle A, Kirst H, Fanarraga ML. Biodegradable silica nanoparticles for efficient linear DNA gene delivery. Drug Deliv 2024; 31:2385376. [PMID: 39101224 DOI: 10.1080/10717544.2024.2385376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Targeting, safety, scalability, and storage stability of vectors are still challenges in the field of nucleic acid delivery for gene therapy. Silica-based nanoparticles have been widely studied as gene carriers, exhibiting key features such as biocompatibility, simplistic synthesis, and enabling easy surface modifications for targeting. However, the ability of the formulation to incorporate DNA is limited, which restricts the number of DNA molecules that can be incorporated into the particle, thereby reducing gene expression. Here we use polymerase chain reaction (PCR)-generated linear DNA molecules to augment the coding sequences of gene-carrying nanoparticles, thereby maximizing nucleic acid loading and minimizing the size of these nanocarriers. This approach results in a remarkable 16-fold increase in protein expression six days post-transfection in cells transfected with particles carrying the linear DNA compared with particles bearing circular plasmid DNA. The study also showed that the use of linear DNA entrapped in DNA@SiO2 resulted in a much more efficient level of gene expression compared to standard transfection reagents. The system developed in this study features simplicity, scalability, and increased transfection efficiency and gene expression over existing approaches, enabled by improved embedment capabilities for linear DNA, compared to conventional methods such as lipids or polymers, which generally show greater transfection efficiency with plasmid DNA. Therefore, this novel methodology can find applications not only in gene therapy but also in research settings for high-throughput gene expression screenings.
Collapse
Affiliation(s)
- Andrés Ramos-Valle
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, Santander, Spain
- Molecular Biology Department, Universidad de Cantabria, Santander, Spain
| | - Henning Kirst
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, Santander, Spain
- Molecular Biology Department, Universidad de Cantabria, Santander, Spain
| | - Mónica L Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, Santander, Spain
- Molecular Biology Department, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
2
|
Sanko V, Şenocak A, Yeşilot S, Tümay SO. The fabrication of a hybrid fluorescent nanosensing system and its practical applications via film kits for the selective determination of mercury ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124677. [PMID: 38908110 DOI: 10.1016/j.saa.2024.124677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Heavy metal ions especially mercury exposure have severe toxic effects on living organisms and human health. Therefore, easy, accessible, and accurate determination strategies for the selective specification of mercury ions are essential for numerous disciplines. In the presented paper, new hybrid fluorescent iron oxide nanoparticles labeled with carbazole and triazole units (CT-IONP) were prepared via surface modification for the spectrofluorimetric determination of Hg2+ in environmental samples. The structure of the new sensing system is characterized via various spectroscopic, thermal, and microscopic techniques. Under optimized conditions, the hybrid system is not only used in fully water media but also highly fluorescent which led to the "turn-off" response towards Hg2+ ion in the presence of various competitive species. The presented sensing system was successfully used for the determination of Hg2+ ions in the wide linear working range (0.02-10.00 µmol.L-1) at nanomolar levels, where the limit of detection and quantification were calculated as 7.38 and 22.14 nmol.L-1. Importantly, the practical application of hybrid material was applied by CT-IONP embedded polycaprolactone (PCL) polymer film kits. The bluish color of fabricated film kits was instantly and dramatically turned colorless-dark patterns after the addition of Hg2+ ions, which resulted in convenient and rapid film test kits for selective detection.
Collapse
Affiliation(s)
- Vildan Sanko
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye; Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Türkiye.; METU MEMS Center, Ankara 06520, Türkiye
| | - Ahmet Şenocak
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye
| | - Serkan Yeşilot
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye
| | - Süreyya Oğuz Tümay
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye; Department of Chemistry, Faculty of Science, Atatürk University, Erzurum 25100, Türkiye.
| |
Collapse
|
3
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Navarro-Palomares E, García-Hevia L, Galán-Vidal J, Gandarillas A, García-Reija F, Sánchez-Iglesias A, Liz-Marzán LM, Valiente R, Fanarraga ML. Shiga Toxin-B Targeted Gold Nanorods for Local Photothermal Treatment in Oral Cancer Clinical Samples. Int J Nanomedicine 2022; 17:5747-5760. [PMID: 36466783 PMCID: PMC9717601 DOI: 10.2147/ijn.s381628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION A great challenge in nanomedicine, and more specifically in theranostics, is to improve the specificity, selectivity, and targeting of nanomaterials towards target tissues or cells. The topical use of nanomedicines as adjuvants to systemic chemotherapy can significantly improve the survival of patients affected by localized carcinomas, reducing the side effects of traditional drugs and preventing local recurrences. METHODS Here, we have used the Shiga toxin, to design a safe, high-affinity protein-ligand (ShTxB) to bind the globotriaosylceramide receptor (GB3) that is overexpressed on the surfaces of preneoplastic and malignant cancer cells in the head and neck tumors. RESULTS We find that ShTxB functionalized gold nanorods are efficiently retrotranslocated to the GB3-positive cell cytoplasms. After 3 minutes of laser radiation with a wavelength resonant with the AuNR longitudinal localized surface plasmon, the death of the targeted cancer cells is activated. Both preclinical murine models and patient biopsy cells show the non-cytotoxic nature of these functionalized nanoparticles before light activation and their treatment selectivity. DISCUSSION These results show how the use of nanomedicines directed by natural ligands can represent an effective treatment for aggressive localized cancers, such as squamous cell carcinoma of the oral cavity.
Collapse
Affiliation(s)
- Elena Navarro-Palomares
- The Nanomedicine Group, Valdecilla Health Research Institute IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| | - Lorena García-Hevia
- The Nanomedicine Group, Valdecilla Health Research Institute IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| | - Jesús Galán-Vidal
- Cell Cycle, Stem Cell Fate & Cancer Laboratory, Valdecilla Health Research Institute IDIVAL, Santander, 39011, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate & Cancer Laboratory, Valdecilla Health Research Institute IDIVAL, Santander, 39011, Spain
| | - Fe García-Reija
- Oral and Maxillofacial Surgery Unit, Valdecilla Hospital HUVM, Santander, Spain
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Rafael Valiente
- The Nanomedicine Group, Valdecilla Health Research Institute IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
- Dpt. Applied Physics, Facultad de Ciencias, Universidad de Cantabria, Santander, 39005, Spain
| | - Mónica L Fanarraga
- The Nanomedicine Group, Valdecilla Health Research Institute IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| |
Collapse
|
5
|
Bruckmann FDS, Nunes FB, Salles TDR, Franco C, Cadoná FC, Bohn Rhoden CR. Biological Applications of Silica-Based Nanoparticles. MAGNETOCHEMISTRY 2022; 8:131. [DOI: 10.3390/magnetochemistry8100131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Silica nanoparticles have been widely explored in biomedical applications, mainly related to drug delivery and cancer treatment. These nanoparticles have excellent properties, high biocompatibility, chemical and thermal stability, and ease of functionalization. Moreover, silica is used to coat magnetic nanoparticles protecting against acid leaching and aggregation as well as increasing cytocompatibility. This review reports the recent advances of silica-based magnetic nanoparticles focusing on drug delivery, drug target systems, and their use in magnetohyperthermia and magnetic resonance imaging. Notwithstanding, the application in other biomedical fields is also reported and discussed. Finally, this work provides an overview of the challenges and perspectives related to the use of silica-based magnetic nanoparticles in the biomedical field.
Collapse
|
6
|
Yadav P, Mimansa, Munawara R, Kapoor K, Chaturvedi S, Kailasam K, Biswas SK, Bahadur D, Srivastava R, Mishra AK, Shanavas A. Nontoxic In Vivo Clearable Nanoparticle Clusters for Theranostic Applications. ACS Biomater Sci Eng 2022; 8:2053-2065. [PMID: 35416030 DOI: 10.1021/acsbiomaterials.1c01579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Disintegrable inorganic nanoclusters (GIONs) with gold seed (GS) coating of an iron oxide core with a primary nanoparticle size less than 6 nm were prepared for theranostic applications. The GIONs possessed a broad near-infrared (NIR) absorbance at ∼750 nm because of plasmon coupling between closely positioned GSs on the iron oxide nanoclusters (ION) surface, in addition to the ∼513 nm peak corresponding to the isolated GS. The NIR laser-triggered photothermal response of GIONs was found to be concentration-dependent with a temperature rise of ∼8.5 and ∼4.5 °C from physiological temperature for 0.5 and 0.25 mg/mL, respectively. The nanoclusters were nonhemolytic and showed compatibility with human umbilical vein endothelial cells up to a concentration of 0.7 mg/mL under physiological conditions. The nanoclusters completely disintegrated at a lysosomal pH of 5.2 within 1 month. With an acute increase of over 400% intracellular reactive oxygen species soon after γ-irradiation and assistance from Fenton reaction-mediated supplemental oxidative stress, GION treatment in conjunction with radiation killed ∼50% of PLC/PRF/5 hepatoma cells. Confocal microscopy images of these cells showed significant cytoskeletal and nuclear damage from radiosensitization with GIONs. The cell viability further decreased to ∼10% when they were sequentially exposed to the NIR laser followed by γ-irradiation. The magnetic and optical properties of the nanoclusters enabled GIONs to possess a T2 relaxivity of ∼223 mM-1 s-1and a concentration-dependent strong photoacoustic signal toward magnetic resonance and optical imaging. GIONs did not incur any organ damage or evoke an acute inflammatory response in healthy C57BL/6 mice. Elemental analysis of various organs indicated differential clearance of gold and iron via both renal and hepatobiliary routes.
Collapse
Affiliation(s)
- Pranjali Yadav
- Institute of Nano Science and Technology (INST), Sector 81, Mohali 140306, India
| | - Mimansa
- Institute of Nano Science and Technology (INST), Sector 81, Mohali 140306, India
| | - Rafika Munawara
- Department of Anatomy, Government Medical College & Hospital, Sector 32, Chandigarh 160030, India
| | - Kanchan Kapoor
- Department of Anatomy, Government Medical College & Hospital, Sector 32, Chandigarh 160030, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | | | - Samir Kumar Biswas
- Department of Physical Sciences, Indian Institute of Science Education & Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli 140306, India
| | - Dhirendra Bahadur
- Department of Mechanical Engineering, Indian Institute of Technology Goa, Farmagudi, Ponda 403401, Goa, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology (INST), Sector 81, Mohali 140306, India
| |
Collapse
|
7
|
Levana O, Hong S, Kim SH, Jeong JH, Hur SS, Lee JW, Kwon KS, Hwang Y. A Novel Strategy for Creating an Antibacterial Surface Using a Highly Efficient Electrospray-Based Method for Silica Deposition. Int J Mol Sci 2022; 23:513. [PMID: 35008939 PMCID: PMC8745460 DOI: 10.3390/ijms23010513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Adhesion of bacteria on biomedical implant surfaces is a prerequisite for biofilm formation, which may increase the chances of infection and chronic inflammation. In this study, we employed a novel electrospray-based technique to develop an antibacterial surface by efficiently depositing silica homogeneously onto polyethylene terephthalate (PET) film to achieve hydrophobic and anti-adhesive properties. We evaluated its potential application in inhibiting bacterial adhesion using both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria. These silica-deposited PET surfaces could provide hydrophobic surfaces with a water contact angle greater than 120° as well as increased surface roughness (root mean square roughness value of 82.50 ± 16.22 nm and average roughness value of 65.15 ± 15.26 nm) that could significantly reduce bacterial adhesion by approximately 66.30% and 64.09% for E. coli and S. aureus, respectively, compared with those on plain PET surfaces. Furthermore, we observed that silica-deposited PET surfaces showed no detrimental effects on cell viability in human dermal fibroblasts, as confirmed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide and live/dead assays. Taken together, such approaches that are easy to synthesize, cost effective, and efficient, and could provide innovative strategies for preventing bacterial adhesion on biomedical implant surfaces in the clinical setting.
Collapse
Affiliation(s)
- Odelia Levana
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Chungnam-do, Korea; (O.L.); (J.H.J.); (S.S.H.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Chungnam-do, Korea
| | - Soonkook Hong
- Department of Mechanical and Naval Architectural Engineering, Republic of Korea Naval Academy, Changwon-si 51704, Kyungsangnam-do, Korea;
| | - Se Hyun Kim
- Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, Asan-si 31538, Chungnam-do, Korea;
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Chungnam-do, Korea; (O.L.); (J.H.J.); (S.S.H.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Chungnam-do, Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Chungnam-do, Korea; (O.L.); (J.H.J.); (S.S.H.)
| | - Jin Woo Lee
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21936, Korea;
| | - Kye-Si Kwon
- Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, Asan-si 31538, Chungnam-do, Korea;
- Department of Mechanical Engineering, Soonchunhyang University, Asan-si 31538, Chungnam-do, Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Chungnam-do, Korea; (O.L.); (J.H.J.); (S.S.H.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Chungnam-do, Korea
| |
Collapse
|
8
|
Targeting Nanomaterials to Head and Neck Cancer Cells Using a Fragment of the Shiga Toxin as a Potent Natural Ligand. Cancers (Basel) 2021; 13:cancers13194920. [PMID: 34638405 PMCID: PMC8507991 DOI: 10.3390/cancers13194920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022] Open
Abstract
Head and Neck Cancer (HNC) is the seventh most common cancer worldwide with a 5-year survival from diagnosis of 50%. Currently, HNC is diagnosed by a physical examination followed by an histological biopsy, with surgery being the primary treatment. Here, we propose the use of targeted nanotechnology in support of existing diagnostic and therapeutic tools to prevent recurrences of tumors with poorly defined or surgically inaccessible margins. We have designed an innocuous ligand-protein, based on the receptor-binding domain of the Shiga toxin (ShTxB), that specifically drives nanoparticles to HNC cells bearing the globotriaosylceramide receptor on their surfaces. Microscopy images show how, upon binding to the receptor, the ShTxB-coated nanoparticles cause the clustering of the globotriaosylceramide receptors, the protrusion of filopodia, and rippling of the membrane, ultimately allowing the penetration of the ShTxB nanoparticles directly into the cell cytoplasm, thus triggering a biomimetic cellular response indistinguishable from that triggered by the full-length Shiga toxin. This functionalization strategy is a clear example of how some toxin fragments can be used as natural biosensors for the detection of some localized cancers and to target nanomedicines to HNC lesions.
Collapse
|
9
|
Tang G, He J, Liu J, Yan X, Fan K. Nanozyme for tumor therapy: Surface modification matters. EXPLORATION (BEIJING, CHINA) 2021; 1:75-89. [PMID: 37366468 PMCID: PMC10291575 DOI: 10.1002/exp.20210005] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 06/28/2023]
Abstract
As the next generation of artificial enzymes, nanozymes have shown unique properties compared to its natural counterparts, such as stability in harsh environment, low cost, and ease of production and modification, paving the way for its biomedical applications. Among them, tumor catalytic therapy mediated by the generation of reactive oxygen species (ROS) has made great progress mainly from the peroxidase-like activity of nanozymes. Fe3O4 nanozymes, the earliest type of nanomaterial discovered to possess peroxidase-like activity, has consequently received wide attention for tumor therapy due to its ROS generation ability and tumor cell killing ability. However, inconsistent results of cytotoxicity were observed between different reports, and some even showed the scavenging of ROS in some cases. By collectively studying these inconsistent outcomes, we raise the question whether surface modification of Fe3O4 nanozymes, either through affecting peroxidase activity or by affecting the biodistribution and intracellular fate, play an important role in its therapeutic effects. This review will go over the fundamental catalytic mechanisms of Fe3O4 nanozymes and recent advances in tumor catalytic therapy, and discuss the importance of surface modification. Employing Fe3O4 nanozymes as an example, we hope to provide an outlook on the improvement of nanozyme-based antitumor activity.
Collapse
Affiliation(s)
- Guoheng Tang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing101408P. R. China
| | - Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing101408P. R. China
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing101408P. R. China
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
10
|
Crețu BEB, Dodi G, Shavandi A, Gardikiotis I, Șerban IL, Balan V. Imaging Constructs: The Rise of Iron Oxide Nanoparticles. Molecules 2021; 26:3437. [PMID: 34198906 PMCID: PMC8201099 DOI: 10.3390/molecules26113437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, an important challenge in nanomedicine imaging has been the work to design multifunctional agents that can be detected by single and/or multimodal techniques. Among the broad spectrum of nanoscale materials being investigated for imaging use, iron oxide nanoparticles have gained significant attention due to their intrinsic magnetic properties, low toxicity, large magnetic moments, superparamagnetic behaviour and large surface area-the latter being a particular advantage in its conjunction with specific moieties, dye molecules, and imaging probes. Tracers-based nanoparticles are promising candidates, since they combine synergistic advantages for non-invasive, highly sensitive, high-resolution, and quantitative imaging on different modalities. This study represents an overview of current advancements in magnetic materials with clinical potential that will hopefully provide an effective system for diagnosis in the near future. Further exploration is still needed to reveal their potential as promising candidates from simple functionalization of metal oxide nanomaterials up to medical imaging.
Collapse
Affiliation(s)
- Bianca Elena-Beatrice Crețu
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Amin Shavandi
- BioMatter-Biomass Transformation Lab, École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Ionela Lăcrămioara Șerban
- Physiology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
| | - Vera Balan
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
| |
Collapse
|
11
|
Karakuş S, Albayrak İ, Üllen NB, Insel MA, Kilislioğlu A. Preparation, characterization and evaluation of a novel CMC/Chitosan-α-Fe2O3 nanoparticles-coated 17–4 PH stainless-steel foam. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03700-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Saladino GM, Vogt C, Li Y, Shaker K, Brodin B, Svenda M, Hertz HM, Toprak MS. Optical and X-ray Fluorescent Nanoparticles for Dual Mode Bioimaging. ACS NANO 2021; 15:5077-5085. [PMID: 33587608 PMCID: PMC8028327 DOI: 10.1021/acsnano.0c10127] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/09/2021] [Indexed: 05/07/2023]
Abstract
Nanoparticle (NP) based contrast agents detectable via different imaging modalities (multimodal properties) provide a promising strategy for noninvasive diagnostics. Core-shell NPs combining optical and X-ray fluorescence properties as bioimaging contrast agents are presented. NPs developed earlier for X-ray fluorescence computed tomography (XFCT), based on ceramic molybdenum oxide (MoO2) and metallic rhodium (Rh) and ruthenium (Ru), are coated with a silica (SiO2) shell, using ethanolamine as the catalyst. The SiO2 coating method introduced here is demonstrated to be applicable to both metallic and ceramic NPs. Furthermore, a fluorophore (Cy5.5 dye) was conjugated to the SiO2 layer, without altering the morphological and size characteristics of the hybrid NPs, rendering them with optical fluorescence properties. The improved biocompatibility of the SiO2 coated NPs without and with Cy5.5 is demonstrated in vitro by Real-Time Cell Analysis (RTCA) on a macrophage cell line (RAW 264.7). The multimodal characteristics of the core-shell NPs are confirmed with confocal microscopy, allowing the intracellular localization of these NPs in vitro to be tracked and studied. In situ XFCT successfully showed the possibility of in vivo multiplexed bioimaging for multitargeting studies with minimum radiation dose. Combined optical and X-ray fluorescence properties empower these NPs as effective macroscopic and microscopic imaging tools.
Collapse
Affiliation(s)
- Giovanni M. Saladino
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Carmen Vogt
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Yuyang Li
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Kian Shaker
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Bertha Brodin
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Martin Svenda
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Hans M. Hertz
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Muhammet S. Toprak
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| |
Collapse
|
13
|
Wang X, Yuan W, Xu M, Li F. Two-Photon Excitation-Based Imaging Postprocessing Algorithm Model for Background-Free Bioimaging. Anal Chem 2021; 93:2551-2559. [PMID: 33445876 DOI: 10.1021/acs.analchem.0c04611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioimaging is a powerful strategy for studying biological activities, which is still limited by the difficulty of distinguishing obscured signals from high background. Despite the development of various new imaging materials and methods, target signals are still likely to be submerged in spontaneous fluorescence or scattering signals. Herein, a novel two-photon excitation-process-based imaging postprocessing algorithm model (2PIA) is introduced to minimize background noise, and triplet-triplet annihilation upconversion metal-organic frameworks (UCMOFs) are chosen as demonstration. Through the collection of several image stacks, the related polynomial of the luminescence intensity and excitation power was established, following splitting the desired signals from noise and obtaining the background-free images definitely. Both in vitro and in vivo experiments show that improved signal visibility is achieved through 2PIA and UCMOFs by removing the interference of scattering, bioluminescence, and other fluorescence materials. The imaging spatial resolution and tissue penetration depth were greatly enhanced. Benefiting from 2PIA, as low as 100 UCMOFs labeled cells can be identified from obscuring background easily after intravenous injection. This image postprocessing method combined with special two-photon excited luminescent materials can conduct biological imaging from complex background interference without using expensive instruments or delicate materials, which holds great promise for accurate biological imaging.
Collapse
Affiliation(s)
- Xiu Wang
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Shanghai Key Laboratory of Molecular Catalysis & Collaborative Innovation Center of Chemistry for Energy Material, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Wei Yuan
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Shanghai Key Laboratory of Molecular Catalysis & Collaborative Innovation Center of Chemistry for Energy Material, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Ming Xu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Shanghai Key Laboratory of Molecular Catalysis & Collaborative Innovation Center of Chemistry for Energy Material, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Shanghai Key Laboratory of Molecular Catalysis & Collaborative Innovation Center of Chemistry for Energy Material, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
14
|
Design of Polymeric and Biocompatible Delivery Systems by Dissolving Mesoporous Silica Templates. Int J Mol Sci 2020; 21:ijms21249573. [PMID: 33339139 PMCID: PMC7765674 DOI: 10.3390/ijms21249573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/13/2023] Open
Abstract
There are many nanoencapsulation systems available today. Among all these, mesoporous silica particles (MSPs) have received great attention in the last few years. Their large surface-to-volume ratio, biocompatibility, and versatility allow the encapsulation of a wide variety of drugs inside their pores. However, their chemical instability in biological fluids is a handicap to program the precise release of the therapeutic compounds. Taking advantage of the dissolving capacity of silica, in this study, we generate hollow capsules using MSPs as transitory sacrificial templates. We show how, upon MSP coating with different polyelectrolytes or proteins, fully customized hollow shells can be produced. These capsules are biocompatible, flexible, and biodegradable, and can be decorated with nanoparticles or carbon nanotubes to endow the systems with supplementary intrinsic properties. We also fill the capsules with a fluorescent dye to demonstrate intracellular compound release. Finally, we document how fluorescent polymeric capsules are engulfed by cells, releasing their encapsulated agent during the first 96 h. In summary, here, we describe how to assemble a highly versatile encapsulation structure based on silica mesoporous cores that are completely removed from the final polymeric capsule system. These drug encapsulation systems are highly customizable and have great versatility as they can be made using silica cores of different sizes and multiple coatings. This provides capsules with unique programmable attributes that are fully customizable according to the specific needs of each disease or target tissue for the development of nanocarriers in personalized medicine.
Collapse
|
15
|
Butova VV, Polyakov VA, Erofeeva EA, Li Z, Soldatov MA, Soldatov AV. Synthesis of Zinc Oxide Nanoparticles Coated with Silicon Oxide. DOKLADY CHEMISTRY 2020. [DOI: 10.1134/s0012500820050018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Iturrioz-Rodríguez N, Correa-Duarte MÁ, Valiente R, Fanarraga ML. Engineering Sub-Cellular Targeting Strategies to Enhance Safe Cytosolic Silica Particle Dissolution in Cells. Pharmaceutics 2020; 12:pharmaceutics12060487. [PMID: 32481488 PMCID: PMC7356774 DOI: 10.3390/pharmaceutics12060487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022] Open
Abstract
Mesoporous silica particles (MSP) are major candidates for drug delivery systems due to their versatile, safe, and controllable nature. Understanding their intracellular route and biodegradation process is a challenge, especially when considering their use in neuronal repair. Here, we characterize the spatiotemporal intracellular destination and degradation pathways of MSP upon endocytosis by HeLa cells and NSC-34 motor neurons using confocal and electron microscopy imaging together with inductively-coupled plasma optical emission spectroscopy analysis. We demonstrate how MSP are captured by receptor-mediated endocytosis and are temporarily stored in endo-lysosomes before being finally exocytosed. We also illustrate how particles are often re-endocytosed after undergoing surface erosion extracellularly. On the other hand, silica particles engineered to target the cytosol with a carbon nanotube coating, are safely dissolved intracellularly in a time scale of hours. These studies provide fundamental clues for programming the sub-cellular fate of MSP and reveal critical aspects to improve delivery strategies and to favor MSP safe elimination. We also demonstrate how the cytosol is significantly more corrosive than lysosomes for MSP and show how their biodegradation is fully biocompatible, thus, validating their use as nanocarriers for nervous system cells, including motor neurons.
Collapse
Affiliation(s)
- Nerea Iturrioz-Rodríguez
- Grupo de Nanomedicina, Instituto Valdecilla-IDIVAL, Herrera Oria s/n, 39011 Santander, Spain;
- Correspondence: (N.I.-R.); (M.L.F.); Tel.: +34-942315515 (ext. 74101) (N.I.-R.); +34-942202067 (M.L.F.)
| | - Miguel Ángel Correa-Duarte
- Biomedical Research Centre (CINBIO), Universidade de Vigo, 36310 Vigo, Spain;
- Southern Galicia Institute of Health Research (IISGS), and CIBERSAM, 36213 Vigo, Spain
| | - Rafael Valiente
- Grupo de Nanomedicina, Instituto Valdecilla-IDIVAL, Herrera Oria s/n, 39011 Santander, Spain;
- Departments of Applied Physics, University of Cantabria, 39005 Santander, Spain
| | - Mónica L. Fanarraga
- Grupo de Nanomedicina, Instituto Valdecilla-IDIVAL, Herrera Oria s/n, 39011 Santander, Spain;
- Molecular Biology, University of Cantabria, 39011 Santander, Spain
- Correspondence: (N.I.-R.); (M.L.F.); Tel.: +34-942315515 (ext. 74101) (N.I.-R.); +34-942202067 (M.L.F.)
| |
Collapse
|