1
|
Onori I, Formon GJM, Weder C, Augusto Berrocal J. Toughening Healable Supramolecular Double Polymer Networks Based on Hydrogen Bonding and Metal Coordination. Chemistry 2024; 30:e202402511. [PMID: 39382353 DOI: 10.1002/chem.202402511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Double polymer networks (DNs) consist of two interpenetrating polymer networks and can offer properties that are not merely a sum of the parts. Here, we report an elastic DN made from two supramolecular polymers (SMPs) that consist of the same poly(n-butyl acrylate) (BA) backbone. The two polymers feature different non-covalent binding motifs, which form dynamic, reversible cross-links. The polymers were prepared by reversible addition-fragmentation chain-transfer polymerization of n-butyl acrylate and either the self-complementary hydrogen-bonding motif 2-ureido-4[1H]pyrimidinone, or the 2,6-bis(1'-methylbenzimidazolyl)pyridine ligand, which forms complexes with metal ions. The supramolecular DN made by these components combines features of the single networks, including high thermal stability and resistance to creep. The DN further exhibits excellent healability and displays a higher extensibility and a higher toughness than its constituents. The mechanical characteristics of the DN can be further enhanced by selectively pre-stretching one of the networks, which is readily possible due to the reversible formation of the supramolecular cross-links and their orthogonal stimuli-responsiveness.
Collapse
Affiliation(s)
- Ilaria Onori
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Georges J M Formon
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- NCCR Bio-Inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- NCCR Bio-Inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland
| | - José Augusto Berrocal
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, E- 43007, Tarragona, Spain
| |
Collapse
|
2
|
Rajawasam CWH, Tran C, Sparks JL, Krueger WH, Hartley CS, Konkolewicz D. Carbodiimide-Driven Toughening of Interpenetrated Polymer Networks. Angew Chem Int Ed Engl 2024; 63:e202400843. [PMID: 38517330 DOI: 10.1002/anie.202400843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Recent work has demonstrated that temporary crosslinks in polymer networks generated by chemical "fuels" afford materials with large, transient changes in their mechanical properties. This can be accomplished in carboxylic-acid-functionalized polymer hydrogels using carbodiimides, which generate anhydride crosslinks with lifetimes on the order of minutes to hours. Here, the impact of the polymer network architecture on the mechanical properties of transiently crosslinked materials was explored. Single networks (SNs) were compared to interpenetrated networks (IPNs). Notably, semi-IPN precursors that give IPNs on treatment with carbodiimide give much higher fracture energies (i.e., resistance to fracture) and superior resistance to compressive strain compared to other network architectures. A precursor semi-IPN material featuring acrylic acid in only the free polymer chains yields, on treatment with carbodiimide, an IPN with a fracture energy of 2400 J/m2, a fourfold increase compared to an analogous semi-IPN precursor that yields a SN. This resistance to fracture enables the formation of macroscopic complex cut patterns, even at high strain, underscoring the pivotal role of polymer architecture in mechanical performance.
Collapse
Affiliation(s)
| | - Corvo Tran
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Jessica L Sparks
- Department of Chemical Paper and Biomedical Engineering, Miami University, Oxford, OH, 45056, USA
| | - William H Krueger
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - C Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
3
|
Bao B, Zeng Q, Li K, Wen J, Zhang Y, Zheng Y, Zhou R, Shi C, Chen T, Xiao C, Chen B, Wang T, Yu K, Sun Y, Lin Q, He Y, Tu S, Zhu L. Rapid fabrication of physically robust hydrogels. NATURE MATERIALS 2023; 22:1253-1260. [PMID: 37604908 DOI: 10.1038/s41563-023-01648-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
Hydrogel materials show promise for diverse applications, particular as biocompatible materials due to their high water content. Despite advances in hydrogel technology in recent years, their application is often severely limited by inadequate mechanical properties and time-consuming fabrication processes. Here we report a rapid hydrogel preparation strategy that achieves the simultaneous photo-crosslinking and establishment of biomimetic soft-hard material interface microstructures. These biomimetic interfacial-bonding nanocomposite hydrogels are prepared within seconds and feature clearly separated phases but have a strongly bonded interface. Due to effective interphase load transfer, biomimetic interfacial-bonding nanocomposite gels achieve an ultrahigh toughness (138 MJ m-3) and exceptional tensile strength (15.31 MPa) while maintaining a structural stability that rivals or surpasses that of commonly used elastomer (non-hydrated) materials. Biomimetic interfacial-bonding nanocomposite gels can be fabricated into arbitrarily complex structures via three-dimensional printing with micrometre-level precision. Overall, this work presents a generalizable preparation strategy for hydrogel materials and acrylic elastomers that will foster potential advances in soft materials.
Collapse
Affiliation(s)
- Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingmei Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Jianfeng Wen
- Key Laboratory of Pressure Systems and Safety (Ministry of Education), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiqing Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yongjun Zheng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Renjie Zhou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Chutong Shi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chaonan Xiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Baihang Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Tao Wang
- Key Laboratory of Pressure Systems and Safety (Ministry of Education), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Shantung Tu
- Key Laboratory of Pressure Systems and Safety (Ministry of Education), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China.
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
An ZW, Xue R, Ye K, Zhao H, Liu Y, Li P, Chen ZM, Huang CX, Hu GH. Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods. NANOSCALE 2023; 15:6505-6520. [PMID: 36883369 DOI: 10.1039/d2nr07110j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To meet more application requirements, improving mechanical properties and self-healing efficiency has become the focus of current research on self-healing PU. The competitive relationship between self-healing ability and mechanical properties cannot be avoided by a single self-healing method. To address this problem, a growing number of studies have combined dynamic covalent bonding with other self-healing methods to construct the PU structure. This review summarizes recent studies on PU materials that combine typical dynamic covalent bonds with other self-healing methods. It mainly includes four parts: hydrogen bonding, metal coordination bonding, nanofillers combined with dynamic covalent bonding and multiple dynamic covalent bond bonding. The advantages and disadvantages of different self-healing methods and their significant role in improving self-healing ability and mechanical properties in PU networks are analyzed. At the same time, the possible challenges and research directions of self-healing PU materials in the future are discussed.
Collapse
Affiliation(s)
- Ze-Wei An
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Rui Xue
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kang Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
- Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Li
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Zhen-Ming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Chong-Xing Huang
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Guo-Hua Hu
- Laboratory of Reactions and Process Engineering, CNRS-University of Lorraine, Nancy 54001, France
| |
Collapse
|
5
|
Bennett C, Hayes PJ, Thrasher CJ, Chakma P, Wanasinghe SV, Zhang B, Petit LM, Varshney V, Nepal D, Sarvestani A, Picu CR, Sparks JL, Zanjani MB, Konkolewicz D. Modeling Approach to Capture Hyperelasticity and Temporary Bonds in Soft Polymer Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camaryn Bennett
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Peter J. Hayes
- Department of Mechanical and Manufacturing Engineering, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Carl J. Thrasher
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| | - Progyateg Chakma
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Shiwanka V. Wanasinghe
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Borui Zhang
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Leilah M. Petit
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Vikas Varshney
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, United States
| | - Dhriti Nepal
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, United States
| | - Alireza Sarvestani
- Department of Mechanical Engineering, Mercer University, Macon, Georgia 31207, United States
| | - Catalin R. Picu
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jessica L. Sparks
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Mehdi B. Zanjani
- Department of Mechanical and Manufacturing Engineering, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
6
|
Ehrhardt D, Mangialetto J, Van Durme K, Van Mele B, Van den Brande N. UV Stability of Self-Healing Poly(methacrylate) Network Layers. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Roels E, Terryn S, Iida F, Bosman AW, Norvez S, Clemens F, Van Assche G, Vanderborght B, Brancart J. Processing of Self-Healing Polymers for Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104798. [PMID: 34610181 DOI: 10.1002/adma.202104798] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Soft robots are, due to their softness, inherently safe and adapt well to unstructured environments. However, they are prone to various damage types. Self-healing polymers address this vulnerability. Self-healing soft robots can recover completely from macroscopic damage, extending their lifetime. For developing healable soft robots, various formative and additive manufacturing methods have been exploited to shape self-healing polymers into complex structures. Additionally, several novel manufacturing techniques, noted as (re)assembly binding techniques that are specific to self-healing polymers, have been created. Herein, the wide variety of processing techniques of self-healing polymers for robotics available in the literature is reviewed, and limitations and opportunities discussed thoroughly. Based on defined requirements for soft robots, these techniques are critically compared and validated. A strong focus is drawn to the reversible covalent and (physico)chemical cross-links present in the self-healing polymers that do not only endow healability to the resulting soft robotic components, but are also beneficial in many manufacturing techniques. They solve current obstacles in soft robots, including the formation of robust multi-material parts, recyclability, and stress relaxation. This review bridges two promising research fields, and guides the reader toward selecting a suitable processing method based on a self-healing polymer and the intended soft robotics application.
Collapse
Affiliation(s)
- Ellen Roels
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Seppe Terryn
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Fumiya Iida
- Machine Intelligence Lab, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Anton W Bosman
- SupraPolix B. V., Horsten 1.29, Eindhoven, 5612 AX, The Netherlands
| | - Sophie Norvez
- Chimie Moléculaire, Macromoléculaire, Matériaux, École Supérieure de Physique et de Chimie (ESPCI), 10 Rue Vauquelin, Paris, 75005, France
| | - Frank Clemens
- Laboratory for High Performance Ceramics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Guy Van Assche
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
8
|
Rajappan SC, Davis BJ, Dishner IT, Thornell TL, Peyrefitte JJ, Simon YC. Reversible hetero-Diels–Alder amine hardener as drop-in replacement for healable epoxy coatings. Polym Chem 2022. [DOI: 10.1039/d1py00917f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacing commercial hardeners with bio-sourced fatty acids linked by hetero Diels–Alder (HDA) motifs enabled epoxy-amine coatings with intrinsic self-healing properties. The HDA-based coatings demonstrate scratch healing at 95 °C within 15 min.
Collapse
Affiliation(s)
- Sinu C. Rajappan
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr. #5050, Hattiesburg, MS 39406, USA
| | - Brad J. Davis
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr. #5050, Hattiesburg, MS 39406, USA
| | - Isaiah T. Dishner
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr. #5050, Hattiesburg, MS 39406, USA
| | - Travis L. Thornell
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - John J. Peyrefitte
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr. #5050, Hattiesburg, MS 39406, USA
| | - Yoan C. Simon
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr. #5050, Hattiesburg, MS 39406, USA
| |
Collapse
|
9
|
Wang X, Xu J, Zhang Y, Wang T, Wang Q, Yang Z, Zhang X. High-strength, high-toughness, self-healing thermosetting shape memory polyurethane enabled by dual dynamic covalent bonds. Polym Chem 2022. [DOI: 10.1039/d2py00564f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smart materials that integrate multiple functions into one system will broaden the application range of materials, but there are still challenges to obtain a material with excellent shape memory, toughness,...
Collapse
|
10
|
Wanasinghe SV, De Alwis Watuthanthrige N, Konkolewicz D. Interpenetrated triple network polymers: synergies of three different dynamic bonds. Polym Chem 2022. [DOI: 10.1039/d2py00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triply interpenetrated networks were made with a unique dynamic linker in each network. The linkers were hydrogen bonds, boronic esters and Diels–Alder adducts. Triply dynamic materials had superior properties compared to doubly dynamic analogues.
Collapse
Affiliation(s)
| | | | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
11
|
Yokoi T, Kuzuya A, Nakajima T, Kurokawa T, Gong JP, Ohya Y. Synthesis of degradable double network gels using a hydrolysable cross-linker. Polym Chem 2022. [DOI: 10.1039/d2py00360k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double network (DN) gels have remarkably high mechanical strength and toughness and can be potentially applied in biomedical applications such as cartilage regeneration. However, most DN gels synthesised by usual...
Collapse
|
12
|
Zhou Q, Sang Z, Rajagopalan KK, Sliozberg Y, Gardea F, Sukhishvili SA. Thermodynamics and Stereochemistry of Diels–Alder Polymer Networks: Role of Crosslinker Flexibility and Crosslinking Density. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qing Zhou
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Zhen Sang
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kartik Kumar Rajagopalan
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Yelena Sliozberg
- Weapons and Materials Research Directorate, DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Frank Gardea
- Weapons and Materials Research Directorate, DEVCOM Army Research Laboratory South, College Station, Texas 77843, United States
| | - Svetlana A. Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Ehrhardt D, Mangialetto J, Van Durme K, Van Mele B, Van den Brande N. From Slow to Fast Self-Healing at Ambient Temperature of High-Modulus Reversible Poly(methacrylate) Networks. Single- and Dual-Dynamics and the Effect of Phase Separation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D. Ehrhardt
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - J. Mangialetto
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - K. Van Durme
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
- DSM Advanced Solar, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - B. Van Mele
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - N. Van den Brande
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
14
|
You Y, Rong MZ, Zhang MQ. Adaptable Reversibly Interlocked Networks from Immiscible Polymers Enhanced by Hierarchy-Induced Multilevel Energy Consumption Mechanisms. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yang You
- Materials Science Institute, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Min Zhi Rong
- Materials Science Institute, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ming Qiu Zhang
- Materials Science Institute, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
15
|
|
16
|
Hammer L, Van Zee NJ, Nicolaÿ R. Dually Crosslinked Polymer Networks Incorporating Dynamic Covalent Bonds. Polymers (Basel) 2021; 13:396. [PMID: 33513741 PMCID: PMC7865237 DOI: 10.3390/polym13030396] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Covalent adaptable networks (CANs) are polymeric networks containing covalent crosslinks that are dynamic under specific conditions. In addition to possessing the malleability of thermoplastics and the dimensional stability of thermosets, CANs exhibit a unique combination of physical properties, including adaptability, self-healing, shape-memory, stimuli-responsiveness, and enhanced recyclability. The physical properties and the service conditions (such as temperature, pH, and humidity) of CANs are defined by the nature of their constituent dynamic covalent bonds (DCBs). In response to the increasing demand for more sophisticated and adaptable materials, the scientific community has identified dual dynamic networks (DDNs) as a promising new class of polymeric materials. By combining two (or more) distinct crosslinkers in one system, a material with tailored thermal, rheological, and mechanical properties can be designed. One remarkable ability of DDNs is their capacity to combine dimensional stability, bond dynamicity, and multi-responsiveness. This review aims to give an overview of the advances in the emerging field of DDNs with a special emphasis on their design, structure-property relationships, and applications. This review illustrates how DDNs offer many prospects that single (dynamic) networks cannot provide and highlights the challenges associated with their synthesis and characterization.
Collapse
Affiliation(s)
| | | | - Renaud Nicolaÿ
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, CNRS, Université PSL, 10 rue Vauquelin, 75005 Paris, France; (L.H.); (N.J.V.Z.)
| |
Collapse
|
17
|
RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Zhao R, Wang Y, Wang S, Zhao C, Gong X. The dissociation of physical interaction clusters under tensile deformation of hybrid double network gels. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Thompson CB, Korley LTJ. 100th Anniversary of Macromolecular Science Viewpoint: Engineering Supramolecular Materials for Responsive Applications-Design and Functionality. ACS Macro Lett 2020; 9:1198-1216. [PMID: 35638621 DOI: 10.1021/acsmacrolett.0c00418] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supramolecular polymers allow access to dynamic materials, where noncovalent interactions can be used to offer both enhanced material toughness and stimuli-responsiveness. The versatility of self-assembly has enabled these supramolecular motifs to be incorporated into a wide array of glassy and elastomeric materials; moreover, the interaction of these noncovalent motifs with their environment has shown to be a convenient platform for controlling material properties. In this Viewpoint, supramolecular polymers are examined through their self-assembly chemistries, approaches that can be used to control their self-assembly (e.g., covalent cross-links, nanofillers, etc.), and how the strategic application of supramolecular polymers can be used as a platform for designing the next generation of smart materials. This Viewpoint provides an overview of the aspects that have garnered interest in supramolecular polymer chemistry, while also highlighting challenges faced and innovations developed by researchers in the field.
Collapse
Affiliation(s)
- Chase B. Thompson
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, Newark, Delaware 19716, United States
| | - LaShanda T. J. Korley
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
20
|
Yang H, Ghiassinejad S, van Ruymbeke E, Fustin CA. Tunable Interpenetrating Polymer Network Hydrogels Based on Dynamic Covalent Bonds and Metal–Ligand Bonds. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00494] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hui Yang
- Bio and Soft Matter Division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
| | - Sina Ghiassinejad
- Bio and Soft Matter Division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
| | - Evelyne van Ruymbeke
- Bio and Soft Matter Division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
| | - Charles-André Fustin
- Bio and Soft Matter Division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1 & Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
21
|
Peng WL, Zhang ZP, Rong MZ, Zhang MQ. Reversibly Interlocked Macromolecule Networks with Enhanced Mechanical Properties and Wide pH Range of Underwater Self-Healability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27614-27624. [PMID: 32468811 DOI: 10.1021/acsami.0c07040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel strategy for developing homogeneous reversibly interlocking polymer networks (RILNs) with enhanced mechanical properties and underwater self-healing ability is proposed. The RILNs are prepared by the topological reorganization of two preformed cross-linked polymers containing reversible catechol-Fe3+ coordinate bonds and imine bonds and exhibit enhanced mechanical properties, superior underwater self-healing effect within a wide pH range, and water-assisted recycling ability through synergetic action between the reversible catechol-Fe3+ and imine bonds. At higher pH values, the catechol-Fe3+ coordinate bonds are responsible for self-healing, while the imine bonds maintain the stability of the materials. In neutral water, the imine bonds mainly account for self-healing, and hydrogen bonds and entanglements between the two networks prevent the material from collapsing. Under a lower pH value, intermolecular hydrogen bonds and entanglements contribute to self-healing. The outcomes of this work provide a new idea for developing robust multifunctional underwater self-healing materials.
Collapse
Affiliation(s)
- Wei Li Peng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ze Ping Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
22
|
Peng WL, You Y, Xie P, Rong MZ, Zhang MQ. Adaptable Interlocking Macromolecular Networks with Homogeneous Architecture Made from Immiscible Single Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02307] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Li Peng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yang You
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Pu Xie
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|