1
|
Chang H, Wang J, Yang Y, Jiang Z, Chen Y, Lao Z. A mitochondria targeted hydrogen peroxide fluorescent probe for monitoring oxidative stress during influenza virus infection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125929. [PMID: 40020499 DOI: 10.1016/j.saa.2025.125929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Hydrogen peroxide (H2O2), an important marker of oxidative stress, plays a significant role in infectious diseases. Oxidative stress induced by influenza virus infection is intricately linked to the pathological processes of host cells. In this work, a fluorescent probe QLC1 based on the coumarin was developed for fluorescence imaging of mitochondrial H2O2 level in host cells during influenza virus infection. The self-immolative reaction of QLC1 triggered by H2O2 will lead to a 250-fold fluorescence enhance and the limit of detection was determined to be 0.176 μM. Using this probe, we monitored oxidative stress during influenza infection and identified a link between redox status and influenza virus replication.
Collapse
Affiliation(s)
- Hao Chang
- Department of Laboratory Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Jianing Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology,Basic Medicine College,Jinan University, Guangzhou, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| | - Yue Chen
- Department of Laboratory Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China.
| | - Zhiqi Lao
- Department of Laboratory Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
2
|
Li W, Fu T, Zheng M, Wen H, Li X, Guo W, Li X, Yu Q, Jin M, Liu K, Sheng W, Zhu B. Discovery of a highly selective fluorescent probe for hydrogen peroxide and its biocompatibility evaluation and bioimaging applications in cells and zebrafish. Bioorg Chem 2024; 150:107552. [PMID: 38901280 DOI: 10.1016/j.bioorg.2024.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
As one of the most widely distributed reactive oxygen species in vivo, hydrogen peroxide plays divergent and important roles in cell growth, differentiation and aging. When the level of hydrogen peroxide in the body is abnormal, it will lead to genome mutation and induce irreversible oxidative modification of proteins, lipids and polysaccharides, resulting in cell death or even disease. Therefore, it is significant to develop a sensitive and specific probe for real-time detection of hydrogen peroxide in vivo. In this study, the response mechanism between hydrogen peroxide and probe QH was investigated by means of HRMS and the probe showed good optical properties and high selectivity to hydrogen peroxide. Note that the evaluating of probe biocompatibility resulted from cytotoxicity test, behavioral test, hepatotoxicity test, cardiotoxicity test, blood vessel toxicity test, immunotoxicity test and neurotoxicity test using cell and transgenic zebrafish models with more than 20 toxic indices. Furthermore, the detection performance of the probe for hydrogen peroxide was evaluated by multiple biological models and the probe was proved to be much essential for the monitoring of hydrogen peroxide in vivo.
Collapse
Affiliation(s)
- Wenzhai Li
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Tingting Fu
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Min Zheng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Huayan Wen
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenli Guo
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xiao Li
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qian Yu
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Meng Jin
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
3
|
An J, Park S, Jain N, Kim Y, Nimse SB, Churchill DG. Novel mycophenolic acid precursor-based fluorescent probe for intracellular H 2O 2 detection in living cells and Daphnia magna and Zebrafish model systems. Analyst 2024; 149:4477-4486. [PMID: 39041806 DOI: 10.1039/d4an00742e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Innovative for the scientific community and attracting attention in the extensive biomedical field are novel compact organic chemosensing systems built upon unique core molecular frameworks. These systems may demonstrate customized responses and may be adaptable to analytes, showing promise for potential in vivo applications. Our recent investigation focuses on a precursor of Mycophenolic acid, resulting in the development of LBM (LOD = 13 nM) - a specialized probe selective for H2O2. This paper details the synthesis, characterization, and thorough biological assessments of LBM. Notably, we conducted experiments involving living cells, daphnia, and zebrafish models, utilizing microscopy techniques to determine probe nontoxicity and discern distinct patterns of probe localization. Localization involved the distribution of the probe in the Zebrafish model within the gut, esophagus, and muscles of the antennae.
Collapse
Affiliation(s)
- Jongkeol An
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sujeong Park
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Neha Jain
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Youngsam Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
- Division of Energy and Environment Technology, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon, 24252, Republic of Korea
| | - David G Churchill
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Ma Y, Mao L, Cui C, Hu Y, Chen Z, Zhan Y, Zhang Y. Nitrogen-doped carbon dots as fluorescent probes for sensitive and selective determination of Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124347. [PMID: 38678843 DOI: 10.1016/j.saa.2024.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
At present, the contamination of water resources by heavy metal ions has posed a significant threat to human survival. Therefore, it is particularly critical to develop low-cost, easy-to-use, and highly efficient heavy metal detection technologies. In this work, a fast and cost-effective fluorescent probe for nitrogen-doped carbon dots (N-CDs) was prepared using one-step hydrothermal method with citric acid (CA) as carbon source, and melamine as nitrogen source. The structural and optical characterizations of the resulting N-CDs were investigated in details. The results showed that the quantum yield of the prepared fluorescent probe was as high as 45 %, and an average fluorescence lifetime was about 7.80 ns. N-CDs have excellent water solubility and dispersibility, with an average size of 2.58 nm. N-CDs exhibited excellent specific responsiveness to Fe3+ and can be used as an effective method for detecting Fe3+ at low-concentrations (the concentrations of N-CDs as low as 0.24 μg/mL) using fluorescent probes. The linear response of the fluorescent probe N-CDs to Fe3+ was formed in the concentration range of 20-80 μM, and the detection limit was 3.18 μM. In addition, in the actual water samples analysis, the recovery rate reached 97.05-100.58 %. The prepared of N-CDs provide available Fe3+ fluorescent probes in the environment.
Collapse
Affiliation(s)
- Yulin Ma
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Linhan Mao
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Congcong Cui
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yong Hu
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhaoxia Chen
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuan Zhan
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yuhong Zhang
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
5
|
Yan L, Tang L, Wu X, Li L. Recent Advances in Organic Small-Molecule Fluorescent Probes Based on Dicyanoisophorone Derivatives. Crit Rev Anal Chem 2024:1-28. [PMID: 38836446 DOI: 10.1080/10408347.2024.2354328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fluorescent probe technology holds great promise in the fields of environmental monitoring and clinical diagnosis due to its inherent advantages, including easy operation, reliable detection signals, fast analysis speed, and in situ imaging capabilities. In recent years, a wide range of fluorescent probes based on diverse fluorophores have been developed for the analysis and detection of various analytes, yielding significant achievement. Among these fluorophores, the dicyanoisophorone-based fluorophores have garnered significant attention. Dicyanoisoporone exhibits minimal fluorescence, yet possesses a robust electron-withdrawing capability, rendering it suitable for constructing of D-π-A structured fluorophores. Leveraging the intramolecular charge transfer (ICT) effect, such fluorophores exhibit near-infrared (NIR) fluorescence emission with a large Stokes shift, thereby offering remarkable advantages in the design and development of NIR fluorescence probes. This review article primarily focus on small-molecule dicyanoisoporone-based probes from the past two years, elucidating their design strategies, detection performances, and applications. Additionally, we summarize current challenges while predicting future directions to provide valuable references for developing novel and advanced fluorescence probes based on dicyanoisoporone derivatives.
Collapse
Affiliation(s)
- Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Liting Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Xiongzhi Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Lin Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| |
Collapse
|
6
|
Yang ZC, Zhao LX, Sang YQ, Huang X, Lin XC, Yu ZM. Aggregation-Induced Emission Luminogens: A New Possibility for Efficient Visualization of RNA in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:743. [PMID: 38475589 DOI: 10.3390/plants13050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
RNAs play important roles in regulating biological growth and development. Advancements in RNA-imaging techniques are expanding our understanding of their function. Several common RNA-labeling methods in plants have pros and cons. Simultaneously, plants' spontaneously fluorescent substances interfere with the effectiveness of RNA bioimaging. New technologies need to be introduced into plant RNA luminescence. Aggregation-induced emission luminogens (AIEgens), due to their luminescent properties, tunable molecular size, high fluorescence intensity, good photostability, and low cell toxicity, have been widely applied in the animal and medical fields. The application of this technology in plants is still at an early stage. The development of AIEgens provides more options for RNA labeling. Click chemistry provides ideas for modifying AIEgens into RNA molecules. The CRISPR/Cas13a-mediated targeting system provides a guarantee of precise RNA modification. The liquid-liquid phase separation in plant cells creates conditions for the enrichment and luminescence of AIEgens. The only thing that needs to be looked for is a specific enzyme that uses AIEgens as a substrate and modifies AIEgens onto target RNA via a click chemical reaction. With the development and progress of artificial intelligence and synthetic biology, it may soon be possible to artificially synthesize or discover such an enzyme.
Collapse
Affiliation(s)
- Zheng-Chao Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Xiang Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Qi Sang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuan-Chen Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhi-Ming Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Saadh MJ, Abdulsahib WK, Mustafa AN, Zabibah RS, Adhab ZH, Rakhimov N, Alsaikhan F. Recent advances in natural nanoclay for diagnosis and therapy of cancer: A review. Colloids Surf B Biointerfaces 2024; 235:113768. [PMID: 38325142 DOI: 10.1016/j.colsurfb.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Cancer is still one of the deadliest diseases, and diagnosing and treating it effectively remains difficult. As a result, advancements in earlier detection and better therapies are urgently needed. Conventional chemotherapy induces chemoresistance, has non-specific toxicity, and has a meager efficacy. Natural materials like nanosized clay mineral formations of various shapes (platy, tubular, spherical, and fibrous) with tunable physicochemical, morphological, and structural features serve as potential templates for these. As multifunctional biocompatible nanocarriers with numerous applications in cancer research, diagnosis, and therapy, their submicron size, individual morphology, high specific surface area, enhanced adsorption ability, cation exchange capacity, and multilayered organization of 0.7-1 nm thick single sheets have attracted significant interest. Kaolinite, halloysite, montmorillonite, laponite, bentonite, sepiolite, palygorskite, and allophane are the most typical nanoclay minerals explored for cancer. These multilayered minerals can function as nanocarriers to effectively carry a variety of anticancer medications to the tumor site and improve their stability, dispersibility, sustained release, and transport. Proteins and DNA/RNA can be transported using nanoclays with positive and negative surfaces. The platform for phototherapeutic agents can be nanoclays. Clays with bio-functionality have been developed using various surface engineering techniques, which could help treat cancer. The promise of nanoclays as distinctive crystalline materials with applications in cancer research, diagnostics, and therapy are examined in this review.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Nodir Rakhimov
- Department of Oncology, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| |
Collapse
|
8
|
Yu X, Huang Y, Tao Y, Fan L, Zhang Y. Mitochondria-targetable small molecule fluorescent probes for the detection of cancer-associated biomarkers: A review. Anal Chim Acta 2024; 1289:342060. [PMID: 38245195 DOI: 10.1016/j.aca.2023.342060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024]
Abstract
Cancer represents a global threat to human health, and effective strategies for improved cancer early diagnosis and treatment are urgently needed. The detection of tumor biomarkers has been one of the important auxiliary means for tumor screening and diagnosis. Mitochondria are crucial subcellular organelles that produce most chemical energy used by cells, control metabolic processes, and maintain cell function. Evidence suggests the close involvement of mitochondria with cancer development. As a consequence, the identification of cancer-associated biomarker expression levels in mitochondria holds significant importance in the diagnosis of early-stage diseases and the monitoring of therapy efficacy. Small-molecule fluorescent probes are effective for the identification and visualization of bioactive entities within biological systems, owing to their heightened sensitivity, expeditious non-invasive analysis and real-time detection capacities. The design principles and sensing mechanisms of mitochondrial targeted fluorescent probes are summarized in this review. Additionally, the biomedical applications of these probes for detecting cancer-associated biomarkers are highlighted. The limitations and challenges of fluorescent probes in vivo are also considered and some future perspectives are provided. This review is expected to provide valuable insights for the future development of novel fluorescent probes for clinical imaging, thereby contributing to the advancement of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xue Yu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Yunong Huang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Yunqi Tao
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Li Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China.
| |
Collapse
|
9
|
Nehra N, Kaushik R. ESIPT-based probes for cations, anions and neutral species: recent progress, multidisciplinary applications and future perspectives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5268-5285. [PMID: 37800698 DOI: 10.1039/d3ay01249b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Fluorescent and colourimetric probes for small analytes (cations, anions and neutral molecules) have drawn significant attention in recent years. These probes interact with analytes and induce spectral change due to the variations in the photo-physical properties of the fluorophore/chromophore used. Among several photo-physical mechanisms, ESIPT (excited state intramolecular proton transfer) based probes are more advantageous due to their photo-physical properties viz. solvent polarity effect, large spectral shift with multi-channel fluorescence, high quantum yield etc. In recent years, ESIPT-based probes have shown several promising applications, especially monitoring small analytes in biological samples, smartphone app-assisted heavy metal detection in environmental samples, inkless writing, anti-counterfeiting applications etc. Therefore, this review is dedicated to recently reported ESIPT-based probes for small analytes. We have highlighted the organic units responsible for the ESIPT mechanism, their photo-physical parameters, selectivity and sensitivity properties and recent advances in their applications.
Collapse
Affiliation(s)
- Nidhi Nehra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Rahul Kaushik
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Ciou JJ, Wu TC, Chen ZJ, Cheng B, Lai CH. A selective fluorescent turn-on probe for imaging and sensing of hydrogen peroxide in living cells. Anal Bioanal Chem 2023; 415:4949-4959. [PMID: 37329467 DOI: 10.1007/s00216-023-04800-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Fluorescent turn-on probes have been extensively used in disease diagnosis and research on pathological disease mechanisms because of their low background interference. Hydrogen peroxide (H2O2) plays a vital role in regulating various cellular functions. In the current study, a fluorescent probe, HCyB, based on hemicyanine and arylboronate structures, was designed to detect H2O2. HCyB reacted with H2O2 and exhibited a good linear relationship for H2O2 concentrations ranging from 15 to 50 μM and good selectivity over other species. The fluorescent detection limit was 76 nM. Moreover, HCyB exhibited less toxicity and mitochondrial-targeting abilities. HCyB was successfully used to monitor exogenous or endogenous H2O2 in mouse macrophage RAW 264.7, human skin fibroblast WS1, breast cancer cell MDA-MB-231, and human leukemia monocytic THP1 cells.
Collapse
Affiliation(s)
- Jyun-Jia Ciou
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tzu-Chien Wu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Zhi-Jia Chen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Bill Cheng
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
11
|
Geng Y, Wang Z, Zhou J, Zhu M, Liu J, James TD. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem Soc Rev 2023. [PMID: 37190785 DOI: 10.1039/d2cs00172a] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oxidative stress is closely related to the physiopathology of numerous diseases. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are direct participants and important biomarkers of oxidative stress. A comprehensive understanding of their changes can help us evaluate disease pathogenesis and progression and facilitate early diagnosis and drug development. In recent years, fluorescent probes have been developed for real-time monitoring of ROS, RNS and RSS levels in vitro and in vivo. In this review, conventional design strategies of fluorescent probes for ROS, RNS, and RSS detection are discussed from three aspects: fluorophores, linkers, and recognition groups. We introduce representative fluorescent probes for ROS, RNS, and RSS detection in cells, physiological/pathological processes (e.g., Inflammation, Drug Induced Organ Injury and Ischemia/Reperfusion Injury etc.), and specific diseases (e.g., neurodegenerative diseases, epilepsy, depression, diabetes and cancer, etc.). We then highlight the achievements, current challenges, and prospects for fluorescent probes in the pathophysiology of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiaying Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
12
|
Development of Highly Efficient Estrogen Receptor β-Targeted Near-Infrared Fluorescence Probes Triggered by Endogenous Hydrogen Peroxide for Diagnostic Imaging of Prostate Cancer. Molecules 2023; 28:molecules28052309. [PMID: 36903555 PMCID: PMC10005547 DOI: 10.3390/molecules28052309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Hydrogen peroxide is one of the most important reactive oxygen species, which plays a vital role in many physiological and pathological processes. A dramatic increase in H2O2 levels is a prominent feature of cancer. Therefore, rapid and sensitive detection of H2O2 in vivo is quite conducive to an early cancer diagnosis. On the other hand, the therapeutic potential of estrogen receptor beta (ERβ) has been implicated in many diseases including prostate cancer, and this target has attracted intensive attention recently. In this work, we report the development of the first H2O2-triggered ERβ-targeted near-infrared fluorescence (NIR) probe and its application in imaging of prostate cancer both in vitro and in vivo. The probe showed good ERβ selective binding affinity, excellent H2O2 responsiveness and near infrared imaging potential. Moreover, in vivo and ex vivo imaging studies indicated that the probe could selectively bind to DU-145 prostate cancer cells and rapidly visualizes H2O2 in DU-145 xenograft tumors. Mechanistic studies such as high-resolution mass spectrometry (HRMS) and density functional theory (DFT) calculations indicated that the borate ester group is vital for the H2O2 response turn-on fluorescence of the probe. Therefore, this probe might be a promising imaging tool for monitoring the H2O2 levels and early diagnosis studies in prostate cancer research.
Collapse
|
13
|
Huang P, Lu J, Jin L, Liu E, Li L. A DFT/TDDFT Investigation on Fluorescence and Electronic Properties of Chromone Derivatives. J Fluoresc 2023; 33:453-458. [PMID: 36441339 DOI: 10.1007/s10895-022-03095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
The development of quick and precise detection technologies for active compounds in vivo is critical for disease prevention, diagnosis and pathological investigation. The fluorescence signal of the fluorophore usually defines the probe's sensitivity to the chemical being examined. Many natural compounds containing flavone and isoflavone scaffolds exhibit a certain amount fluorescence, albeit with poor fluorescence quantum yields. Therefore, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations to investigate the fluorescence characteristics of chromium-derived fluorophores in more depth. Different substituents are introduced at different positions of the chromone. As weak electron donor groups, alkyl and aromatic groups were discovered to have varying quantum yields on the fluorophore scaffold, and longer alkyl chains are favorable to enhance fluorescence quantum yield. In comparison to the amino group, substituted amino group can avoid group rotation, and the introduction of cyclic amines such as pyrrolidine and heterocyclic amines can improve optical characteristics. The electron-donating methoxy group at position 6 helps to increase the fluorescence quantum yield.
Collapse
Affiliation(s)
- Pei Huang
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ernu Liu
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Li Li
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|
14
|
Li Y, Ye Z, Zhang J, Zhao Y, Zhu T, Song J, Xu F, Li F. In Situ and Quantitative Monitoring of Cardiac Tissues Using Programmable Scanning Electrochemical Microscopy. Anal Chem 2022; 94:10515-10523. [PMID: 35822575 DOI: 10.1021/acs.analchem.2c01919] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro cardiac tissue model holds great potential as a powerful platform for drug screening. Respiratory activity, contraction frequency, and extracellular H2O2 levels are the three key parameters for determining the physiological functions of cardiac tissues, which are technically challenging to be monitored in an in situ and quantitative manner. Herein, we constructed an in vitro cardiac tissue model on polyacrylamide gels and applied a pulsatile electrical field to promote the maturation of the cardiac tissue. Then, we built a scanning electrochemical microscopy (SECM) platform with programmable pulse potentials to in situ characterize the dynamic changes in the respiratory activity, contraction frequency, and extracellular H2O2 level of cardiac tissues under both normal physiological and drug (isoproterenol and propranolol) treatment conditions using oxygen, ferrocenecarboxylic acid (FcCOOH), and H2O2 as the corresponding redox mediators. The SECM results showed that isoproterenol treatment induced enhanced oxygen consumption, accelerated contractile frequency, and increased released H2O2 level, while propranolol treatment induced dynamically decreased oxygen consumption and contractile frequency and no obvious change in H2O2 levels, suggesting the effects of activation and inhibition of β-adrenoceptor on the metabolic and electrophysiological activities of cardiac tissues. Our work realizes the in situ and quantitative monitoring of respiratory activity, contraction frequency, and secreted H2O2 level of living cardiac tissues using SECM for the first time. The programmable SECM methodology can also be used to real-time and quantitatively monitor electrochemical and electrophysiological parameters of cardiac tissues for future drug screening studies.
Collapse
Affiliation(s)
- Yabei Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhaoyang Ye
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuxiang Zhao
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tong Zhu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Department of Cardiovasology, Xidian Group Hospital, Xi'an, Shaanxi Province 710077, P. R. China
| | - Jingjing Song
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
15
|
Wang S, Yao J, Wang B, Liu X. A Ratiometric and Two-photon Fluorescent Probe for Imaging Hydrogen Peroxide in Living Cells. LUMINESCENCE 2022; 37:1037-1043. [PMID: 35332661 DOI: 10.1002/bio.4234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 11/07/2022]
Abstract
As an important one of ROS, hydrogen peroxide plays a significant role in the life activity system, and its abnormal levels are closely related to many diseases. Developing effective fluorescent probes for detecting hydrogen peroxide is very urgent. Therefore, we constructed a probe Z that can detect hydrogen peroxide in ratio. It has naphthimide as the fluorophore and phenylboronic acid pinacol esters as the recognition group. It shows higher sensitivity, lower detection limit, higher selectivity, and broad pH applicability. Moreover, probe Z has low cytotoxicity that can be used to detect exogenous hydrogen peroxide in HeLa cells and might be a potential tool for studying hydrogen peroxide in physiological activities.
Collapse
Affiliation(s)
- Shuoshuo Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jipeng Yao
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Bei Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiang Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Wang S, Zhang Y, Wang TR, Liu YJ, Shen SL, Cao XQ. A near-infrared fluorescent probe based on the hemicyanine skeleton for the detection of hydrogen peroxide in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120435. [PMID: 34607093 DOI: 10.1016/j.saa.2021.120435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
As a member of the reactive oxygen species, hydrogen peroxide (H2O2) plays critical roles in oxidative stress and cell signaling. Intracellular abnormal levels of H2O2 production are closely related to many diseases. Therefore, the real-time monitoring of H2O2 in the cells is important. In this work, we designed a novel fluorescent probe (Mito-H2O2) for the specific detection of H2O2 based on the hemicyanine skeleton, with bright near-infrared fluorescence emission. Mito-H2O2 displayed fast response, excellent water-solubility and great fluorescence intensity enhancement after the addition of H2O2. Furthermore, Mito-H2O2 has been successfully applied to image both of the exogenous and endogenous H2O2 in cells and mice with negligible cytotoxity.
Collapse
Affiliation(s)
- Sheng Wang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China
| | - Yu Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China
| | - Tian-Ran Wang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China
| | - Yu-Jun Liu
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China
| | - Shi-Li Shen
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China.
| | - Xiao-Qun Cao
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China
| |
Collapse
|
17
|
Gatin-Fraudet B, Ottenwelter R, Le Saux T, Norsikian S, Pucher M, Lombès T, Baron A, Durand P, Doisneau G, Bourdreux Y, Iorga BI, Erard M, Jullien L, Guianvarc'h D, Urban D, Vauzeilles B. Evaluation of borinic acids as new, fast hydrogen peroxide-responsive triggers. Proc Natl Acad Sci U S A 2021; 118:e2107503118. [PMID: 34873034 PMCID: PMC8685692 DOI: 10.1073/pnas.2107503118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Hydrogen peroxide (H2O2) is responsible for numerous damages when overproduced, and its detection is crucial for a better understanding of H2O2-mediated signaling in physiological and pathological processes. For this purpose, various "off-on" small fluorescent probes relying on a boronate trigger have been prepared, and this design has also been involved in the development of H2O2-activated prodrugs or theranostic tools. However, this design suffers from slow kinetics, preventing activation by H2O2 with a short response time. Therefore, faster H2O2-reactive groups are awaited. To address this issue, we have successfully developed and characterized a prototypic borinic-based fluorescent probe containing a coumarin scaffold. We determined its in vitro kinetic constants toward H2O2-promoted oxidation. We measured 1.9 × 104 m-1⋅s-1 as a second-order rate constant, which is 10,000-fold faster than its well-established boronic counterpart (1.8 m-1⋅s-1). This improved reactivity was also effective in a cellular context, rendering borinic acids an advantageous trigger for H2O2-mediated release of effectors such as fluorescent moieties.
Collapse
Affiliation(s)
- Blaise Gatin-Fraudet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Orsay 91405, France
| | - Roxane Ottenwelter
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Thomas Le Saux
- PASTEUR, Département de Chimie, École Normale Supérieure, Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Paris 75005, France
| | - Stéphanie Norsikian
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Mathilde Pucher
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Orsay 91405, France
| | - Thomas Lombès
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Aurélie Baron
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Philippe Durand
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Gilles Doisneau
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Orsay 91405, France
| | - Yann Bourdreux
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Orsay 91405, France
| | - Bogdan I Iorga
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Marie Erard
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR CNRS 8000, Orsay 91405, France
| | - Ludovic Jullien
- PASTEUR, Département de Chimie, École Normale Supérieure, Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Paris 75005, France
| | - Dominique Guianvarc'h
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Orsay 91405, France
| | - Dominique Urban
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Orsay 91405, France;
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France;
| |
Collapse
|
18
|
Wei YF, Wang X, Shi WJ, Chen R, Zheng L, Wang ZZ, Chen K, Gao L. A novel methylenemalononitrile-BODIPY-based fluorescent probe for highly selective detection of hydrogen peroxide in living cells. Eur J Med Chem 2021; 226:113828. [PMID: 34536670 DOI: 10.1016/j.ejmech.2021.113828] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022]
Abstract
Hydrogen peroxide (H2O2) plays vital roles in oxidative stress and signal transduction in living organisms, and its abnormal levels could be linked to many diseases. Despite numerous efforts spent, it is still urgent and of high importance to develop better H2O2 probes with good selectivity, high sensitivity and low backgrounds. To this end, a novel boron dipyrromethene (BODIPY)-based fluorescent probe with an electron-withdrawing methylenemalononitrile at the meso position has been rationally designed, successfully synthesized and investigated for detection of H2O2 in aqueous solutions and living cells, which exhibited high selectivity and sensitivity, fluorescent "turn-on" phenomenon at 540 nm, and ratiometric changes from 506 to 540 nm. Upon exposure to H2O2, a strong fluorescent emission at 540 nm appeared and the corresponding quantum yields changed from 0.009 to 0.13. The detection limit towards H2O2 was calculated to be 31 nM by the linear fluorescence change at 540 nm in the H2O2-concentration ranging from 2 to 10 μM. This probe was applicable in a pH range from 6 to 10. Meanwhile, the sensing mechanism was also confirmed by the 1H NMR and mass spectrometry, suggesting that the above changes might be ascribed to the quick addition and oxidization of the double bond. Furthermore, confocal imaging results also showed great enhancement of intracellular fluorescence upon exposure to H2O2 and PMA in RAW264.7 cells, unambiguously confirming its great potentials as a fluorescent probe for highly sensitive detection of both exogenous and endogenous H2O2 in living cells.
Collapse
Affiliation(s)
- Yong-Feng Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Ru Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Zi-Zhou Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
19
|
Peixoto D, Pereira I, Pereira-Silva M, Veiga F, Hamblin MR, Lvov Y, Liu M, Paiva-Santos AC. Emerging role of nanoclays in cancer research, diagnosis, and therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213956] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Su J, Zhang S, Wang C, Li M, Wang J, Su F, wang Z. MACA Fast and Efficient Method for Detecting H 2O 2 by a Dual-Locked Model Chemosensor. ACS OMEGA 2021; 6:14819-14823. [PMID: 34151063 PMCID: PMC8209827 DOI: 10.1021/acsomega.1c00384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
A pentafluorobenzene-containing fluorescent probe GW-1 was designed and synthesized for monitoring hydrogen peroxide. The probe's fluorescence was activated by a dual-locked model system that consists of a spiro location and a target analyte, which avoids the "alkalizing effect." The smart GW-1 exhibited high selectivity toward hydrogen peroxide over other reactive oxygen species (ROS) by a dual-controlled molecular switch. These features are favorable for H2O2 sensing and pH changes in bioanalytical and biomedical applications.
Collapse
Affiliation(s)
- Jing Su
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| | - Shuping Zhang
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| | - Cairong Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| | - Min Li
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| | - Jiajia Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| | - Feng Su
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| | - Zhijun wang
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| |
Collapse
|
21
|
Zuo Y, Jiao Y, Ma C, Duan C. A Novel Fluorescent Probe for Hydrogen Peroxide and Its Application in Bio-Imaging. Molecules 2021; 26:3352. [PMID: 34199465 PMCID: PMC8199646 DOI: 10.3390/molecules26113352] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 01/31/2023] Open
Abstract
Hydrogen peroxide (H2O2) plays an important role in the human body and monitoring its level is meaningful due to the relationship between its level and diseases. A fluorescent sensor (CMB) based on coumarin was designed and its ability for detecting hydrogen peroxide by fluorescence signals was also studied. The CMB showed an approximate 25-fold fluorescence enhancement after adding H2O2 due to the interaction between the CMB and H2O2 and had the potential for detecting physiological H2O2. It also showed good biocompatibility and permeability, allowing it to penetrate cell membranes and zebrafish tissues, thus it can perform fluorescence imaging of H2O2 in living cells and zebrafish. This probe is a promising tool for monitoring the level of H2O2 in related physiological and pathological research.
Collapse
Affiliation(s)
| | - Yang Jiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China; (Y.Z.); (C.M.); (C.D.)
| | | | | |
Collapse
|
22
|
Yu H, Li Y, Huang A. Facile Synthesis of Boronic‐Acid‐Functionalized Metal‐Organic Framework UiO‐66‐NH
2
@B(OH)
2
with High Selectivity and Sensitivity to Hydrogen Peroxide. ChemistrySelect 2021. [DOI: 10.1002/slct.202100589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huazheng Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yanhong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
23
|
Ma S, Wang KN, Xing M, Feng F, Pan Q, Cao D. A coumarin-boronic ester derivative as fluorescent chemosensor for detecting H2O2 in living cells. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Li M, Lei P, Song S, Shuang S, Dong C. Alizarin-based molecular probes for the detection of hydrogen peroxide and peroxynitrite. Analyst 2021; 146:509-514. [DOI: 10.1039/d0an01805h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phenol fluorophores are a large family of fluorophores, which have attracted more and more attention in the design of probes.
Collapse
Affiliation(s)
- Minglu Li
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| | - Peng Lei
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| | - Shengmei Song
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| |
Collapse
|
25
|
Chen X, Bian Y, Li M, Zhang Y, Gao X, Su D. Activatable Off-on Near-Infrared QCy7-based Fluorogenic Probes for Bioimaging. Chem Asian J 2020; 15:3983-3994. [PMID: 33034939 DOI: 10.1002/asia.202001057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Indexed: 01/26/2023]
Abstract
The activatable off-on near-infrared QCy7-based fluorogenic probes have emerged as powerful modalities for detecting and monitoring biological analytes and understanding their biological processes in cells and organisms. The use of biomarker-activated QCy7-based probes enables simple synthesis, minimum photo-damage to biological samples, and minimum background interference from biological systems. In this minireview, we aim to provide a rigorous but concise overview of activatable QCy7-based fluorogenic probes by reporting the significant progress made in recent years. The design strategies and the main applications of accurate detection and imaging of disease-related biomarkers (including ROS/RSS, enzymes, metal ions, and other related species) were reasonably analyzed and discussed. The potential challenges and prospects of activatable QCy7-based fluorogenic probes are also emphasized to further advance the development of new methods for biomarker detection and bioimaging.
Collapse
Affiliation(s)
- Xueqian Chen
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yongning Bian
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mingrui Li
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yong Zhang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Dongdong Su
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
26
|
Ding Q, Tian Y, Wang X, Li P, Su D, Wu C, Zhang W, Tang B. Oxidative Damage of Tryptophan Hydroxylase-2 Mediated by Peroxisomal Superoxide Anion Radical in Brains of Mouse with Depression. J Am Chem Soc 2020; 142:20735-20743. [PMID: 33237755 DOI: 10.1021/jacs.0c09576] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Depression is intimately linked with oxidative stress in the brains. Peroxisome plays vital roles in the regulation of intracellular redox balance by keeping reactive oxygen species (ROS) homeostasis. Available evidence indicates a possible relationship between peroxisomal ROS and depression. Even so, the underlying modulation mechanisms of peroxisomal ROS in depression are still rudimentary due to the limitations of the existing detecting methods. Hence, we developed a two-photon fluorescent probe TCP for the real-time visualization of the first produced ROS superoxide anion radical (O2•-) in peroxisome. Using the two-photon fluorescence imaging, we found that peroxisomal O2•- rose during oxidative stress in the mouse brains, resulting in the inactivation of catalase (CAT). Subsequently, the intracellular H2O2 level elevated, which further oxidized tryptophan hydroxylase-2 (TPH2). Then the decrease contents of TPH2 caused the dysfunction of 5-hydroxytryptamine (5-HT) system in the mouse brains, eventually leading to depression-like behaviors. Our work provides evidence of a peroxisomal O2•- mediated signaling pathway in depression, which will conduce to pinpoint potential targets for the treatment of depression.
Collapse
Affiliation(s)
- Qi Ding
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ying Tian
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
27
|
Dai J, Duan C, Huang Y, Lou X, Xia F, Wang S. Aggregation-induced emission luminogens for RONS sensing. J Mater Chem B 2020; 8:3357-3370. [DOI: 10.1039/c9tb02310k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of AIE bioprobes for RONS sensing in living systems is now summarized. We discuss some representative examples of AIEgen based bioprobes in terms of their molecular design, sensing mechanism and sensitive sensing in vitro and in vivo.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| | - Chong Duan
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| |
Collapse
|
28
|
Zhang X, Fu Y, Qian G, Zhang R, Xu ZP. An artificial protein-probe hybrid as a responsive probe for ratiometric detection and imaging of hydrogen peroxide in cells. J Mater Chem B 2020; 8:5420-5424. [DOI: 10.1039/d0tb00856g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent protein-probe hybrid was devised for ratiometric detection and imaging of intracellular H2O2 with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Xing Zhang
- School of Environmental Science and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
- Australian Institute for Bioengineering and Nanotechnology
| | - Youxin Fu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| | - Guangren Qian
- School of Environmental Science and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| |
Collapse
|
29
|
Li L, Zhang M, Chang K, Kang Y, Ren G, Hou X, Liu W, Wang H, Wang B, Diao H. A novel fluorescent off–on probe for the sensitive and selective detection of fluoride ions. RSC Adv 2019; 9:32308-32312. [PMID: 35530779 PMCID: PMC9073186 DOI: 10.1039/c9ra06342k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
A highly sensitive and selective fluorescent probe for fluoride ions has been developed by incorporating the dimethylphosphinothionyl group as a recognition moiety into the fluorophore of coumarin. The detection mechanism is based on the fluoride ion-triggered cleavage of the dimethylphosphinothionyl group, followed by the release of coumarin, which leads to a large fluorescence enhancement at 455 nm (λex = 385 nm). Under the optimized conditions, the fluorescence enhancement of the probe is directly proportional to the concentration of fluoride ions in the range of 0–30 μM with a detection limit of 0.29 μM, which is much lower than the maximum content of fluoride ions guided by WHO. Notably, satisfying results have been obtained by utilizing the probe to determine fluoride ions in real-water samples and commercially available toothpaste samples. The proposed probe is rather simple and may be useful in the detection of fluoride ions in more real samples. A sensitive and selective fluorescent off–on probe is developed for fluoride ion detection, and its applicability has been demonstrated by determining fluoride ions in real-water samples and toothpaste samples.![]()
Collapse
Affiliation(s)
- Lihong Li
- Department of Biochemistry and Molecular Biology
- Shanxi Medical University
- Taiyuan 030001
- PR China
- School of Basic Medical Sciences
| | - Min Zhang
- Department of Biochemistry and Molecular Biology
- Shanxi Medical University
- Taiyuan 030001
- PR China
| | - Kaijing Chang
- School of Basic Medical Sciences
- Shanxi Medical University
- Taiyuan 030001
- PR China
| | - Yu Kang
- Department of Biochemistry and Molecular Biology
- Shanxi Medical University
- Taiyuan 030001
- PR China
| | - Guodong Ren
- Department of Biochemistry and Molecular Biology
- Shanxi Medical University
- Taiyuan 030001
- PR China
| | - Xiaoyu Hou
- Department of Biochemistry and Molecular Biology
- Shanxi Medical University
- Taiyuan 030001
- PR China
| | - Wen Liu
- School of Basic Medical Sciences
- Shanxi Medical University
- Taiyuan 030001
- PR China
| | - Haojiang Wang
- School of Basic Medical Sciences
- Shanxi Medical University
- Taiyuan 030001
- PR China
| | - Bin Wang
- School of Basic Medical Sciences
- Shanxi Medical University
- Taiyuan 030001
- PR China
| | - Haipeng Diao
- Department of Biochemistry and Molecular Biology
- Shanxi Medical University
- Taiyuan 030001
- PR China
- School of Basic Medical Sciences
| |
Collapse
|