1
|
Yao Y, Wang L, Ding J, Pan X, Yang L, Guo C, Wang Y, Gruber R, Nan K, Li L. Nerve growth factor loaded hypotonic eye drops for corneal nerve repair. J Control Release 2025; 380:71-84. [PMID: 39884437 DOI: 10.1016/j.jconrel.2025.01.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Neurotrophic keratopathy is a degenerative disease caused by corneal nerve damage, leading to corneal ulceration. Recombinant human nerve growth factor (rhNGF) was approved for neurotrophic keratitis therapy; however, the excipients of the eye drops are not optimized for its controlled release. To this aim, we introduce the hypotonic hydrogel PF127 as an excipient for rhNGF in eye drops. We confirmed the formation of a hydrogel using a vial-inversion test and based on rheological properties. The hydrogel exerts shear-thinning behavior upon sweep test with a favorable transmittance and a natural refractive index. Moreover, the hydrogel exhibited fast and sustained rhNGF release kinetic, along with constant dissolution and the formation of a network-like structure. The release of rhNGF was confirmed by the proliferation of PC12 cells and its protective effect on damaged axons of dorsal root ganglia cells. The hydrogel performed accordingly in the in-situ ocular gelation and ocular surface retention test. We further confirmed that labeled proteins were released from the hydrogel to the cornea. Preclinical testing in mice showed that rhNGF hydrogels supported the recovery from corneal epithelial defects: they reduced the defect size and increased corneal nerve density. Schirmer's test revealed improved corneal nerve function based on tear secretion. The hydrogel resists clearance from blinking and enhances the intraocular absorption of rhNGF. The ocular surface, retinal thickness, and the ciliary body and retina remained unchanged. Together, these findings suggest that the hypotonic PF127 hydrogel is a suitable rhNGF delivery system to prepare eye drops for potential use in neurotrophic keratopathy.
Collapse
Affiliation(s)
- Yili Yao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lei Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China.
| | - Jiangtao Ding
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xinyang Pan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Linxing Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Changrong Guo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuanhao Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Kaihui Nan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Lingli Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
2
|
Malinovskaya J, Kovshova T, Melnikov P, Li Z, Dhakal N, Knoll J, Valikhov M, Ermolenko Y, Chernysheva A, Gurina O, Chekhonin V, Wacker MG, Gelperina S. The second phase of tumor invasion driven by immune cells: A study on doxorubicin-loaded PLG nanoparticles. J Control Release 2025; 378:750-762. [PMID: 39724952 DOI: 10.1016/j.jconrel.2024.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Poly(lactide-co-glycolide) (PLG) nanoparticles loaded with doxorubicin have reached phase-I clinical trials for treating advanced solid tumors. This study explores cell hitchhiking, where nanoparticles associate with blood cells and investigates the impact on pharmacokinetics and tumor migration. Previous findings highlighted the early post-injection phase dominated by nonspecific nanoparticle-cell interactions and burst release. In contrast, this study examines the subsequent phase of tumor invasion, emphasizing the role of immune cells, mostly neutrophils, in redistributing the carrier to the tumor site via blood cell hitchhiking. We provide a detailed investigation of nanoparticle extravasation kinetics and mechanisms, showing qualitative and quantitative evidence of increased nanoparticle association with immune cells over time. By 30 min post-injection, approximately 15 % of monocytes and 15-19 % of neutrophils tested positive for nanoparticles, with significant differences observed between ex vivo and in vivo experiments, and between healthy and tumor-bearing animals. This study underscores the ambiguous role of immune cell-mediated tumor targeting. While the total accumulation of the carrier rises, this fraction is partially trapped in immune cells without any chance to escape.
Collapse
Affiliation(s)
- Julia Malinovskaya
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia
| | - Tatyana Kovshova
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia
| | - Pavel Melnikov
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, 119034, Moscow, Russia
| | - Zhuoxuan Li
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, 117544, Singapore
| | - Namrata Dhakal
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, 117544, Singapore
| | - Julian Knoll
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, 117544, Singapore
| | - Marat Valikhov
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, 119034, Moscow, Russia
| | - Yulia Ermolenko
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia
| | - Anastasia Chernysheva
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, 119034, Moscow, Russia
| | - Olga Gurina
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, 119034, Moscow, Russia
| | - Vladimir Chekhonin
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, 119034, Moscow, Russia
| | - Matthias G Wacker
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, 117544, Singapore..
| | - Svetlana Gelperina
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia.
| |
Collapse
|
3
|
Ramos TI, Villacis-Aguirre CA, Sandoval FS, Martin-Solano S, Manrique-Suárez V, Rodríguez H, Santiago-Padilla L, Debut A, Gómez-Gaete C, Arias MT, Montesino R, Lamazares E, Cabezas I, Hugues F, Parra NC, Altamirano C, Ramos OS, Santiago-Vispo N, Toledo JR. Multilayer Nanocarrier for the Codelivery of Interferons: A Promising Strategy for Biocompatible and Long-Acting Antiviral Treatment. Pharmaceutics 2024; 16:1349. [PMID: 39598474 PMCID: PMC11597830 DOI: 10.3390/pharmaceutics16111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Interferons (IFNs) are cytokines involved in the immune response with a synergistic regulatory effect on the immune response. They are therapeutics for various viral and proliferative conditions, with proven safety and efficacy. Their clinical application is challenging due to the molecules' size, degradation, and pharmacokinetics. We are working on new drug delivery systems that provide adequate therapeutic concentrations for these cytokines and prolong their half-life in the circulation, such as nanoformulations. Methods: Through nanoencapsulation using electrospray technology and biocompatible and biodegradable polymers, we are developing a controlled release system based on nanoparticles for viral infections of the respiratory tract. Results: We developed a controlled release system for viral respiratory tract infections. A prototype nanoparticle with a core was created, which hydrolyzed the polyvinylpyrrolidone (PVP) shell , releasing the active ingredients interferon-alpha (IFN-α) and interferon-gamma (IFN-γ). The chitosan (QS) core degraded slowly, with a controlled release of IFN-α. The primary and rapid effect of the interferon combination ensured an antiviral and immunoregulatory response from day one, induced by IFN-α and enhanced by IFN-γ. The multilayer design demonstrated an optimal toxicity profile. Conclusions: This formulation is an inhaled dry powder intended for the non-invasive intranasal route. The product does not require a cold chain and has the potential for self-administration in the face of emerging viral infections. This novel drug has applications in multiple infectious, oncological, and autoimmune conditions, and further development is proposed for its therapeutic potential. This prototype would ensure greater bioavailability, controlled release, fewer adverse effects, and robust biological action through the simultaneous action of both molecules.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Carlos A. Villacis-Aguirre
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Felipe Sandoval Sandoval
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Sarah Martin-Solano
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Viana Manrique-Suárez
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Hortensia Rodríguez
- Yachay Tech Medicinal Chemistry Research Group (MedChem-YT), School of Chemical Science and Engineering, Yachay University for Experimental Technology and Research (Yachay Tech), Yachay City of Knowledge, Urcuqui 100119, Ecuador;
| | | | - Alexis Debut
- Laboratory of Characterization of Nanomaterials, Center of Nanoscience and Nanotecnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador;
| | - Carolina Gómez-Gaete
- Department of Pharmacy, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile;
| | - Marbel Torres Arias
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Raquel Montesino
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Emilio Lamazares
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Ignacio Cabezas
- Clinical Sciences Department, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile; (I.C.); (F.H.)
| | - Florence Hugues
- Clinical Sciences Department, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile; (I.C.); (F.H.)
| | - Natalie C. Parra
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
| | - Oliberto Sánchez Ramos
- Laboratory of Recombinant Biopharmaceuticals, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile;
| | | | - Jorge R. Toledo
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| |
Collapse
|
4
|
Ray E, Jadhav K, Kadian M, Sharma G, Sharma K, Jhilta A, Singh R, Kumar A, Verma RK. Targeted delivery of the metastasis-specific tumour homing TMTP1 peptide to non-small-cell lung cancer (NSCLC) using inhalable hybrid nano-assemblies. J Mater Chem B 2024; 12:9740-9759. [PMID: 39229638 DOI: 10.1039/d4tb00694a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lung cancer is one of the most fatal malignancies, with the highest death rate (∼19%), and the NSCLC type accounts for ∼85% of lung cancers. In the search for new treatments, antimicrobial peptides have received much attention due to their propensity for selective destruction of cancer cells. In the current study, we evaluated the efficacy of the metastasis-specific tumour-homing-TMTP1 peptide against lung cancer using inhalable hybrid nano-assemblies of the PEG-PLGA copolymer as a carrier for pulmonary delivery which was assessed for aerodynamic and physicochemical properties, along with the peptide-release profile, physical stability, cellular uptake and biocompatibility, generation of reactive oxygen species, cell migration, autophagic flux, and apoptotic cell death in A549 lung cancer cells. Optimization of inhaled dose, lung retention, and efficacy studies was conducted to evaluate the formulation in an NNK (nicotine-derived nitrosamine ketone) induced tumour-bearing lung cancer murine model. After inhalation, the formulation with nano-scale physiognomies showed good lung deposition, retention, and metabolic stability. The inhalable nano-assemblies have shown enhanced generation of reactive oxygen species with increased autophagy flux and apoptotic cell death. Pre-clinical animal trials show substantial tumour regression by inhalable TMTP1-based nano-formulation with limited side effects. Our results on metastasis targeting and tumour-homing peptide TMTP1 demonstrate its effective tumour targeting and tumour-killing efficacy and provide a reference for the development of new therapeutics for NSCLC.
Collapse
Affiliation(s)
- Eupa Ray
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Krishna Jadhav
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Monika Kadian
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Garima Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kritika Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Agrim Jhilta
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| |
Collapse
|
5
|
El Sorogy HM, Fayez SM, Khalil IA, Abdel Jaleel GA, Fayez AM, Eliwa HA, Teba HE. Microporation-Mediated Transdermal Delivery of In Situ Gel Incorporating Etodolac-Loaded PLGA Nanoparticles for Management of Rheumatoid Arthritis. Pharmaceutics 2024; 16:844. [PMID: 39065541 PMCID: PMC11279519 DOI: 10.3390/pharmaceutics16070844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Management of rheumatoid arthritis (RA) requires long-term administration of different medications since there has been no cure until now. Etodolac (ETD) is a nonsteroidal anti-inflammatory drug commonly used for RA management. However, its long-term administration resulted in severe side effects. This study aimed to develop a transdermal in situ gel incorporating ETD-loaded polymeric nanoparticles (NPs) to target the affected joints for long-term management of RA. Several PLGA NPs incorporating 1% ETD were prepared by nanoprecipitation and optimized according to the central composite design. The optimum NPs (F1) exhibited 96.19 ± 2.31% EE, 282.3 ± 0.62 nm PS, 0.383 ± 0.04 PDI, and -6.44 ± 1.69 ZP. A hyaluronate coating was applied to F1 (H-F1) to target activated macrophages at inflammation sites. H-F1 exhibited 287.4 ± 4.2 nm PS, 0.267 ± 0.02 PDI, and -23.7 ± 3.77 ZP. Pluronic F-127 in situ gel (H-F1G) showed complete gelation at 29 °C within 5 min. ETD permeation from H-F1G was sustained over 48 h when applied to microporated skin and exhibited significant enhancement of all permeation parameters. Topical application of H-F1G (equivalent to 8 mg ETD) to Wistarrat microporated skin every 48 h resulted in antirheumatic therapeutic efficacy comparable to commercial oral tablets (10 mg/kg/day).
Collapse
Affiliation(s)
- Heba M. El Sorogy
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October 12566, Giza, Egypt;
| | - Sahar M. Fayez
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6th University, 6th of October 12566, Giza, Egypt;
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October 12566, Giza, Egypt;
| | | | - Ahmed M. Fayez
- Department of Pharmacology and Toxicology, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital 11835, Cairo, Egypt;
| | - Hesham A. Eliwa
- Department of Pharmacology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October 12566, Giza, Egypt;
| | - Hoda E. Teba
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October 12566, Giza, Egypt;
| |
Collapse
|
6
|
Song B, Chen Q, Tong C, Li Y, Li S, Shen X, Niu W, Hao M, Ma Y, Wang Y. Research Progress on Immunomodulatory Effects of Poly (Lactic-co- Glycolic Acid) Nanoparticles Loaded with Traditional Chinese Medicine Monomers. Curr Drug Deliv 2024; 21:1050-1061. [PMID: 37818569 DOI: 10.2174/0115672018255493230922101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 10/12/2023]
Abstract
Immunomodulatory mechanisms are indispensable and key factors in maintaining the balance of the environment in humans. When the immune function of the immune system is impaired, autoimmune diseases occur. Excessive body fatigue, natural aging of the human body, malnutrition, genetic factors and other reasons cause low immune function, due to which the body is prone to being infected by bacteria or cancer. Clinically, the existing therapeutic drugs still have problems such as high toxicity, long treatment cycle, drug resistance and high price, so we still need to explore and develop a high efficiency and low toxicity drug. Poly(lactic-co-glycolic acid) (PLGA) refers to a nontoxic polymer compound that exhibits excellent biocompatibility. Traditional Chinese medicine (TCM) monomers come from natural plants, and have the characteristics of high efficiency and low toxicity. Applying PLGA to TCM monomers can make up for the defects of traditional dosage forms, improve bioavailability, reduce the frequency and dosage of drug use, and reduce toxicity and side effects, thus having the characteristics of sustained release and targeting. Accordingly, PLGA nanoparticles loaded with TCM monomers have been the focus of development. The previous research on drug loading advantages, preparation methods, and immune regulation of TCM PLGA nanoparticles is summarized in the following sections.
Collapse
Affiliation(s)
- Bocui Song
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qian Chen
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Chunyu Tong
- Department of Biological Science, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuqi Li
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Shuang Li
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Xue Shen
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Wenqi Niu
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Meihan Hao
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Yunfei Ma
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Department of Biological Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
7
|
Gadhave DG, Sugandhi VV, Kokare CR. Potential biomaterials and experimental animal models for inventing new drug delivery approaches in the neurodegenerative disorder: Multiple sclerosis. Brain Res 2024; 1822:148674. [PMID: 37952871 DOI: 10.1016/j.brainres.2023.148674] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The tight junction of endothelial cells in the central nervous system (CNS) has an ideal characteristic, acting as a biological barrier that can securely regulate the movement of molecules in the brain. Tightly closed astrocyte cell junctions on blood capillaries are the blood-brain barrier (BBB). This biological barrier prohibits the entry of polar drugs, cells, and ions, which protect the brain from harmful toxins. However, delivering any therapeutic agent to the brain in neurodegenerative disorders (i.e., schizophrenia, multiple sclerosis, etc.) is extremely difficult. Active immune responses such as microglia, astrocytes, and lymphocytes cross the BBB and attack the nerve cells, which causes the demyelination of neurons. Therefore, there is a hindrance in transmitting electrical signals properly, resulting in blindness, paralysis, and neuropsychiatric problems. The main objective of this article is to shed light on the performance of biomaterials, which will help researchers to create nanocarriers that can cross the blood-brain barrier and achieve a therapeutic concentration of drugs in the CNS of patients with multiple sclerosis (MS). The present review focuses on the importance of biomaterials with diagnostic and therapeutic efficacy that can help enhance multiple sclerosis therapeutic potential. Currently, the development of MS in animal models is limited by immune responses, which prevent MS induction in healthy animals. Therefore, this article also showcases animal models currently used for treating MS. A future advance in developing a novel effective strategy for treating MS is now a potential area of research.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune 413130, Maharashtra, India.
| | - Vrashabh V Sugandhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Chandrakant R Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
8
|
Chakraborty P, Bhattacharyya C, Sahu R, Dua TK, Kandimalla R, Dewanjee S. Polymeric nanotherapeutics: An emerging therapeutic approach for the management of neurodegenerative disorders. J Drug Deliv Sci Technol 2024; 91:105267. [DOI: 10.1016/j.jddst.2023.105267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Mwema A, Muccioli GG, des Rieux A. Innovative drug delivery strategies to the CNS for the treatment of multiple sclerosis. J Control Release 2023; 364:435-457. [PMID: 37926243 DOI: 10.1016/j.jconrel.2023.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Disorders of the central nervous system (CNS), such as multiple sclerosis (MS) represent a great emotional, financial and social burden. Despite intense efforts, great unmet medical needs remain in that field. MS is an autoimmune, chronic inflammatory demyelinating disease with no curative treatment up to date. The current therapies mostly act in the periphery and seek to modulate aberrant immune responses as well as slow down the progression of the disease. Some of these therapies are associated with adverse effects related partly to their administration route and show some limitations due to their rapid clearance and inability to reach the CNS. The scientific community have recently focused their research on developing MS therapies targeting different processes within the CNS. However, delivery of therapeutics to the CNS is mainly limited by the presence of the blood-brain barrier (BBB). Therefore, there is a pressing need to develop new drug delivery strategies that ensure CNS availability to capitalize on identified therapeutic targets. Several approaches have been developed to overcome or bypass the BBB and increase delivery of therapeutics to the CNS. Among these strategies, the use of alternative routes of administration, such as the nose-to-brain (N2B) pathway, offers a promising non-invasive option in the scope of MS, as it would allow a direct transport of the drugs from the nasal cavity to the brain. Moreover, the combination of bioactive molecules within nanocarriers bring forth new opportunities for MS therapies, allowing and/or increasing their transport to the CNS. Here we will review and discuss these alternative administration routes as well as the nanocarrier approaches useful to deliver drugs for MS.
Collapse
Affiliation(s)
- Ariane Mwema
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium; Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 72, 1200 Brussels, Belgium
| | - Giulio G Muccioli
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 72, 1200 Brussels, Belgium.
| | - Anne des Rieux
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium.
| |
Collapse
|
10
|
Shi W, Fuad ARM, Li Y, Wang Y, Huang J, Du R, Wang G, Wang Y, Yin T. Biodegradable polymeric nanoparticles increase risk of cardiovascular diseases by inducing endothelium dysfunction and inflammation. J Nanobiotechnology 2023; 21:65. [PMID: 36829180 PMCID: PMC9951517 DOI: 10.1186/s12951-023-01808-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Biodegradable polymers are expected to be an alternative to plastics. Because of its high biocompatibility, poly (lactic-co-glycolic acid) (PLGA) is widely used in medicine. It has been reported that micro-nano plastics can be accumulated in the circulatory system and cause tissue injury. With the increasing environmental exposure of degradable polymer nanoparticles (NPs), the impact of this risk factor on cardiovascular disease deserves attention. Thus, we aim to study the harmful effect of PLGA NPs on the process of vascular stenosis which is a typical pathological feature of cardiovascular diseases. We establish a mouse vascular stenosis model with intravenously injecting of PLGA NPs for 2 weeks. This model leads to a significant narrowing of the left common carotid artery which is characterized by the increasing intima area and focal stenosis. We observe that PLGA NPs accelerate stenosis progression by inducing inflammation and impairing vascular function. It promotes the proliferation of smooth muscle cells and causes abnormal collagen distribution. The combination of wall shear stress and PLGA NPs uptake speed up endothelial cell damage, decrease endothelial permeability and cell migration capacity. Our results suggest that PLGA NPs may pose a risk in cardiovascular stenosis which inspire us to concern the biodegradable polymeric materials in our living especially the clinic applications.
Collapse
Affiliation(s)
- Wen Shi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044 China
| | - Atik Rohmana Maftuhatul Fuad
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044 China
| | - Yanhong Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044 China
| | - Yang Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044 China
| | - Junyang Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044 China
| | - Ruolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044 China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044 China
| | - Yazhou Wang
- School of Medicine, Chongqing University, Chongqing, 400030 China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044 China
| |
Collapse
|
11
|
Horvath D, Basler M. PLGA Particles in Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15020615. [PMID: 36839937 PMCID: PMC9965784 DOI: 10.3390/pharmaceutics15020615] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are a widely used and extensively studied drug delivery system. The favorable properties of PLGA such as good bioavailability, controlled release, and an excellent safety profile due to the biodegradable polymer backbone qualified PLGA particles for approval by the authorities for the application as a drug delivery platform in humas. In recent years, immunotherapy has been established as a potent treatment option for a variety of diseases. However, immunomodulating drugs rely on targeted delivery to specific immune cell subsets and are often rapidly eliminated from the system. Loading of PLGA particles with drugs for immunotherapy can protect the therapeutic compounds from premature degradation, direct the drug delivery to specific tissues or cells, and ensure sustained and controlled drug release. These properties present PLGA particles as an ideal platform for immunotherapy. Here, we review recent advances of particulate PLGA delivery systems in the application for immunotherapy in the fields of allergy, autoimmunity, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
- Correspondence:
| |
Collapse
|
12
|
Gu Z, Chen H, Zhao H, Yang W, Song Y, Li X, Wang Y, Du D, Liao H, Pan W, Li X, Gao Y, Han H, Tong Z. New insight into brain disease therapy: nanomedicines-crossing blood-brain barrier and extracellular space for drug delivery. Expert Opin Drug Deliv 2022; 19:1618-1635. [PMID: 36285632 DOI: 10.1080/17425247.2022.2139369] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Brain diseases including brain tumor, Alzheimer's disease, Parkinson's disease, etc. are difficult to treat. The blood-brain barrier (BBB) is a major obstacle for drug delivery into the brain. Although nano-package and receptor-mediated delivery of nanomedicine markedly increases BBB penetration, it yet did not extensively improve clinical cure rate. Recently, brain extracellular space (ECS) and interstitial fluid (ISF) drainage in ECS have been found to determine whether a drug dissolved in ISF can reach its target cells. Notably, an increase in tortuosity of ECS associated with slower ISF drainage induced by the accumulated harmful substances, such as: amyloid-beta (Aβ), α-synuclein, and metabolic wastes, causes drug delivery failure. AREAS COVERED The methods of nano-package and receptor-mediated drug delivery and the penetration efficacy of nanomedicines across BBB and ECS are assessed. EXPERT OPINION Invasive delivering drug via ECS and noninvasive near-infrared photo-sensitive nanomedicines may provide a promising benefit to patients with brain disease.
Collapse
Affiliation(s)
- Ziqi Gu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haishu Chen
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Han Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wanting Yang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yilan Song
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Dan Du
- Department of Radiology, Peking University Third Hospital, Beijing, China.,Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China
| | - Haikang Liao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wenhao Pan
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China.,NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China.,Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Preparation and Phytotoxicity Evaluation of Cellulose Acetate Nanoparticles. Polymers (Basel) 2022; 14:polym14225022. [PMID: 36433149 PMCID: PMC9695549 DOI: 10.3390/polym14225022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/22/2022] Open
Abstract
The use of biocompatible and low-cost polymeric matrices to produce non-phytotoxic nanoparticles for delivery systems is a promising alternative for good practices in agriculture management and biotechnological applications. In this context, there is still a lack of studies devoted to producing low-cost polymeric nanoparticles that exhibit non-phytotoxic properties. Among the different polymeric matrices that can be used to produce low-cost nanoparticles, we can highlight the potential application of cellulose acetate, a natural biopolymer with biocompatible and biodegradable properties, which has already been used as fibers, membranes, and films in different agricultural and biotechnological applications. Here, we provided a simple and low-cost route to produce cellulose acetate nanoparticles (CA-NPs), by modified emulsification solvent evaporation technique, with a main diameter of around 200 nm and a spherical and smooth morphology for potential use as agrochemical nanocarriers. The non-phytotoxic properties of the produced cellulose acetate nanoparticles were proved by performing a plant toxic test by Allium cepa assay. The cytotoxicity and genotoxicity tests allowed us to evaluate the mitotic process, chromosomal abnormalities, inhibition/delay in root growth, and micronucleus induction. In summary, the results demonstrated that CA-NPs did not induce phytotoxic, cytotoxic, or genotoxic effects, and they did not promote changes in the root elongation, germination or in the mitotic, chromosomal aberration, and micronucleus indices. Consequently, the present findings indicated that CA-NPs can be potentially used as environmentally friendly nanoparticles.
Collapse
|
14
|
Nyambura CW, Sampath J, Nance E, Pfaendtner J. Exploring structure and dynamics of the polylactic‐co‐glycolic acid–polyethylene glycol copolymer and its homopolymer constituents in various solvents using all‐atom molecular dynamics. J Appl Polym Sci 2022. [DOI: 10.1002/app.52732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chris W. Nyambura
- Department of Chemical Engineering University of Washington Seattle Washington USA
| | - Janani Sampath
- Department of Chemical Engineering University of Florida Gainesville Florida USA
| | - Elizabeth Nance
- Department of Chemical Engineering University of Washington Seattle Washington USA
| | - Jim Pfaendtner
- Department of Chemical Engineering University of Washington Seattle Washington USA
| |
Collapse
|
15
|
Pinto M, Silva V, Barreiro S, Silva R, Remião F, Borges F, Fernandes C. Brain drug delivery and neurodegenerative diseases: Polymeric PLGA-based nanoparticles as a forefront platform. Ageing Res Rev 2022; 79:101658. [PMID: 35660114 DOI: 10.1016/j.arr.2022.101658] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023]
Abstract
The discovery of effective drugs for the treatment of neurodegenerative disorders (NDs) is a deadlock. Due to their complex etiology and high heterogeneity, progresses in the development of novel NDs therapies have been slow, raising social/economic and medical concerns. Nanotechnology and nanomedicine evolved exponentially in recent years and presented a panoply of tools projected to improve diagnosis and treatment. Drug-loaded nanosystems, particularly nanoparticles (NPs), were successfully used to address numerous drug glitches, such as efficacy, bioavailability and safety. Polymeric nanoparticles (PNPs), mainly based on polylactic-co-glycolic acid (PLGA), have been already validated and approved for the treatment of cancer, neurologic dysfunctions and hormonal-related diseases. Despite promising no PNPs-based therapy for neurodegenerative disorders is available up to date. To stimulate the research in the area the studies performed so far with polylactic-co-glycolic acid (PLGA) nanoparticles as well as the techniques aimed to improve PNPs BBB permeability and drug targeting were revised. Bearing in mind NDs pharmacological therapy landscape huge efforts must be done in finding new therapeutic solutions along with the translation of the most promising results to the clinic, which hopefully will converge in the development of effective drugs in a foreseeable future.
Collapse
|
16
|
Wu J, Chen L, Zhang X, Xu C, Liu J, Gu J, Ji H, Feng X, Yan C, Song X. A core-shell insulin/CS-PLGA nanoparticle for enhancement of oral insulin bioavailability: in vitro and in vivo study. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2042290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jiamin Wu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, People’s Republic of China
| | - Lu Chen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xinyu Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, People’s Republic of China
| | - Chunlan Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, People’s Republic of China
| | - Junliang Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jun Gu
- Department of orthopedics, Xishan People’s Hospital, Wuxi, People’s Republic of China
| | - Hangyu Ji
- Department of orthopedics, Xishan People’s Hospital, Wuxi, People’s Republic of China
| | - Xiaojun Feng
- Department of orthopedics, Xishan People’s Hospital, Wuxi, People’s Republic of China
| | - Caifeng Yan
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiaoli Song
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
17
|
Ramos TI, Villacis-Aguirre CA, Santiago Vispo N, Santiago Padilla L, Pedroso Santana S, Parra NC, Alonso JRT. Forms and Methods for Interferon's Encapsulation. Pharmaceutics 2021; 13:1533. [PMID: 34683824 PMCID: PMC8538586 DOI: 10.3390/pharmaceutics13101533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFNs) are cytokines involved in the immune response that act on innate and adaptive immunity. These proteins are natural cell-signaling glycoproteins expressed in response to viral infections, tumors, and biological inducers and constitute the first line of defense of vertebrates against infectious agents. They have been marketed for more than 30 years with considerable impact on the global therapeutic protein market thanks to their diversity in terms of biological activities. They have been used as single agents or with combination treatment regimens, demonstrating promising clinical results, resulting in 22 different formulations approved by regulatory agencies. The 163 clinical trials with currently active IFNs reinforce their importance as therapeutics for human health. However, their application has presented difficulties due to the molecules' size, sensitivity to degradation, and rapid elimination from the bloodstream. For some years now, work has been underway to obtain new drug delivery systems to provide adequate therapeutic concentrations for these cytokines, decrease their toxicity and prolong their half-life in the circulation. Although different research groups have presented various formulations that encapsulate IFNs, to date, there is no formulation approved for use in humans. The current review exhibits an updated summary of all encapsulation forms presented in the scientific literature for IFN-α, IFN-ß, and IFN-γ, from the year 1996 to the year 2021, considering parameters such as: encapsulating matrix, route of administration, target, advantages, and disadvantages of each formulation.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador;
| | | | - Seidy Pedroso Santana
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
| | - Natalie C. Parra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
| | - Jorge Roberto Toledo Alonso
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
| |
Collapse
|
18
|
|
19
|
Cunha A, Gaubert A, Latxague L, Dehay B. PLGA-Based Nanoparticles for Neuroprotective Drug Delivery in Neurodegenerative Diseases. Pharmaceutics 2021; 13:1042. [PMID: 34371733 PMCID: PMC8309027 DOI: 10.3390/pharmaceutics13071042] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Treatment of neurodegenerative diseases has become one of the most challenging topics of the last decades due to their prevalence and increasing societal cost. The crucial point of the non-invasive therapeutic strategy for neurological disorder treatment relies on the drugs' passage through the blood-brain barrier (BBB). Indeed, this biological barrier is involved in cerebral vascular homeostasis by its tight junctions, for example. One way to overcome this limit and deliver neuroprotective substances in the brain relies on nanotechnology-based approaches. Poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are biocompatible, non-toxic, and provide many benefits, including improved drug solubility, protection against enzymatic digestion, increased targeting efficiency, and enhanced cellular internalization. This review will present an overview of the latest findings and advances in the PLGA NP-based approach for neuroprotective drug delivery in the case of neurodegenerative disease treatment (i.e., Alzheimer's, Parkinson's, Huntington's diseases, Amyotrophic Lateral, and Multiple Sclerosis).
Collapse
Affiliation(s)
- Anthony Cunha
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle et Artificielle, ChemBioPharm, 146 rue Léo Saignat, F-33076 Bordeaux, France;
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Alexandra Gaubert
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle et Artificielle, ChemBioPharm, 146 rue Léo Saignat, F-33076 Bordeaux, France;
| | - Laurent Latxague
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle et Artificielle, ChemBioPharm, 146 rue Léo Saignat, F-33076 Bordeaux, France;
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
20
|
Cortés H, Hernández-Parra H, Bernal-Chávez SA, Prado-Audelo MLD, Caballero-Florán IH, Borbolla-Jiménez FV, González-Torres M, Magaña JJ, Leyva-Gómez G. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3197. [PMID: 34200640 PMCID: PMC8226872 DOI: 10.3390/ma14123197] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Surfactants are essential in the manufacture of polymeric nanoparticles by emulsion formation methods and to preserve the stability of carriers in liquid media. The deposition of non-ionic surfactants at the interface allows a considerable reduction of the globule of the emulsion with high biocompatibility and the possibility of oscillating the final sizes in a wide nanometric range. Therefore, this review presents an analysis of the three principal non-ionic surfactants utilized in the manufacture of polymeric nanoparticles; polysorbates, poly(vinyl alcohol), and poloxamers. We included a section on general properties and uses and a comprehensive compilation of formulations with each principal non-ionic surfactant. Then, we highlight a section on the interaction of non-ionic surfactants with biological barriers to emphasize that the function of surfactants is not limited to stabilizing the dispersion of nanoparticles and has a broad impact on pharmacokinetics. Finally, the last section corresponds to a recommendation in the experimental approach for choosing a surfactant applying the systematic methodology of Quality by Design.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - María L. Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|
21
|
Vishnevskiy DA, Garanina AS, Chernysheva AA, Chekhonin VP, Naumenko VA. Neutrophil and Nanoparticles Delivery to Tumor: Is It Going to Carry That Weight? Adv Healthc Mater 2021; 10:e2002071. [PMID: 33734620 DOI: 10.1002/adhm.202002071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/02/2021] [Indexed: 12/15/2022]
Abstract
The application of cell carriers for transporting nanodrugs to the tumor draws much attention as the alternative to the passive drug delivery. In this concept, the neutrophil (NΦ) is of special interest as this cell is able to uptake nanoparticles (NPs) and cross the vascular barrier in response to tumor signaling. There is a growing body of literature describing NP-NΦ interactions in vitro and in vivo that demonstrates the opportunity of using these cells to improve the efficacy of cancer therapy. However, a number of conceptual and technical issues need to be resolved for translating the technology into clinics. The current review summarizes the recent advances and challenges associated with NP-NΦ interactions, with the special focus on the complex interplay between the NP internalization pathways and the modulation of NΦ activity, and its potential consequences for nanodrug delivery.
Collapse
Affiliation(s)
- Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
- N. I Pirogov Russian National Research Medical University Ulitsa Ostrovityanova, 1 Moscow 117997 Russia
| | - Anastasiia S. Garanina
- National University of Science and Technology (MISIS) Leninskiy Prospekt, 4 Moscow 119049 Russia
| | - Anastasia A. Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
- N. I Pirogov Russian National Research Medical University Ulitsa Ostrovityanova, 1 Moscow 117997 Russia
| | - Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
| |
Collapse
|
22
|
Delshadi R, Bahrami A, McClements DJ, Moore MD, Williams L. Development of nanoparticle-delivery systems for antiviral agents: A review. J Control Release 2021; 331:30-44. [PMID: 33450319 PMCID: PMC7803629 DOI: 10.1016/j.jconrel.2021.01.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic has resulted in unprecedented increases in sickness, death, economic disruption, and social disturbances globally. However, the virus (SARS-CoV-2) that caused this pandemic is only one of many viruses threatening public health. Consequently, it is important to have effective means of preventing viral transmission and reducing its devastating effects on human and animal health. Although many antivirals are already available, their efficacy is often limited because of factors such as poor solubility, low permeability, poor bioavailability, un-targeted release, adverse side effects, and antiviral resistance. Many of these problems can be overcome using advanced antiviral delivery systems constructed using nanotechnology principles. These delivery systems consist of antivirals loaded into nanoparticles, which may be fabricated from either synthetic or natural materials. Nevertheless, there is increasing emphasis on the development of antiviral delivery systems from natural substances, such as lipids, phospholipids, surfactants, proteins, and polysaccharides, due to health and environmental issues. The composition, morphology, dimensions, and interfacial characteristics of nanoparticles can be manipulated to improve the handling, stability, and potency of antivirals. This article outlines the major classes of antivirals, summarizes the challenges currently limiting their efficacy, and highlights how nanoparticles can be used to overcome these challenges. Recent studies on the application of antiviral nanoparticle-based delivery systems are reviewed and future directions are described.
Collapse
Affiliation(s)
- Rana Delshadi
- Food Science and Technology Graduate, Menomonie, WI, USA
| | - Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | | | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Leonard Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|
23
|
Zeb A, Rana I, Choi HI, Lee CH, Baek SW, Lim CW, Khan N, Arif ST, Sahar NU, Alvi AM, Shah FA, Din FU, Bae ON, Park JS, Kim JK. Potential and Applications of Nanocarriers for Efficient Delivery of Biopharmaceuticals. Pharmaceutics 2020; 12:E1184. [PMID: 33291312 PMCID: PMC7762162 DOI: 10.3390/pharmaceutics12121184] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
During the past two decades, the clinical use of biopharmaceutical products has markedly increased because of their obvious advantages over conventional small-molecule drug products. These advantages include better specificity, potency, targeting abilities, and reduced side effects. Despite the substantial clinical and commercial success, the macromolecular structure and intrinsic instability of biopharmaceuticals make their formulation and administration challenging and render parenteral delivery as the only viable option in most cases. The use of nanocarriers for efficient delivery of biopharmaceuticals is essential due to their practical benefits such as protecting from degradation in a hostile physiological environment, enhancing plasma half-life and retention time, facilitating absorption through the epithelium, providing site-specific delivery, and improving access to intracellular targets. In the current review, we highlight the clinical and commercial success of biopharmaceuticals and the overall applications and potential of nanocarriers in biopharmaceuticals delivery. Effective applications of nanocarriers for biopharmaceuticals delivery via invasive and noninvasive routes (oral, pulmonary, nasal, and skin) are presented here. The presented data undoubtedly demonstrate the great potential of combining nanocarriers with biopharmaceuticals to improve healthcare products in the future clinical landscape. In conclusion, nanocarriers are promising delivery tool for the hormones, cytokines, nucleic acids, vaccines, antibodies, enzymes, and gene- and cell-based therapeutics for the treatment of multiple pathological conditions.
Collapse
Affiliation(s)
- Alam Zeb
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Isra Rana
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Ho-Ik Choi
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Cheol-Ho Lee
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Seong-Woong Baek
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Chang-Wan Lim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Namrah Khan
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Najam us Sahar
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Arooj Mohsin Alvi
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ok-Nam Bae
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Jeong-Sook Park
- Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jin-Ki Kim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| |
Collapse
|
24
|
Song J, Zhang Z. Brinzolamide loaded core-shell nanoparticles for enhanced coronial penetration in the treatment of glaucoma. J Appl Biomater Funct Mater 2020; 18:2280800020942712. [PMID: 33151769 DOI: 10.1177/2280800020942712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A neurodegenerative disorder, glaucoma is a leading cause of blindness in the world. The conventional treatment strategies do not allow the significant penetration of the drug in the cornea. Therefore, we prepare a brinzolamide (Brz) loaded core-shell nanoparticles (NPs) to enhance the coronial penetration of the drug and thus treating the glaucoma. The shell of the NPs was composed of phosphatidylserine (PS; 1,2-diacyl-sn-glycero-3-phospho-L-serine), whereas the core of the NPs contains the Brz encapsulated in brinzolamide–phosphatidylserine–polymer poly-(DL-lactic acid-co-glycolic acid)–phosphatidylserine (Brz-PS-PLGA). The synthesis of Brz-PS-PLGA was achieved by using a coaxial electrospray process (CEP), which allows the preparation of the particles in a single step. The size of Brz-PS-PLGA with PS shell and brinzolamide–poly (lactic-co-glycolic) acid (Brz-PLGA) without shell was 571 ± 27.02 nm and 456 ± 19.17 nm, respectively. The charges on the surface of Brz-PS-PLGA and Brz-PLGA were (-) 27.45 ± 2.98 mV and (-) 19.47 ± 2.83 mV. The transmission electron microscopy images clearly reveal the PS shell as a light black layer over the dark black PLGA core. The CEP allows the high encapsulation of Brz in Brz-PS-PLGA where percentage of entrapment efficiency for Brz-PS-PLGA was 88.13 ± 6.43%. The release study conducted in a simulated tear fluid revealed the sustained release patterns of Brz from Brz-PS-PLGA and these were nontoxic to the cells as revealed by the cytotoxicity studies. Further, the Brz-PS-PLGA enhanced the coronial penetration of Brz and was capable of significantly reducing the intraocular pressure (IOP) after administration to the rabbit eye in comparison to the Brz-PLGA and free Brz. The results clearly suggest that the PS coating significantly enhances the capability of the particles in reducing IOP.
Collapse
Affiliation(s)
- Jing Song
- Department of Ophthalmology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu, People’s Republic of China
| | - Ziping Zhang
- Department of Ophthalmology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu, People’s Republic of China
| |
Collapse
|
25
|
Ahmed OAA, Badr-Eldin SM. Biodegradable self-assembled nanoparticles of PEG-PLGA amphiphilic diblock copolymer as a promising stealth system for augmented vinpocetine brain delivery. Int J Pharm 2020; 588:119778. [PMID: 32805381 DOI: 10.1016/j.ijpharm.2020.119778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023]
Abstract
Vinpocetine (VNP), a semisynthetic drug, is utilized for the treatment of cerebrovascular and memory disorders. This work aimed at formulation of biodegradable VNP long-circulating nanoparticles utilizing Polyethylene glycol methyl ether-block-poly lactide-co-glycolide (PEG-PLGA) copolymer to surmount the drug drawbacks including low oral bioavailability and short elimination half-life. VNP nanoparticles were formulated using nanoprecipitation technique. A 24 factorial design was applied to assess the impact of formulation and process variables on the nanoparticles' characteristics. Statistical analysis revealed that nanoparticles size (Y1) significantly increased with increasing PEG-PLGA amount (X1), poly-vinyl alcohol concentration (X2), and PLGA content (X4), while decreased with increasing sonication time (X3). Furthermore, the entrapment efficiency (Y2) was positively affected by both PEG-PLGA amount and PLGA content, while negatively affected by poly-vinyl alcohol concentration. The optimized formulation prepared using 200 mg of PEG-PLGA polymer (PEG: PLGA 2000: 4,500), 0.5% polyvinyl alcohol with sonication time of 60 s achieved spherical shape with particle size of 43 nm and drug entrapment of 82%. A significant bioavailability enhancement of VNP with marked prolongation of the in vivo systemic exposure of the drug and increased brain levels has also been achieved following intraperitoneal administration in Wistar rats. Thus, the optimized formulation could be regarded as a promising stealth nanocarrier that could surmount the drug pitfalls and enhance its brain delivery.
Collapse
Affiliation(s)
- Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|