1
|
Laurent H, Brockwell DJ, Dougan L. Nanomachine Networks: Functional All-Enzyme Hydrogels from Photochemical Cross-Linking of Glucose Oxidase. Biomacromolecules 2025; 26:1195-1206. [PMID: 39847607 PMCID: PMC11815861 DOI: 10.1021/acs.biomac.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Enzymes are attractive as catalysts due to their specificity and biocompatibility; however, their use in industrial and biomedical applications is limited by stability. Here, we present a facile approach for enzyme immobilization within "all-enzyme" hydrogels by forming photochemical covalent cross-links between the enzyme glucose oxidase. We demonstrate that the mechanical properties of the enzyme hydrogel can be tuned with enzyme concentration and the data suggests that the dimeric nature of glucose oxidase results in unusual gel formation behavior which suggests a degree of forced induced dimer dissociation and unfolding. We confirm and quantify the enzyme activity of the hydrogel using the Trinder assay and a 1D modeling approach and show that 50% enzymatic activity is retained upon hydrogel formation. These observed effects may be due to the forces experienced by the individual nanoscale enzymes during mesoscale network formation. We have therefore demonstrated that photochemical cross-linking can be readily employed to produce functional all-enzyme glucose oxidase hydrogels with easily tunable mechanical properties and specific catalytic activity. This approach provides enormous potential for producing biocatalytic materials with tunable mechanical properties, responsive biological functionality and high volumetric productivity which may inform the future design of biomedical devices with enhanced sensitivity and activity.
Collapse
Affiliation(s)
- Harrison Laurent
- School of
Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K.
| | - David J. Brockwell
- Astbury Centre
for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Lorna Dougan
- School of
Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury Centre
for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
2
|
Moench S, Lemke P, Hansen A, Bickmann C, Peng M, Rabe KS, Domínguez CM, Niemeyer CM. A Critical View on the Use of DNA Hydrogels in Cell-Free Protein Synthesis. Angew Chem Int Ed Engl 2025; 64:e202414480. [PMID: 39420772 DOI: 10.1002/anie.202414480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Numerous studies have reported in the past that the use of protein-encoding DNA hydrogels as templates for cell-free protein synthesis (CFPS) leads to better yields than the use of conventional templates such as plasmids or PCR fragments. Systematic investigation of different types of bulk materials from pure DNA hydrogels and DNA hydrogel composites using a commercially available CFPS kit showed no evidence of improved expression efficiency. However, protein-coding DNA hydrogels were advantageously used in microfluidic reactors as immobilized templates for repetitive protein production, suggesting that DNA-based materials offer potential for future developments in high-throughput profiling or rapid in situ characterization of proteins.
Collapse
Affiliation(s)
- Svenja Moench
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Phillip Lemke
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Abbey Hansen
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Christoph Bickmann
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Peng
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Carmen M Domínguez
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Wu J, Gu Z, Modica JA, Chen S, Mrksich M, Voth GA. Megamolecule Self-Assembly Networks: A Combined Computational and Experimental Design Strategy. J Am Chem Soc 2024; 146:30553-30564. [PMID: 39451142 DOI: 10.1021/jacs.4c11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
This work describes the use of computational strategies to design megamolecule building blocks for the self-assembly of lattice networks. The megamolecules are prepared by attaching four Cutinase-SnapTag fusion proteins (CS fusions) to a four-armed linker, followed by functionalizing each fusion with a terpyridine linker. This functionality is designed to participate in a metal-mediated self-assembly process to give networks. This article describes a simulation-guided strategy for the design of megamolecules to optimize the peptide linker in the fusion protein to give conformations that are best suited for self-assembly and therefore streamlines the typically time-consuming and labor-intensive experimental process. We designed 11 candidate megamolecules and identified the most promising linker, (EAAAK)2, along with the optimal experimental conditions through a combination of all-atom molecular dynamics, enhanced sampling, and larger-scale coarse-grained molecular dynamics simulations. Our simulation findings were validated and found to be consistent with the experimental results. Significantly, this study offers valuable insight into the self-assembly of megamolecule networks and provides a novel and general strategy for large biomolecular material designs by using systematic bottom-up coarse-grained simulations.
Collapse
Affiliation(s)
- Jiangbo Wu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zhaoyi Gu
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin A Modica
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sijia Chen
- Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Milan Mrksich
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Michaud M, Nonglaton G, Anxionnaz-Minvielle Z. Wall-Immobilized Biocatalyst vs. Packed Bed in Miniaturized Continuous Reactors: Performances and Scale-Up. Chembiochem 2024; 25:e202400086. [PMID: 38618870 DOI: 10.1002/cbic.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Sustainable biocatalysis syntheses have gained considerable popularity over the years. However, further optimizations - notably to reduce costs - are required if the methods are to be successfully deployed in a range of areas. As part of this drive, various enzyme immobilization strategies have been studied, alongside process intensification from batch to continuous production. The flow bioreactor portfolio mainly ranges between packed bed reactors and wall-immobilized enzyme miniaturized reactors. Because of their simplicity, packed bed reactors are the most frequently encountered at lab-scale. However, at industrial scale, the growing pressure drop induced by the increase in equipment size hampers their implementation for some applications. Wall-immobilized miniaturized reactors require less pumping power, but a new problem arises due to their reduced enzyme-loading capacity. This review starts with a presentation of the current technology portfolio and a reminder of the metrics to be applied with flow bioreactors. Then, a benchmarking of the most recent relevant works is presented. The scale-up perspectives of the various options are presented in detail, highlighting key features of industrial requirements. One of the main objectives of this review is to clarify the strategies on which future study should center to maximize the performance of wall-immobilized enzyme reactors.
Collapse
Affiliation(s)
- Maïté Michaud
- Univ. Grenoble Alpes, CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), F-38000, Grenoble, France
| | - Guillaume Nonglaton
- Univ. Grenoble Alpes, CEA, LETI, DTIS, Plateforme de Recherche Intégration, fonctionnalisation de Surfaces et Microfabrication (PRISM), F-38000, Grenoble, France
| | - Zoé Anxionnaz-Minvielle
- Univ. Grenoble Alpes, CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), F-38000, Grenoble, France
| |
Collapse
|
5
|
Kröll S, Burgahn T, Rabe KS, Franzreb M, Niemeyer CM. Nano- and Microscale Confinements in DNA-Scaffolded Enzyme Cascade Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304578. [PMID: 37732702 DOI: 10.1002/smll.202304578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Artificial reconstruction of naturally evolved principles, such as compartmentalization and cascading of multienzyme complexes, offers enormous potential for the development of biocatalytic materials and processes. Due to their unique addressability at the nanoscale, DNA origami nanostructures (DON) have proven to be an exceptionally powerful tool for studying the fundamental processes in biocatalytic cascades. To systematically investigate the diffusion-reaction network of (co)substrate transfer in enzyme cascades, a model system of stereoselective ketoreductase (KRED) with cofactor regenerating enzyme is assembled in different spatial arrangements on DNA nanostructures and is located in the sphere of microbeads (MB) as a spatially confining nano- and microenvironment, respectively. The results, obtained through the use of highly sensitive analytical methods, Western blot-based quantification of the enzymes, and mass spectrometric (MS) product detection, along with theoretical modeling, provide strong evidence for the presence of two interacting compartments, the diffusion layers around the microbead and the DNA scaffold, which influence the catalytic efficiency of the cascade. It is shown that the microscale compartment exerts a strong influence on the productivity of the cascade, whereas the nanoscale arrangement of enzymes has no influence but can be modulated by the insertion of a diffusion barrier.
Collapse
Affiliation(s)
- Sandra Kröll
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Teresa Burgahn
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Matthias Franzreb
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Hertel JS, Bitterwolf P, Kröll S, Winterhalter A, Weber AJ, Grösche M, Walkowsky LB, Heißler S, Schwotzer M, Wöll C, van de Kamp T, Zuber M, Baumbach T, Rabe KS, Niemeyer CM. Biocatalytic Foams from Microdroplet-Formulated Self-Assembling Enzymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303952. [PMID: 37358068 DOI: 10.1002/adma.202303952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Industrial biocatalysis plays an important role in the development of a sustainable economy, as enzymes can be used to synthesize an enormous range of complex molecules under environmentally friendly conditions. To further develop the field, intensive research is being conducted on process technologies for continuous flow biocatalysis in order to immobilize large quantities of enzyme biocatalysts in microstructured flow reactors under conditions that are as gentle as possible in order to realize efficient material conversions. Here, monodisperse foams consisting almost entirely of enzymes covalently linked via SpyCatcher/SpyTag conjugation are reported. The biocatalytic foams are readily available from recombinant enzymes via microfluidic air-in-water droplet formation, can be directly integrated into microreactors, and can be used for biocatalytic conversions after drying. Reactors prepared by this method show surprisingly high stability and biocatalytic activity. The physicochemical characterization of the new materials is described and exemplary applications in biocatalysis are shown using two-enzyme cascades for the stereoselective synthesis of chiral alcohols and the rare sugar tagatose.
Collapse
Affiliation(s)
- Julian S Hertel
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Patrick Bitterwolf
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Sandra Kröll
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Astrid Winterhalter
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Annika J Weber
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Maximilian Grösche
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Laurenz B Walkowsky
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Heißler
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Matthias Schwotzer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), D-76131, Karlsruhe, Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), D-76131, Karlsruhe, Germany
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), D-76131, Karlsruhe, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Chen Q, Qu G, Li X, Feng M, Yang F, Li Y, Li J, Tong F, Song S, Wang Y, Sun Z, Luo G. Active and stable alcohol dehydrogenase-assembled hydrogels via synergistic bridging of triazoles and metal ions. Nat Commun 2023; 14:2117. [PMID: 37055470 PMCID: PMC10102205 DOI: 10.1038/s41467-023-37921-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
Biocatalysis is increasingly replacing traditional methods of manufacturing fine chemicals due to its green, mild, and highly selective nature, but biocatalysts, such as enzymes, are generally costly, fragile, and difficult to recycle. Immobilization provides protection for the enzyme and enables its convenient reuse, which makes immobilized enzymes promising heterogeneous biocatalysts; however, their industrial applications are limited by the low specific activity and poor stability. Herein, we report a feasible strategy utilizing the synergistic bridging of triazoles and metal ions to induce the formation of porous enzyme-assembled hydrogels with increased activity. The catalytic efficiency of the prepared enzyme-assembled hydrogels toward acetophenone reduction is 6.3 times higher than that of the free enzyme, and the reusability is confirmed by the high residual catalytic activity after 12 cycles of use. A near-atomic resolution (2.1 Å) structure of the hydrogel enzyme is successfully analyzed via cryogenic electron microscopy, which indicates a structure-property relationship for the enhanced performance. In addition, the possible mechanism of gel formation is elucidated, revealing the indispensability of triazoles and metal ions, which guides the use of two other enzymes to prepare enzyme-assembled hydrogels capable of good reusability. The described strategy can pave the way for the development of practical catalytic biomaterials and immobilized biocatalysts.
Collapse
Affiliation(s)
- Qiang Chen
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xu Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Mingjian Feng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fan Yang
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanjie Li
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jincheng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Feifei Tong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shiyi Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yujun Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Ölçücü G, Krauss U, Jaeger KE, Pietruszka J. Carrier‐Free Enzyme Immobilizates for Flow Chemistry. CHEM-ING-TECH 2023. [DOI: 10.1002/cite.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Gizem Ölçücü
- Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Institute of Molecular Enzyme Technology Wilhelm Johnen Straße 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences IBG-1: Biotechnology Wilhelm Johnen Straße 52425 Jülich Germany
| | - Ulrich Krauss
- Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Institute of Molecular Enzyme Technology Wilhelm Johnen Straße 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences IBG-1: Biotechnology Wilhelm Johnen Straße 52425 Jülich Germany
| | - Karl-Erich Jaeger
- Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Institute of Molecular Enzyme Technology Wilhelm Johnen Straße 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences IBG-1: Biotechnology Wilhelm Johnen Straße 52425 Jülich Germany
| | - Jörg Pietruszka
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences IBG-1: Biotechnology Wilhelm Johnen Straße 52425 Jülich Germany
- Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Institute of Biorganic Chemistry Wilhelm Johnen Straße 52425 Jülich Germany
| |
Collapse
|
9
|
Kröll S, Schneider L, Wadhwani P, Rabe KS, Niemeyer CM. Orthogonal protein decoration of DNA nanostructures based on SpyCatcher-SpyTag interaction. Chem Commun (Camb) 2022; 58:13471-13474. [PMID: 36383063 DOI: 10.1039/d2cc05335g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We present an efficient and readily applicable strategy for the covalent ligation of proteins to DNA origami by using the SpyCatcher-SpyTag (SC-ST) connector system. This approach showed orthogonality with other covalent connectors and has been used exemplarily for the immobilization and study of stereoselective ketoreductases to gain insight into the spatial arrangement of enzymes on DNA nanostructures.
Collapse
Affiliation(s)
- Sandra Kröll
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany.
| | - Leonie Schneider
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany.
| | - Parvesh Wadhwani
- Department of Molecular Biophysics (IBG 2), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany.
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany.
| |
Collapse
|
10
|
Bitterwolf P, Zoheir AE, Hertel J, Kröll S, Rabe KS, Niemeyer CM. Intracellular Assembly of Interacting Enzymes Yields Highly-Active Nanoparticles for Flow Biocatalysis. Chemistry 2022; 28:e202202157. [PMID: 36000795 PMCID: PMC9828753 DOI: 10.1002/chem.202202157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 01/12/2023]
Abstract
All-enzyme hydrogel (AEH) particles with a hydrodynamic diameter of up to 120 nm were produced intracellularly with an Escherichia coli-based in vivo system. The inCell-AEH nanoparticles were generated from polycistronic vectors enabling simultaneous expression of two interacting enzymes, the Lactobacillus brevis alcohol dehydrogenase (ADH) and the Bacillus subtilis glucose-1-dehydrogenase (GDH), fused with a SpyCatcher or SpyTag, respectively. Formation of inCell-AEH was analyzed by dynamic light scattering and atomic force microscopy. Using the stereoselective two-step reduction of a prochiral diketone substrate, we show that the inCell-AEH approach can be advantageously used in whole-cell flow biocatalysis, by which flow reactors could be operated for >4 days under constant substrate perfusion. More importantly, the inCell-AEH concept enables the recovery of efficient catalyst materials for stable flow bioreactors in a simple and economical one-step procedure from crude bacterial lysates. We believe that our method will contribute to further optimization of sustainable biocatalytic processes.
Collapse
Affiliation(s)
- Patrick Bitterwolf
- Institute for Biological Interfaces (IBG1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1Karlsruhe76344Germany
| | - Ahmed E. Zoheir
- Department of Genetics and CytologyNational Research Centre (NRC)33 El Buhouth St.Cairo12622Egypt
| | - Julian Hertel
- Institute for Biological Interfaces (IBG1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1Karlsruhe76344Germany
| | - Sandra Kröll
- Institute for Biological Interfaces (IBG1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1Karlsruhe76344Germany
| | - Kersten S. Rabe
- Institute for Biological Interfaces (IBG1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1Karlsruhe76344Germany
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1Karlsruhe76344Germany
| |
Collapse
|
11
|
Chen K, Dong X, Sun Y. Sequentially co-immobilized PET and MHET hydrolases via Spy chemistry in calcium phosphate nanocrystals present high-performance PET degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129517. [PMID: 35809363 DOI: 10.1016/j.jhazmat.2022.129517] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Accumulation of polyethylene terephthalate (PET) has brought an enormous threat to the ecosystem. The recently reported PET hydrolase (DuraPETase) and MHET hydrolase (MHETase) can synergistically catalyze the complete PET degradation. Hence, this work was designed to develop a bienzymatic cascade catalysis by co-immobilizing the two enzymes for PET biodegradation. DuraPETase and MHETase were sequentially co-immobilized in calcium phosphate nanocrystals (CaP) through SpyTag/SpyCatcher system. MHETase-SpyCatcher was first embedded inside the nanocrystals via biomimetic mineralization, and DuraPETase-SpyTag was then conjugated on the outlayer (~1.5 µm). The bienzyme compartmentalization facilitated DuraPETase interaction with the solid substrate, and the layered structures of the nanocrystals protected the enzymes, thus enhancing their stability. The high specific surface area of the nanocrystals and the proximity effects from the bienzymatic cascade were beneficial to the improved enzyme activity. Experimental data and molecular dynamics simulations revealed the activation effect of Ca2+ on DuraPETase. Taken together, the final results indicate that the PET degradation efficiency of DuraPETase-MHETase@CaP increased by 6.1 and 1.5 times over the free bienzyme system within 10 d at 40 °C and 50 °C, with weight losses at 32.2% and 50.3%, respectively. The bienzymatic cascade with DuraPETase-MHETase@CaP can completely degrade PET, contributing to the recycling of PET.
Collapse
Affiliation(s)
- Kun Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
12
|
Mo J, Chen J, Shi Y, Sun J, Wu Y, Liu T, Zhang J, Zheng Y, Li Y, Chen Z. Third-Generation Covalent TMP-Tag for Fast Labeling and Multiplexed Imaging of Cellular Proteins. Angew Chem Int Ed Engl 2022; 61:e202207905. [PMID: 35816052 DOI: 10.1002/anie.202207905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 11/10/2022]
Abstract
Self-labeling protein tags can introduce advanced molecular motifs to specific cellular proteins. Here we introduce the third-generation covalent TMP-tag (TMP-tag3) and showcase its comparison with HaloTag and SNAP-tag. TMP-tag3 is based on a proximity-induced covalent Michael addition between an engineered Cys of E. coli dihydrofolate reductase (eDHFR) and optimized trimethoprim (TMP)-acrylamide conjugates with minimal linkers. Compared to previous versions, the TMP-tag3 features an enhanced permeability when conjugated to fluorogenic spirocyclic rhodamines. As a small protein, the 18-kD eDHFR is advantageous in tagging selected mitochondrial proteins which are less compatible with bulkier HaloTag fusions. The proximal N-C termini of eDHFR also enable facile insertion into various protein loops. TMP-tag3, HaloTag, and SNAP-tag are orthogonal to each other, collectively forming a toolbox for multiplexed live-cell imaging of cellular proteins under fluorescence nanoscopy.
Collapse
Affiliation(s)
- Jiaming Mo
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Yiheyuan Road No.5, Beijing, 100871, China
| | - Jingting Chen
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Yiheyuan Road No.5, Beijing, 100871, China
| | - Yabo Shi
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Yiheyuan Road No.5, Beijing, 100871, China
| | - Jingfu Sun
- PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800, Jiangsu, China
| | - Yunxiang Wu
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Yiheyuan Road No.5, Beijing, 100871, China
| | - Tianyan Liu
- Peking-Tsinghua Center for Life Science, Peking University, Beijing, Yiheyuan Road No.5, Beijing, 100871, China
| | - Junwei Zhang
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Yiheyuan Road No.5, Beijing, 100871, China
| | - Yu Zheng
- Peking-Tsinghua Center for Life Science, Peking University, Beijing, Yiheyuan Road No.5, Beijing, 100871, China.,State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Science, Peking University, Yiheyuan Road No.5, Beijing, 100871, China
| | - Yulong Li
- Peking-Tsinghua Center for Life Science, Peking University, Beijing, Yiheyuan Road No.5, Beijing, 100871, China.,State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Science, Peking University, Yiheyuan Road No.5, Beijing, 100871, China.,Chinese Institute for Brain Research, Beijing, 102206, China
| | - Zhixing Chen
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Yiheyuan Road No.5, Beijing, 100871, China.,PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800, Jiangsu, China.,Peking-Tsinghua Center for Life Science, Peking University, Beijing, Yiheyuan Road No.5, Beijing, 100871, China
| |
Collapse
|
13
|
Pei X, Luo Z, Qiao L, Xiao Q, Zhang P, Wang A, Sheldon RA. Putting precision and elegance in enzyme immobilisation with bio-orthogonal chemistry. Chem Soc Rev 2022; 51:7281-7304. [PMID: 35920313 DOI: 10.1039/d1cs01004b] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The covalent immobilisation of enzymes generally involves the use of highly reactive crosslinkers, such as glutaraldehyde, to couple enzyme molecules to each other or to carriers through, for example, the free amino groups of lysine residues, on the enzyme surface. Unfortunately, such methods suffer from a lack of precision. Random formation of covalent linkages with reactive functional groups in the enzyme leads to disruption of the three dimensional structure and accompanying activity losses. This review focuses on recent advances in the use of bio-orthogonal chemistry in conjunction with rec-DNA to affect highly precise immobilisation of enzymes. In this way, cost-effective combination of production, purification and immobilisation of an enzyme is achieved, in a single unit operation with a high degree of precision. Various bio-orthogonal techniques for putting this precision and elegance into enzyme immobilisation are elaborated. These include, for example, fusing (grafting) peptide or protein tags to the target enzyme that enable its immobilisation in cell lysate or incorporating non-standard amino acids that enable the application of bio-orthogonal chemistry.
Collapse
Affiliation(s)
- Xiaolin Pei
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Zhiyuan Luo
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li Qiao
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Qinjie Xiao
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Pengfei Zhang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Anming Wang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050, Johannesburg, South Africa. .,Department of Biotechnology, Section BOC, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
14
|
Mo J, Chen J, Shi Y, Sun J, Wu Y, Liu T, Zhang J, Zheng Y, Li Y, Chen Z. Third‐Generation Covalent TMP‐Tag for Fast Labeling and Multiplexed Imaging of Cellular Proteins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiaming Mo
- Peking University College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center CHINA
| | - Jingting Chen
- Peking University College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center CHINA
| | - Yabo Shi
- Peking University College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center CHINA
| | - Jingfu Sun
- PKU-Nanjing Institute of translational medicine n/a CHINA
| | - Yunxiang Wu
- Peking University College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center CHINA
| | - Tianyan Liu
- Peking University College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center CHINA
| | - Junwei Zhang
- Peking University College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center CHINA
| | - Yu Zheng
- Peking University School of life science CHINA
| | - Yulong Li
- Peking University School of life science CHINA
| | - Zhixing Chen
- Peking University College of Future Technology 5 Yiheyuan Rd. 100871 Beijing CHINA
| |
Collapse
|
15
|
Caparco AA, Dautel DR, Champion JA. Protein Mediated Enzyme Immobilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106425. [PMID: 35182030 DOI: 10.1002/smll.202106425] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Enzyme immobilization is an essential technology for commercializing biocatalysis. It imparts stability, recoverability, and other valuable features that improve the effectiveness of biocatalysts. While many avenues to join an enzyme to solid phases exist, protein-mediated immobilization is rapidly developing and has many advantages. Protein-mediated immobilization allows for the binding interaction to be genetically coded, can be used to create artificial multienzyme cascades, and enables modular designs that expand the variety of enzymes immobilized. By designing around binding interactions between protein domains, they can be integrated into functional materials for protein immobilization. These materials are framed within the context of biocatalytic performance, immobilization efficiency, and stability of the materials. In this review, supports composed entirely of protein are discussed first, with systems such as cellulosomes and protein cages being discussed alongside newer technologies like spore-based biocatalysts and forizymes. Protein-composite materials such as polymersomes and protein-inorganic supraparticles are then discussed to demonstrate how protein-mediated strategies are applied to many classes of solid materials. Critical analysis and future directions of protein-based immobilization are then discussed, with a particular focus on both computational and design strategies to advance this area of research and make it more broadly applicable to many classes of enzymes.
Collapse
Affiliation(s)
- Adam A Caparco
- Department of Nanoengineering, University of California, San Diego, MC 0448, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA, 30332, USA
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA, 30332, USA
| |
Collapse
|
16
|
Peng M, Siebert DL, Engqvist MKM, Niemeyer CM, Rabe KS. Modeling-Assisted Design of Thermostable Benzaldehyde Lyases from Rhodococcus erythropolis for Continuous Production of α-Hydroxy Ketones. Chembiochem 2022; 23:e202100468. [PMID: 34558792 PMCID: PMC9293332 DOI: 10.1002/cbic.202100468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Enantiopure α-hydroxy ketones are important building blocks of active pharmaceutical ingredients (APIs), which can be produced by thiamine-diphosphate-dependent lyases, such as benzaldehyde lyase. Here we report the discovery of a novel thermostable benzaldehyde lyase from Rhodococcus erythropolis R138 (ReBAL). While the overall sequence identity to the only experimentally confirmed benzaldehyde lyase from Pseudomonas fluorescens Biovar I (PfBAL) was only 65 %, comparison of a structural model of ReBAL with the crystal structure of PfBAL revealed only four divergent amino acids in the substrate binding cavity. Based on rational design, we generated two ReBAL variants, which were characterized along with the wild-type enzyme in terms of their substrate spectrum, thermostability and biocatalytic performance in the presence of different co-solvents. We found that the new enzyme variants have a significantly higher thermostability (up to 22 °C increase in T50 ) and a different co-solvent-dependent activity. Using the most stable variant immobilized in packed-bed reactors via the SpyCatcher/SpyTag system, (R)-benzoin was synthesized from benzaldehyde over a period of seven days with a stable space-time-yield of 9.3 mmol ⋅ L-1 ⋅ d-1 . Our work expands the important class of benzaldehyde lyases and therefore contributes to the development of continuous biocatalytic processes for the production of α-hydroxy ketones and APIs.
Collapse
Affiliation(s)
- Martin Peng
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Dominik L. Siebert
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Martin K. M. Engqvist
- Chalmers University of TechnologyDepartment of Biology and Biological EngineeringDivision of Systems and Synthetic BiologyKemivägen 10412 96GothenburgSweden
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Kersten S. Rabe
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
17
|
Gygli G. On the reproducibility of enzyme reactions and kinetic modelling. Biol Chem 2022; 403:717-730. [PMID: 35357794 DOI: 10.1515/hsz-2021-0393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
Abstract
Enzyme reactions are highly dependent on reaction conditions. To ensure reproducibility of enzyme reaction parameters, experiments need to be carefully designed and kinetic modeling meticulously executed. Furthermore, to enable quality control of enzyme reaction parameters, the experimental conditions, the modeling process as well as the raw data need to be reported comprehensively. By taking these steps, enzyme reaction parameters can be open and FAIR (findable, accessible, interoperable, re-usable) as well as repeatable, replicable and reproducible. This review discusses these requirements and provides a practical guide to designing initial rate experiments for the determination of enzyme reaction parameters and gives an open, FAIR and re-editable example of the kinetic modeling of an enzyme reaction. Both the guide and example are scripted with Python in Jupyter Notebooks and are publicly available (https://fairdomhub.org/investigations/483/snapshots/1). Finally, the prerequisites of automated data analysis and machine learning algorithms are briefly discussed to provide further motivation for the comprehensive, open and FAIR reporting of enzyme reaction parameters.
Collapse
Affiliation(s)
- Gudrun Gygli
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Meyer J, Meyer L, Kara S. Enzyme immobilization in hydrogels: A perfect liaison for efficient and sustainable biocatalysis. Eng Life Sci 2022; 22:165-177. [PMID: 35382546 PMCID: PMC8961036 DOI: 10.1002/elsc.202100087] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Biocatalysis is an established chemical synthesis technology that has by no means been restricted to research laboratories. The use of enzymes for organic synthesis has evolved greatly from early development to proof-of-concept - from small batch production to industrial scale. Different enzyme immobilization strategies contributed to this success story. Recently, the use of hydrogel materials for the immobilization of enzymes has been attracting great interest. Within this review, we pay special attention to recent developments in this key emerging field of research. Firstly, we will briefly introduce the concepts of both biocatalysis and hydrogel worlds. Then, we list recent interesting publications that link both concepts. Finally, we provide an outlook and comment on future perspectives of further exploration of enzyme immobilization strategies in hydrogels.
Collapse
Affiliation(s)
- Johanna Meyer
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Lars‐Erik Meyer
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| | - Selin Kara
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| |
Collapse
|
19
|
Williams V, Cui Y, Zhao J, Fu H, Jiao X, Ma Y, Li X, Du X, Zhang N. Highly Efficient Production of Optically Active ( R)-Tetrahydrothiophene-3-ol in Batch and Continuous Flow by Using Immobilized Ketoreductase. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vyasa Williams
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Yuxia Cui
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Jiadong Zhao
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Han Fu
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Xuecheng Jiao
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Yulei Ma
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Xiang Li
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Xin Du
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| | - Na Zhang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin, 300457, P.R. China
| |
Collapse
|
20
|
Ott F, Rabe KS, Niemeyer CM, Gygli G. Toward Reproducible Enzyme Modeling with Isothermal Titration Calorimetry. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Felix Ott
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Kersten S. Rabe
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gudrun Gygli
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
21
|
Keeble AH, Yadav VK, Ferla MP, Bauer CC, Chuntharpursat-Bon E, Huang J, Bon RS, Howarth M. DogCatcher allows loop-friendly protein-protein ligation. Cell Chem Biol 2021; 29:339-350.e10. [PMID: 34324879 PMCID: PMC8878318 DOI: 10.1016/j.chembiol.2021.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022]
Abstract
There are many efficient ways to connect proteins at termini. However, connecting at a loop is difficult because of lower flexibility and variable environment. Here, we have developed DogCatcher, a protein that forms a spontaneous isopeptide bond with DogTag peptide. DogTag/DogCatcher was generated initially by splitting a Streptococcus pneumoniae adhesin. We optimized DogTag/DogCatcher through rational design and evolution, increasing reaction rate by 250-fold and establishing millimolar solubility of DogCatcher. When fused to a protein terminus, DogTag/DogCatcher reacts slower than SpyTag003/SpyCatcher003. However, inserted in loops of a fluorescent protein or enzyme, DogTag reacts much faster than SpyTag003. Like many membrane proteins, the ion channel TRPC5 has no surface-exposed termini. DogTag in a TRPC5 extracellular loop allowed normal calcium flux and specific covalent labeling on cells in 1 min. DogTag/DogCatcher reacts under diverse conditions, at nanomolar concentrations, and to 98% conversion. Loop-friendly ligation should expand the toolbox for creating protein architectures. Spontaneous transamidation at internal sites harnessing a DogTag/DogCatcher pair DogCatcher is designed and bred for high solubility and rapid reaction Within protein loops DogTag can clamp on its partner faster than SpyTag003 Fast and faithful fluorescent labeling of an ion channel at the cell surface via DogTag
Collapse
Affiliation(s)
- Anthony H Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Vikash K Yadav
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Matteo P Ferla
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Claudia C Bauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Eulashini Chuntharpursat-Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Jin Huang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
22
|
Lemke P, Zoheir AE, Rabe KS, Niemeyer CM. Microfluidic cultivation and analysis of productive biofilms. Biotechnol Bioeng 2021; 118:3860-3870. [PMID: 34133021 DOI: 10.1002/bit.27861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 01/09/2023]
Abstract
We here report the application of a machine-based microfluidic biofilm cultivation and analysis platform for studying the performance of biocatalytically active biofilms. By using robotic sampling, we succeeded in spatially resolving the productivity of three microfluidic reactors containing biocatalytically active biofilms that inducibly overexpress recombinant enzymes. Escherichia coli biofilms expressing two stereoselective oxidoreductases, the (R)-selective alcohol dehydrogenase LbADH and the (S)-selective ketoreductase Gre2p, as well as the phenolic acid decarboxylase EsPAD were used. The excellent reproducibility of the cultivation and analysis methods observed for all three systems underlines the usefulness of the new technical platform for the investigation of biofilms. In addition, we demonstrated that the analytical platform also opens up new opportunities to perform in-depth spatially resolved studies on the biomass growth in a reactor channel and its biochemical productivity. Since the platform not only offers the detailed biochemical characterization but also broad capabilities for the morphological study of living biofilms, we believe that our approach can also be performed on many other natural and artificial biofilms to systematically investigate a wide range of process parameters in a highly parallel manner using miniaturized model systems, thus advancing the harnessing of microbial communities for technical purposes.
Collapse
Affiliation(s)
- Phillip Lemke
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG 1), Eggenstein-Leopoldshafen, Germany
| | - Ahmed E Zoheir
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG 1), Eggenstein-Leopoldshafen, Germany.,Department of Genetics and Cytology, National Research Centre (NRC), Cairo, Egypt
| | - Kersten S Rabe
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG 1), Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG 1), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
23
|
Xu L, Wang LC, Su BM, Xu XQ, Lin J. Efficient biosynthesis of (2S, 3R)-4-methylsulfonylphenylserine by artificial self-assembly of enzyme complex combined with an intensified acetaldehyde elimination system. Bioorg Chem 2021; 110:104766. [PMID: 33662895 DOI: 10.1016/j.bioorg.2021.104766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 01/13/2023]
Abstract
(2S, 3R)-4-methylsulfonylphenylserine [(2S, 3R)-MPS], a key chiral precursor for antibiotics florfenicol and thiamphenicol, could be asymmetrically synthesized by l-threonine transaldolase (LTTA) coupled with an acetaldehyde elimination system. The low efficiency of acetaldehyde elimination system blocked further accumulation of (2S, 3R)-MPS. To address this issue, strengthening acetaldehyde elimination system and enzyme self-assembly strategy were combined to accelerate biosynthesis of (2S, 3R)-MPS. The new multi-enzyme cascade with intensified acetaldehyde elimination system BL21 (PsLTTAD2/ScADH/BtGDH) could produce (2S, 3R)-MPS with a titer of 157.6 mM, 1.7-folds than that produced by the original system BL21 (PsLTTAD2/ApADH/CbFDH). Moreover, self-assembly of PsLTTAD2 and ScADH by respective fusion of SpyTag and SpyCatcher were carried out to develop a self-assembled multi-enzyme cascade BL21 (ST-PsLTTAD2/SC-ScADH/BtGDH). As a result, the yield of (2S, 3R)-MPS was up to 248.1 mM with 95% de. As far as we knew, that represented the highest yield of (2S, 3R)-MPS by enzymatic synthesis, and therefore was a promising and green route for industrial production of this valuable compound.
Collapse
Affiliation(s)
- Lian Xu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Li-Chao Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Bing-Mei Su
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xin-Qi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Juan Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
24
|
Yan Y, Qiao Z, Hai X, Song W, Bi S. Versatile electrochemical biosensor based on bi-enzyme cascade biocatalysis spatially regulated by DNA architecture. Biosens Bioelectron 2021; 174:112827. [DOI: 10.1016/j.bios.2020.112827] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022]
|
25
|
Brás EJS, Chu V, Conde JP, Fernandes P. Recent developments in microreactor technology for biocatalysis applications. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00024a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Through the use of microfluidics technology, one can severely accelerate the development and optimization of biocatalytic processes. In this work, the authors present a comprehensive review of the recent advances in the field.
Collapse
Affiliation(s)
- Eduardo J. S. Brás
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN)
- Lisbon
- Portugal
- IBB – Institute for Bioengineering and Biosciences
- Instituto Superior Técnico
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN)
- Lisbon
- Portugal
| | - João Pedro Conde
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN)
- Lisbon
- Portugal
- Department of Bioengineering
- Instituto Superior Técnico
| | - Pedro Fernandes
- IBB – Institute for Bioengineering and Biosciences
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisbon
- Portugal
| |
Collapse
|
26
|
Romanov A, Slouka Z, Přibyl M. Electric-field-enhanced selective separation of products of an enzymatic reaction in a membrane micro-contactor. Biotechnol Bioeng 2020; 118:715-724. [PMID: 33049066 DOI: 10.1002/bit.27597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 10/11/2020] [Indexed: 01/10/2023]
Abstract
Processes employed in separations of products of enzyme reactions are often driven by diffusion, and their efficiency can be limited. Here, we exploit the effect of a direct current (DC) electric field that intensifies mass transfer through a semipermeable membrane for fast, continuous, and selective separation of electrically charged molecules. Specifically, we separate low-molecular-weight reaction products (phenylacetic acid, 6-aminopenicillanic acid) from the original reaction mixture containing a free enzyme (penicillin acylase). The developed microfluidic dialysis-membrane contactor allows a stable counter-current arrangement of the retentate and permeates liquid streams on which DC electric field is perpendicularly applied. The applied electric field significantly accelerates the transport of electrically charged products through the semipermeable membrane yielding high separation efficiencies at short residence times. The residence time of 5 min is sufficient to reach 100% separation yield in the electric field. The same residence time provides only a 50% yield in the diffusion-controlled experiments. We experimentally demonstrated that a combined microreactor-microextractor with a recycle of the soluble penicillin acylase can continuously produce both the reaction products at high concentrations. The developed membrane-contactor is a versatile platform allowing to tune its characteristics, such as selectivity given by the membrane, or the type of the retentate phase, for a specific application.
Collapse
Affiliation(s)
- Alexandr Romanov
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Zdeněk Slouka
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal Přibyl
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
27
|
Abstract
Proteins are versatile macromolecules with diverse structure, charge, and function. They are ideal building blocks for biomaterials for drug delivery, biosensing, or tissue engineering applications. Simultaneously, the need to develop green alternatives to chemical processes has led to renewed interest in multienzyme biocatalytic routes to fine, specialty, and commodity chemicals. Therefore, a method to reliably assemble protein complexes using protein-protein interactions would facilitate the rapid production of new materials. Here we show a method for modular assembly of protein materials using a supercharged protein as a scaffolding "hub" onto which target proteins bearing oppositely charged domains have been self-assembled. The physical properties of the material can be tuned through blending and heating and disassembly triggered using changes in pH or salt concentration. The system can be extended to the synthesis of living materials. Our modular method can be used to reliably direct the self-assembly of proteins using small charged tag domains that can be easily encoded in a fusion protein.
Collapse
Affiliation(s)
- James A. J. Arpino
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Karen Marie Polizzi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
28
|
Baumer B, Classen T, Pohl M, Pietruszka J. Efficient Nicotinamide Adenine Dinucleotide Phosphate [NADP(H)] Recycling in Closed‐Loop Continuous Flow Biocatalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Benedikt Baumer
- Institut für Bioorganische Chemie der Heinrich-Heine-Universität Düsseldorf imForschungszentrum Jülich Stetternicher Forst, Geb. 15.8 D-52426 Jülich Germany
| | - Thomas Classen
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie)Forschungszentrum Jülich GmbH D-52456 Jülich Germany
| | - Martina Pohl
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie)Forschungszentrum Jülich GmbH D-52456 Jülich Germany
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie der Heinrich-Heine-Universität Düsseldorf imForschungszentrum Jülich Stetternicher Forst, Geb. 15.8 D-52426 Jülich Germany
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie)Forschungszentrum Jülich GmbH D-52456 Jülich Germany
| |
Collapse
|
29
|
De Santis P, Meyer LE, Kara S. The rise of continuous flow biocatalysis – fundamentals, very recent developments and future perspectives. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00335b] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Very recent developments in the field of biocatalysis in continuously operated systems. Special attention on the future perspectives in this key emerging technological area ranging from process analytical technologies to digitalization.
Collapse
Affiliation(s)
- Piera De Santis
- Aarhus University
- Department of Engineering, Biological and Chemical Engineering Section
- Biocatalysis and Bioprocessing Group
- DK 8000 Aarhus
- Denmark
| | - Lars-Erik Meyer
- Aarhus University
- Department of Engineering, Biological and Chemical Engineering Section
- Biocatalysis and Bioprocessing Group
- DK 8000 Aarhus
- Denmark
| | - Selin Kara
- Aarhus University
- Department of Engineering, Biological and Chemical Engineering Section
- Biocatalysis and Bioprocessing Group
- DK 8000 Aarhus
- Denmark
| |
Collapse
|
30
|
Peng M, Mittmann E, Wenger L, Hubbuch J, Engqvist MKM, Niemeyer CM, Rabe KS. 3D-Printed Phenacrylate Decarboxylase Flow Reactors for the Chemoenzymatic Synthesis of 4-Hydroxystilbene. Chemistry 2019; 25:15998-16001. [PMID: 31618489 PMCID: PMC6972603 DOI: 10.1002/chem.201904206] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/14/2019] [Indexed: 01/24/2023]
Abstract
Continuous flow systems for chemical synthesis are becoming a major focus in organic chemistry and there is a growing interest in the integration of biocatalysts due to their high regio- and stereoselectivity. Methods established for 3D bioprinting enable the fast and simple production of agarose-based modules for biocatalytic reactors if thermally stable enzymes are available. We report here on the characterization of four different cofactor-free phenacrylate decarboxylase enzymes suitable for the production of 4-vinylphenol and test their applicability for the encapsulation and direct 3D printing of disk-shaped agarose-based modules that can be used for compartmentalized flow microreactors. Using the most active and stable phenacrylate decarboxylase from Enterobacter spec. in a setup with four parallel reactors and a subsequent palladium(II) acetate-catalysed Heck reaction, 4-hydroxystilbene was synthesized from p-coumaric acid with a total yield of 14.7 % on a milligram scale. We believe that, due to the convenient direct immobilization of any thermostable enzyme and straightforward tuning of the reaction sequence by stacking of modules with different catalytic activities, this simple process will facilitate the establishment and use of cascade reactions and will therefore be of great advantage for many research approaches.
Collapse
Affiliation(s)
- Martin Peng
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Esther Mittmann
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Lukas Wenger
- Institute of Functional InterfacesKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Jürgen Hubbuch
- Institute of Functional InterfacesKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Martin K. M. Engqvist
- Department of Biology and Biological EngineeringDivision of Systems and Synthetic BiologyChalmers University of TechnologyKemivägen 1041296GothenburgSweden
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Kersten S. Rabe
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
31
|
Mittmann E, Gallus S, Bitterwolf P, Oelschlaeger C, Willenbacher N, Niemeyer CM, Rabe KS. A Phenolic Acid Decarboxylase-Based All-Enzyme Hydrogel for Flow Reactor Technology. MICROMACHINES 2019; 10:E795. [PMID: 31757029 PMCID: PMC6953023 DOI: 10.3390/mi10120795] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/22/2023]
Abstract
Carrier-free enzyme immobilization techniques are an important development in the field of efficient and streamlined continuous synthetic processes using microreactors. Here, the use of monolithic, self-assembling all-enzyme hydrogels is expanded to phenolic acid decarboxylases. This provides access to the continuous flow production of p-hydroxystyrene from p-coumaric acid for more than 10 h with conversions ≥98% and space time yields of 57.7 g·(d·L)-1. Furthermore, modulation of the degree of crosslinking in the hydrogels resulted in a defined variation of the rheological behavior in terms of elasticity and mesh size of the corresponding materials. This work is addressing the demand of sustainable strategies for defunctionalization of renewable feedstocks.
Collapse
Affiliation(s)
- Esther Mittmann
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Sabrina Gallus
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Patrick Bitterwolf
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Claude Oelschlaeger
- Institute for Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (C.O.); (N.W.)
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (C.O.); (N.W.)
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Kersten S. Rabe
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| |
Collapse
|
32
|
Bitterwolf P, Ott F, Rabe KS, Niemeyer CM. Imine Reductase Based All-Enzyme Hydrogel with Intrinsic Cofactor Regeneration for Flow Biocatalysis. MICROMACHINES 2019; 10:E783. [PMID: 31731666 PMCID: PMC6915733 DOI: 10.3390/mi10110783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022]
Abstract
All-enzyme hydrogels are biocatalytic materials, with which various enzymes can be immobilized in microreactors in a simple, mild, and efficient manner to be used for continuous flow processes. Here we present the construction and application of a cofactor regenerating hydrogel based on the imine reductase GF3546 from Streptomyces sp. combined with the cofactor regenerating glucose-1-dehydrogenase from Bacillus subtilis. The resulting hydrogel materials were characterized in terms of binding kinetics and viscoelastic properties. The materials were formed by rapid covalent crosslinking in less than 5 min, and they showed a typical mesh size of 67 ± 2 nm. The gels were applied for continuous flow biocatalysis. In a microfluidic reactor setup, the hydrogels showed excellent conversions of imines to amines for up to 40 h in continuous flow mode. Variation of flow rates led to a process where the gels showed a maximum space-time-yield of 150 g·(L·day)-1 at 100 μL/min.
Collapse
Affiliation(s)
| | | | | | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (P.B.); (F.O.); (K.S.R.)
| |
Collapse
|