1
|
Flecken F, Neyyathala A, Grell T, Hanf S. A Bench-Stable Fluorophosphine Nickel(0) Complex and Its Catalytic Application. Angew Chem Int Ed Engl 2025:e202506271. [PMID: 40202383 DOI: 10.1002/anie.202506271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/10/2025]
Abstract
We herein present a fluorophosphine-based nickel(0) complex [Ni(PFPh2)4] (1), which is highly stable in air and water. [Ni(PFPh2)4] can be obtained from a one-pot reaction of [Ni(MeCN)4](BF4)2 with Ph2P(═O)-PPh2, involving a unique in situ reduction of Ni(II) to Ni(0) and a simultaneous fluorination by the BF4 - anion. This complex does not only incorporate a nickel center in the zero-oxidation state, resulting from a Ni(II) precursor, but also includes fluorophosphine ligands, which typically disproportionate immediately in solution. The application of [Ni(PFPh2)4] as highly stable Ni(0) pre-catalyst in combination with additional phosphine ligands, such as dppf (1,1'-bis(diphenylphosphino)ferrocene), in various coupling reactions uncovers its high catalytic activity and versatility, which is superior to [Ni(COD)2] (COD═cycloocta-1,5-diene) as conventional Ni(0) source.
Collapse
Affiliation(s)
- Franziska Flecken
- Department Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Arjun Neyyathala
- Department Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Toni Grell
- Dipartimento di Chimica, Institution Università degli Studi di Milano, Via Camillo Golgi 19, Milan, 20131, Italy
| | - Schirin Hanf
- Department Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| |
Collapse
|
2
|
Mondal A, Breitwieser K, Danés S, Grünwald A, Heinemann FW, Morgenstern B, Müller F, Haumann M, Schütze M, Kass D, Ray K, Munz D. π-Lewis Base Activation of Carbonyls and Hexafluorobenzene. Angew Chem Int Ed Engl 2025; 64:e202418738. [PMID: 39714412 DOI: 10.1002/anie.202418738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
We report hitherto elusive side-on η2-bonded palladium(0) carbonyl (anthraquinone, benzaldehyde) and arene (benzene, hexafluorobenzene) palladium(0) complexes and present the catalytic hydrodefluorination of hexafluorobenzene by cyclohexene. The comparison with respective cyclohexene, pyridine and tetrahydrofuran complexes reveals that the experimental ligand binding strengths follow the order THF
Collapse
Affiliation(s)
- Aditesh Mondal
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
| | - Kevin Breitwieser
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
| | - Sergi Danés
- Departament de Química, Institut de Química Computacional I Catàlisi, Universitat de Girona, c/m. Aurelia Capmany 69, 17003, Girona, Spain
| | - Annette Grünwald
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
- Inorganic and General Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, D-91058, Erlangen, Germany
| | - Frank W Heinemann
- Inorganic and General Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, D-91058, Erlangen, Germany
| | - Bernd Morgenstern
- Solid State Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
| | - Frank Müller
- Experimental Physics and Center for Biophysics, Saarland University, Campus E2.9, D-66123, Saarbrücken, Germany
| | - Michael Haumann
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Maximilian Schütze
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Dustin Kass
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Dominik Munz
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
| |
Collapse
|
3
|
Fox PL, Choi J, Johnson ER, Stradiotto M. Mapping Electrophile Chemoselectivity in DalPhos/Nickel N-Arylation Catalysis: The Unusual Influence of Remote Sterics. Chemistry 2024; 30:e202402391. [PMID: 39297771 DOI: 10.1002/chem.202402391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 11/05/2024]
Abstract
We disclose herein our evaluation of competitive (hetero)aryl-X (X: Br>Cl>OTf) reactivity preferences in bisphosphine/Ni-catalyzed C-N cross-coupling catalysis, using furfurylamine as a prototypical nucleophile, and employing DalPhos and DPPF as representative ancillary ligands with established efficacy. Beyond this general (pseudo)halide ranking, other intriguing structure-reactivity trends were noted experimentally, including the unexpected observation that bulky alkyl (e. g., R=tBu) substitution in para-R-aryl-X electrophiles strongly discourages (pseudo)halide reactivity relative to smaller substituents (e. g., nBu, Et, Me), despite being both remote from, and having a similar electronic influence on, the reacting C-X bond; such effects on nickel oxidative addition have not been documented previously and were not observed in our comparator reactions presented herein involving palladium. Density functional theory modeling of such PhPAd-DalPhos/Ni-catalyzed C-N cross-couplings revealed the origins of competitive turnover of C-Br over C-Cl, and possible ways in which bulky para-alkyl substitution might discourage net electrophile uptake/turnover, leading to inversion of halide selectivity.
Collapse
Affiliation(s)
- Peter L Fox
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jeongin Choi
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
4
|
Patkar D, Deshmukh MM, Chopra D. Characterization of non-covalent contacts in mono- and di-halo substituted acetaldehydes: probing the substitution effects of electron donating and withdrawing groups. Phys Chem Chem Phys 2023; 25:2946-2962. [PMID: 36606453 DOI: 10.1039/d2cp05269e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the current work, a systematic evaluation of the different types of non-covalent interactions (NCIs) in acetaldehyde dimers, including dimers of mono-halo (XCH2CHO)2, di-halo (X2CHCHO)2 and tri-halo substituted (X3CCHO)2 acetaldehydes via the associated stabilization energy of these dimers has been performed. Furthermore, a topological analysis of the electron density based on the quantum theory of atoms in molecules (QTAIM) and non-covalent interaction reduced density gradient (NCI-RDG) isosurfaces has also been performed to evaluate the nature of these NCIs. The geometrical and electronic characteristics have been evaluated via the presence of different electron-donating groups (EDGs) and electron-withdrawing groups (EWGs) or substituents in dimers of these molecules, namely, XCH(Y)CHO and X2C(Y)CHO (wherein X = -F, -Cl, and -Br and Y = -SO3H, -CN, -NO2, -NH2, -CH3, -OCH3, and -SMe3). The C-H⋯O, C-H⋯X, X⋯X, X⋯O and C⋯O tetrel bonded contacts have been recognized to play an important role in the stabilization of the formed dimers. This study also establishes the fact that the overall stability of the dimeric assemblies is governed by the contributions from the mutual and complex interplay of a variety of interactions in the investigated dimers. Hence considerations based on strong H-bond donor-acceptor characteristics hold relevance for simple systems only, but slight alteration in the electronic environment can affect the overall stabilization energies of the system being investigated and the nature of the interactions that contribute towards the same.
Collapse
Affiliation(s)
- Deepak Patkar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), Sagar, 470003, India.
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), Sagar, 470003, India.
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
5
|
Brewster JT, Randall SD, Kowalski J, Cruz C, Shoemaker R, Tarlton E, Hinklin RJ. A Decarboxylative Cross-Coupling Platform To Access 2-Heteroaryl Azetidines: Building Blocks with Application in Medicinal Chemistry. Org Lett 2022; 24:9123-9129. [DOI: 10.1021/acs.orglett.2c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- James T. Brewster
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Samuel D. Randall
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - John Kowalski
- Drug Metabolism & Pharmacokinetics, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Cole Cruz
- Medicinal Chemistry Synthesis Development, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder Colorado 80301, United States
| | - Richard Shoemaker
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Eugene Tarlton
- Medicinal Chemistry Synthesis Development, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder Colorado 80301, United States
| | - Ronald J. Hinklin
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| |
Collapse
|
6
|
Chen M, Hsu M, Lin M, Lien Y, Chen K. Bis(imino)acenaphthene
N
‐Heterocyclic Carbene Palladium Complexes Bearing Tertiary Amines: Structural and Catalytic Studies on the Interaction between Soft Acid and Hard Base. ChemistrySelect 2022. [DOI: 10.1002/slct.202201404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ming‐Tsz Chen
- Department of Applied Chemistry Providence University 200, Sec. 7, Taiwan Boulevard, Shalu Dist. Taichung City 43301 Taiwan
| | - Mu Hsu
- Department of Applied Chemistry Providence University 200, Sec. 7, Taiwan Boulevard, Shalu Dist. Taichung City 43301 Taiwan
| | - Mei‐Chen Lin
- Department of Applied Chemistry Providence University 200, Sec. 7, Taiwan Boulevard, Shalu Dist. Taichung City 43301 Taiwan
| | - Yu‐Cheng Lien
- Department of Applied Chemistry Providence University 200, Sec. 7, Taiwan Boulevard, Shalu Dist. Taichung City 43301 Taiwan
| | - Kuan‐Wei Chen
- Department of Applied Chemistry Providence University 200, Sec. 7, Taiwan Boulevard, Shalu Dist. Taichung City 43301 Taiwan
| |
Collapse
|
7
|
Wolzak LA, de Zwart FJ, Oudsen JPH, Bartlett SA, de Bruin B, Reek JN, Tromp M, Korstanje TJ. Exogenous Ligand‐free Nickel‐catalyzed carboxylate O‐arylation Insight into NiI/NiIII cycles. ChemCatChem 2022. [DOI: 10.1002/cctc.202200547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lukas A. Wolzak
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| | - Felix J. de Zwart
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| | - Jean-Pierre H. Oudsen
- Technical University of Berlin: Technische Universitat Berlin Physical/Biophysical Chemistry GERMANY
| | | | - Bas de Bruin
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| | - Joost N.H. Reek
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| | - Moniek Tromp
- Rijksuniversiteit Groningen Faculty of Science and Engineering Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen NETHERLANDS
| | - Ties J. Korstanje
- University of Amsterdam: Universiteit van Amsterdam Van t Hoff Institute for Molecular Sciences NETHERLANDS
| |
Collapse
|
8
|
Guo X, Dang H, Wisniewski SR, Simmons EM. Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling Facilitated by a Weak Amine Base with Water as a Cosolvent. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuelei Guo
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Hester Dang
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Steven R. Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Eric M. Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
9
|
Cooper AK, Greaves ME, Donohoe W, Burton PM, Ronson TO, Kennedy AR, Nelson DJ. Inhibition of (dppf)nickel-catalysed Suzuki-Miyaura cross-coupling reactions by α-halo-N-heterocycles. Chem Sci 2021; 12:14074-14082. [PMID: 34760191 PMCID: PMC8565371 DOI: 10.1039/d1sc04582b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
A nickel/dppf catalyst system was found to successfully achieve the Suzuki-Miyaura cross-coupling reactions of 3- and 4-chloropyridine and of 6-chloroquinoline but not of 2-chloropyridine or of other α-halo-N-heterocycles. Further investigations revealed that chloropyridines undergo rapid oxidative addition to [Ni(COD)(dppf)] but that α-halo-N-heterocycles lead to the formation of stable dimeric nickel species that are catalytically inactive in Suzuki-Miyaura cross-coupling reactions. However, the corresponding Kumada-Tamao-Corriu reactions all proceed readily, which is attributed to more rapid transmetalation of Grignard reagents.
Collapse
Affiliation(s)
- Alasdair K Cooper
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
| | - Megan E Greaves
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| | - William Donohoe
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
| | - Paul M Burton
- Syngenta, Jealott's Hill International Research Centre Bracknell Berkshire RG426EY UK
| | - Thomas O Ronson
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| | - Alan R Kennedy
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
| | - David J Nelson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
| |
Collapse
|
10
|
Greaves ME, Ronson TO, Maseras F, Nelson DJ. The Effect of Added Ligands on the Reactions of [Ni(COD)(dppf)] with Alkyl Halides: Halide Abstraction May Be Reversible. Organometallics 2021; 40:1997-2007. [PMID: 34295014 PMCID: PMC8288641 DOI: 10.1021/acs.organomet.1c00280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 11/28/2022]
Abstract
![]()
The reactions of
dppf-nickel(0) with alkyl halides proceed via
three-coordinate nickel(0) intermediates of the form [Ni(dppf)(L)].
The effects of the identity of the added ligand (L) on catalyst speciation
and the rates of reactions of [Ni(COD)(dppf)] with alkyl halides have
been investigated using kinetic experiments and density functional
theory calculations. A series of monodentate ligands have been investigated
in attempts to identify trends in reactivity. Sterically bulky and
electron-donating ligands are found to decrease the reaction rate.
It was found that (i) the halide abstraction step is not always irreversible
and the subsequent recombination of a nickel(I) complex with an alkyl
halide can have a significant effect on the overall rate of the reaction
and (ii) some ligands lead to very stable [Ni(dppf)(L)2] species. The yields of prototypical (dppf)nickel-catalyzed Kumada
cross-coupling reactions of alkyl halides are significantly improved
by the addition of free ligands, which provides another important
variable to consider when optimizing nickel-catalyzed reactions of
alkyl halides.
Collapse
Affiliation(s)
- Megan E Greaves
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland.,Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Thomas O Ronson
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - David J Nelson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| |
Collapse
|
11
|
Bartoccini F, Regni A, Retini M, Piersanti G. Concise catalytic asymmetric synthesis of (R)-4-amino Uhle's ketone. Org Biomol Chem 2021; 19:2932-2940. [PMID: 33885552 DOI: 10.1039/d1ob00353d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A practical and asymmetric synthesis of (R)-4-amino-5-oxo-1,3,4,5-tetrahydrobenz[cd]indole, an enantiopure framework shared by most ergot alkaloids, was accomplished. Our method involves a Rh(i)-catalyzed 6-exo-trig intramolecular cyclization of an appropriate 4-pinacolboronic ester d-tryptophan aldehyde followed by the oxidation of the resulting secondary benzylic alcohol with a Cu(i)-ABNO catalyst and final deprotection under acidic conditions. This new procedure offers significant advantages over previous synthetic approaches, including brevity, mild reaction conditions, preservation of chiral integrity, and high overall yield and avoids the use of stoichiometric amounts of strongly basic and pyrophoric organometallic reagents.
Collapse
Affiliation(s)
- Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy.
| | | | | | | |
Collapse
|
12
|
Greaves ME, Johnson Humphrey ELB, Nelson DJ. Reactions of nickel(0) with organochlorides, organobromides, and organoiodides: mechanisms and structure/reactivity relationships. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00374g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reactions of nickel(0) complexes with phosphine, bipyridine-type, and N-heterocyclic carbene ligands with aryl, vinyl, and alkyl halides is reviewed.
Collapse
Affiliation(s)
- Megan E. Greaves
- WestCHEM Department of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
- Chemical Development
| | | | - David J. Nelson
- WestCHEM Department of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
13
|
Derhamine SA, Krachko T, Monteiro N, Pilet G, Schranck J, Tlili A, Amgoune A. Nickel‐Catalyzed Mono‐Selective α‐Arylation of Acetone with Aryl Chlorides and Phenol Derivatives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sary Abou Derhamine
- Univ Lyon Université Lyon 1 Institute of Chemistry and Biochemistry (ICBMS—UMR CNRS 5246) CNRS INSA CPE-Lyon 1 Rue victor Grignard 69622 Villeurbanne France
| | - Tetiana Krachko
- Univ Lyon Université Lyon 1 Institute of Chemistry and Biochemistry (ICBMS—UMR CNRS 5246) CNRS INSA CPE-Lyon 1 Rue victor Grignard 69622 Villeurbanne France
| | - Nuno Monteiro
- Univ Lyon Université Lyon 1 Institute of Chemistry and Biochemistry (ICBMS—UMR CNRS 5246) CNRS INSA CPE-Lyon 1 Rue victor Grignard 69622 Villeurbanne France
| | - Guillaume Pilet
- Univ Lyon Université Lyon 1 Laboratoire des Multimatériaux et Interfaces (LMI) UMR 5615 CNRS Bâtiment Chevreul Avenue du 11 novembre 1918 69622 Villeurbanne cedex France
| | - Johannes Schranck
- Solvias AG Römerpark 2 4303 Kaiseraugst Switzerland
- Current address: Johnson Matthey Life Science Technologies 2001 Nolte Drive West Deptford NJ 08066 USA
| | - Anis Tlili
- Univ Lyon Université Lyon 1 Institute of Chemistry and Biochemistry (ICBMS—UMR CNRS 5246) CNRS INSA CPE-Lyon 1 Rue victor Grignard 69622 Villeurbanne France
| | - Abderrahmane Amgoune
- Univ Lyon Université Lyon 1 Institute of Chemistry and Biochemistry (ICBMS—UMR CNRS 5246) CNRS INSA CPE-Lyon 1 Rue victor Grignard 69622 Villeurbanne France
- Institut Universitaire de France IUF 1 Rue Descartes 75231 Cedex 05 Paris France
| |
Collapse
|
14
|
Greaves M, Ronson TO, Lloyd-Jones GC, Maseras F, Sproules S, Nelson DJ. Unexpected Nickel Complex Speciation Unlocks Alternative Pathways for the Reactions of Alkyl Halides with dppf-Nickel(0). ACS Catal 2020; 10:10717-10725. [PMID: 32983589 PMCID: PMC7507766 DOI: 10.1021/acscatal.0c02514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Indexed: 12/02/2022]
Abstract
The mechanism of the reactions between dppf-Ni0 complexes and alkyl halides has been investigated using kinetic and mechanistic experiments and DFT calculations. The active species is [Ni(κ2-dppf)(κ1-dppf)], which undergoes a halide abstraction reaction with alkyl halides and rapidly captures the alkyl radical that is formed. The rates of the reactions of [Ni(COD)(dppf)] with alkyl halides and the yields of prototypical nickel-catalyzed Kumada cross-coupling reactions of alkyl halides are shown to be significantly improved by the addition of free dppf ligand.
Collapse
Affiliation(s)
- Megan
E. Greaves
- WestCHEM
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
- Chemical
Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Thomas O. Ronson
- Chemical
Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Guy C. Lloyd-Jones
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland
| | - Feliu Maseras
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Stephen Sproules
- WestCHEM
School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 9QQ, Scotland
| | - David J. Nelson
- WestCHEM
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| |
Collapse
|
15
|
Nattmann L, Cornella J. Ni(4-tBustb)3: A Robust 16-Electron Ni(0) Olefin Complex for Catalysis. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lukas Nattmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
16
|
Dindarloo Inaloo I, Esmaeilpour M, Majnooni S, Reza Oveisi A. Nickel‐Catalyzed Synthesis of
N
‐(Hetero)aryl Carbamates from Cyanate Salts and Phenols Activated with Cyanuric Chloride. ChemCatChem 2020. [DOI: 10.1002/cctc.202000876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Mohsen Esmaeilpour
- Chemistry Department College of Sciences Shiraz University Shiraz 71946 84795 Iran
- Chemistry and Process Engineering Department Niroo Research Institute Tehran 1468617151 Iran
| | - Sahar Majnooni
- Chemistry Department University of Isfahan Isfahan 81746-73441 Iran
| | - Ali Reza Oveisi
- Department of Chemistry Faculty of Sciences University of Zabol Zabol 98615-538 Iran
| |
Collapse
|
17
|
Derhamine SA, Krachko T, Monteiro N, Pilet G, Schranck J, Tlili A, Amgoune A. Nickel-Catalyzed Mono-Selective α-Arylation of Acetone with Aryl Chlorides and Phenol Derivatives. Angew Chem Int Ed Engl 2020; 59:18948-18953. [PMID: 32667110 DOI: 10.1002/anie.202006826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/07/2020] [Indexed: 12/26/2022]
Abstract
The challenging nickel-catalyzed mono-α-arylation of acetone with aryl chlorides, pivalates, and carbamates has been achieved for the first time. A nickel/Josiphos-based catalytic system is shown to feature unique catalytic behavior, allowing the highly selective formation of the desired mono-α-arylated acetone. The developed methodology was applied to a variety of (hetero)aryl chlorides including biologically relevant derivatives. The methodology has been extended to the unprecedented coupling of acetone with phenol derivatives. Mechanistic studies allowed the isolation and characterization of key Ni0 and NiII catalytic intermediates. The Josiphos ligand is shown to play a key role in the stabilization of NiII intermediates to allow a Ni0 /NiII catalytic pathway. Mechanistic understanding was then leveraged to improve the protocol using an air-stable NiII pre-catalyst.
Collapse
Affiliation(s)
- Sary Abou Derhamine
- Univ Lyon, Université Lyon 1, Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), CNRS, INSA, CPE-Lyon, 1 Rue victor Grignard, 69622, Villeurbanne, France
| | - Tetiana Krachko
- Univ Lyon, Université Lyon 1, Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), CNRS, INSA, CPE-Lyon, 1 Rue victor Grignard, 69622, Villeurbanne, France
| | - Nuno Monteiro
- Univ Lyon, Université Lyon 1, Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), CNRS, INSA, CPE-Lyon, 1 Rue victor Grignard, 69622, Villeurbanne, France
| | - Guillaume Pilet
- Univ Lyon, Université Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI), UMR 5615, CNRS, Bâtiment Chevreul, Avenue du 11 novembre 1918, 69622, Villeurbanne cedex, France
| | - Johannes Schranck
- Solvias AG, Römerpark 2, 4303, Kaiseraugst, Switzerland.,Current address: Johnson Matthey, Life Science Technologies, 2001 Nolte Drive, West Deptford, NJ, 08066, USA
| | - Anis Tlili
- Univ Lyon, Université Lyon 1, Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), CNRS, INSA, CPE-Lyon, 1 Rue victor Grignard, 69622, Villeurbanne, France
| | - Abderrahmane Amgoune
- Univ Lyon, Université Lyon 1, Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), CNRS, INSA, CPE-Lyon, 1 Rue victor Grignard, 69622, Villeurbanne, France.,Institut Universitaire de France IUF, 1 Rue Descartes, 75231 Cedex 05, Paris, France
| |
Collapse
|
18
|
Ren R, Bi S, Wang L, Zhao W, Wei D, Li T, Xu W, Liu M, Wu Y. Terpyridine-based Pd(ii)/Ni(ii) organometallic framework nano-sheets supported on graphene oxide-investigating the fabrication, tuning of catalytic properties and synergetic effects. RSC Adv 2020; 10:23080-23090. [PMID: 35520341 PMCID: PMC9054763 DOI: 10.1039/d0ra02195d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 11/24/2022] Open
Abstract
Tailoring the structures of catalysts and the arrangement of organic bimetallic catalysts are essential in both fundamental research and applications. However, they still impose enormous challenges such as size and active species distribution, ordered uniformity, and controllable composition, which are critical in determining their specific activities and efficiency. Herein, a novel terpyridine-based hetero-bimetallic Ni/Pd nanosheet supported on graphene oxide (denoted as GO@Tpy-Ni/Pd) was fabricated, which exhibited higher catalytic activity, substrate applicability and recyclability for the Suzuki coupling reaction under mild conditions. The catalytic mechanism was heterogeneous catalysis at the interface and the synergetic effect between Pd and Ni resulted in a little Ni(0)/Pd(0) cluster including Pd(ii)/Ni(ii) as a whole being formed through electron transfer on the catalytic surface. This phenomenon could be interpreted as the nanoscale clusters of Ni/Pd being the real active centre stabilized by the ligand and GO and the synergetic effect. The absorption and desorption of different substrates and products on Ni/Pd clusters, as calculated by DFT, was proved to be another key factor. The synergistic effect between Ni and Pd atom was the crucial factor for enhancing catalytic activity.![]()
Collapse
Affiliation(s)
- Ruirui Ren
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Sa Bi
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Linhong Wang
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Tiesheng Li
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Wenjian Xu
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Minghua Liu
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 P. R. China.,Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| | - Yangjie Wu
- College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
19
|
Inagaki S, Yamamoto T, Higashihara T. Direct Synthesis of Chain-end-functionalized Poly(3-hexylthiophene) without Protecting Groups Using a Zincate Complex. Macromol Rapid Commun 2020; 41:e2000148. [PMID: 32364289 DOI: 10.1002/marc.202000148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 11/09/2022]
Abstract
Chain-end-functionalized poly(3-hexylthiophene)s (P3HTs) with benzyl alcohol (─PhCH2 OH), phenol (─PhOH), and benzoic acid (─PhCOOH) groups are directly synthesized based on the Negishi catalyst-transfer polycondensation method utilizing the zincate complex of t Bu4 ZnLi2 . In this system, neither protection nor deprotection steps are required, and also providing a living polymerization system to control the molecular weight while maintaining a low molar mass dispersity (ÐM ) of the obtained P3HT derivatives. Indeed, the chain-end-functionalized P3HTs can be synthesized along with controlled number-average molecular weights (Mn = 5100-20 000), low ÐM (1.06-1.14), and high chain-end functionality (Fn = 46-86%). The Fn values for the alcohol and phenol groups are found to be high (86% for ─PhCH2 OH and 71% for ─PhOH based on 1 H NMR, respectively), as also confirmed by matrix-assisted laser desorption/ionization time of flight mass spectroscopy. The easily synthesizable chain-end-functionalized P3HTs will be applicable for the facile synthesis of block and branched polymers containing P3HT as well as its related semiconducting polymer segments.
Collapse
Affiliation(s)
- Shin Inagaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, 992-8510, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, 992-8510, Japan
| |
Collapse
|