1
|
Kamble S, Chatterjee DR, Arjun KS, Kapoor S, Jadhav M, Gupta S, Chowdhury MG, Das R, Kombe PR, Borah S, Shard A. Synthesis, characterization, and microbiological evaluation of new triazolopyrimidine-based ferrocenes as potent antimicrobial prospects. J Inorg Biochem 2025; 270:112942. [PMID: 40339268 DOI: 10.1016/j.jinorgbio.2025.112942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Antimicrobial metallodrugs have gained considerable attention for their potent inhibitory activity and clinical success, driving the development of novel metallodrug candidates. These efforts have uncovered new bioactive scaffolds and mechanisms of action. However, the global challenge of antimicrobial resistance (AMR), fueled by the genetic adaptability of microbes and resistance to nearly all antibiotic classes, highlights the urgent need for innovative antibiotics. In this study, we expand the repertoire of metallodrugs by designing, synthesizing, and biologically evaluating triazolopyrimidine-based ferrocenes as antimicrobial agents. These compounds demonstrated broad-spectrum activity against both bacterial and fungal pathogens. Advanced characterization techniques, including NMR, HRMS, FE-SEM, and SCXRD, confirmed their structural integrity and properties. Notably, the ferrocenes exhibited potent antifungal activity against Candida species, comparable to fluconazole, and were effective against Escherichia coli and Staphylococcus aureus. Our findings reveal a new class of metallodrugs with significant antimicrobial potential, offering promising avenues to combat AMR in future.
Collapse
Affiliation(s)
- Sayali Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kakad Shivani Arjun
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Madhav Jadhav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Shivam Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pranav Ravindra Kombe
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Sapan Borah
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 382355, India.
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
2
|
Rezende WS, Neto AM, Corbi JJ, Corbi PP, de Paiva REF, Bergamini FRG. Coordination Compounds as Antivirals against Neglected Tropical Diseases. ChemMedChem 2025; 20:e202400799. [PMID: 39591549 DOI: 10.1002/cmdc.202400799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
Neglected tropical viral diseases are a burden to social and economic welfare being responsible for higher pathogen-related mortality rates and chronic debilitating patient conditions. Climatic changes have widened up the infectibility ratio of such diseases, with autochthonous transmission in formerly temperate-to-cold environments. The slow-paced development of potential vaccines followed by the inexistence of antiviral drugs for such diseases considerably worsens the situation. Coordination compounds are a class of molecules that have been extensively explored as antiviral drugs for viruses such as poliovirus, HIV and, more recently, SARS-CoV-2, figuring as potential molecules to be explored and capitalized as antivirals against neglected viral strains. In this review the current efforts from the inorganic medicinal chemistry to address viral neglected tropical diseases, with emphasis to coordination compounds, is presented. Since many of neglected viruses are also arthropod-borne viruses, relying on a vector for transmission, coordination entities able to mitigate vectors are also presented as a parallel strategy to prevent and control such diseases.
Collapse
Affiliation(s)
- Wallace S Rezende
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| | - Antonio Marçal Neto
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| | - Juliano J Corbi
- Department of Hydraulics and Sanitation, University of São Paulo-USP, 13566-590, São Carlos, São Paulo, Brazil
| | - Pedro P Corbi
- Institute of Chemistry, University of Campinas-UNICAMP, PO Box 6154, Campinas, São Paulo, 13083-970, Brazil
| | - Raphael E F de Paiva
- Donostia International Physics Center-DIPC, Paseo Manuel de Lardizabal, 4 Donostia, Euskadi, Gipuzkoa, 20018, Spain
| | - Fernando R G Bergamini
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
3
|
Steinbrueck A, Reback ML, Rumancev C, Siegmund D, Garrevoet J, Falkenberg G, Rosenhahn A, Prokop A, Metzler‐Nolte N. Quinizarin Gold(I) N-Heterocyclic Carbene Complexes with Synergistic Activity Against Anthracycline-Resistant Leukaemia Cells: Synthesis and Biological Activity Studies. Chemistry 2025; 31:e202404147. [PMID: 39757433 PMCID: PMC11840658 DOI: 10.1002/chem.202404147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Indexed: 01/07/2025]
Abstract
New, asymmetric quinizarin-Au(I)-NHC complexes were designed, isolated, and fully characterised including by single crystal X-ray crystallography. Cytotoxicity studies showed effective growth inhibition in HeLa cervical cancer cells with IC50 values ranging from 2.4 μM to 5.3 μM. The successful cellular uptake was evidenced by X-ray fluorescence imaging on cryo-preserved whole HeLa cells and the sub-cellular localisation was monitored by live-cell fluorescence microscopy. Notably, complex 2 b showed circumvention of acquired anthracycline resistance in K562 leukaemia cells as well as synergistic activity with doxorubicin against both wild-type and anthracycline-resistant Nalm-6 leukaemia cells. Interestingly, sub-cellular localisation towards mitochondria proved to be more important than the compounds' overall cytotoxicity for potent antiproliferative activity and to achieve effective resistance circumvention.
Collapse
Affiliation(s)
- Axel Steinbrueck
- Faculty of Chemistry and BiochemistryInorganic Chemistry I – Bioinorganic ChemistryRuhr University Bochum, Universitaetsstrasse 15044801BochumGermany
| | - Matthew L. Reback
- Faculty of Chemistry and BiochemistryInorganic Chemistry I – Bioinorganic ChemistryRuhr University Bochum, Universitaetsstrasse 15044801BochumGermany
| | - Christoph Rumancev
- Faculty of Chemistry and BiochemistryAnalytical Chemistry – BiointerfacesRuhr University Bochum, Universitaetsstrasse 15044801BochumGermany
| | - Daniel Siegmund
- Faculty of Chemistry and BiochemistryInorganic Chemistry I – Bioinorganic ChemistryRuhr University Bochum, Universitaetsstrasse 15044801BochumGermany
- Division EnergyFraunhofer UMSICHT, Osterfelder Str. 346047OberhausenGermany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, 22607HamburgGermany
| | | | - Axel Rosenhahn
- Faculty of Chemistry and BiochemistryAnalytical Chemistry – BiointerfacesRuhr University Bochum, Universitaetsstrasse 15044801BochumGermany
| | - Aram Prokop
- Department of Pediatric Hematology/OncologyHelios Clinics SchwerinWismarsche Straße 393–39719055SchwerinGermany
- Department of Human Medicine, MSH Medical SchoolHamburg, University of Applied Sciences and Medical UniversityAm Kaiserkai 120457HamburgGermany
| | - Nils Metzler‐Nolte
- Faculty of Chemistry and BiochemistryInorganic Chemistry I – Bioinorganic ChemistryRuhr University Bochum, Universitaetsstrasse 15044801BochumGermany
| |
Collapse
|
4
|
Vitali V, Zineddu S, Messori L. Metal compounds as antimicrobial agents: 'smart' approaches for discovering new effective treatments. RSC Adv 2025; 15:748-753. [PMID: 39802470 PMCID: PMC11712697 DOI: 10.1039/d4ra07449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
Due to their considerable chemical diversity, metal compounds are attracting increasing and renewed attention from the scientific and medical communities as potential antimicrobial agents to combat the growing problem of antibiotic resistance. The development of metal compounds as antimicrobial agents typically follows classical drug discovery procedures and suffers from the same problems; indeed, these procedures can be very expensive and time-consuming, and carry an intrinsically high risk of failure. Here, we show how some established drug discovery approaches can be conveniently and successfully applied to antimicrobial metal compounds to provide some shortcuts for faster clinical translation of new treatments. Specifically, we refer to (i) drug repurposing, (ii) drug combination and (iii) drug targeting by bioconjugation; some relevant examples will be illustrated.
Collapse
Affiliation(s)
- Valentina Vitali
- Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino 50019 Italy
| | - Stefano Zineddu
- Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino 50019 Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino 50019 Italy
| |
Collapse
|
5
|
Pérez-Ramos P, Gabasa Y, Cornielle E, Rodríguez-Solla H, Soto SM, Soengas RG. In the search for new gold metalloantibiotics: In vitro evaluation of Au(III) (C^S)-cyclometallated complexes. J Inorg Biochem 2025; 262:112735. [PMID: 39278055 DOI: 10.1016/j.jinorgbio.2024.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
A series of (C^S)-cyclometallated Au(III) cationic complexes of general formula [Au(dppta)(dtc)]+, [Au(dppta)(azmtd)]+ and [Au(dppta)(azc)Cl]+ (dppta = N,N-diisopropyl-P,P-diphenylphosphinothioic amide-κ2C,S; dtc = dithiocarbamate-κ2S,S'; azc = azolium-2-dithiocarboxylate-κ1S; azmdt = azol(in)ium-2-(methoxy)methanedithiol-κ2S,S') were synthetized and tested against a panel of bacterial strains belonging to different Gram-positive and Gram-negative species of the ESKAPE group of pathogens. Among the tested compounds, complex 4c had the higher Therapeutic Index (TI) against multidrug resistant strains of S. aureus, S. epidermidis and A. baumannii, showing a more favourable cytotoxicity profile than the reference gold metalloantibiotic Auranofin. © 2024 xxxxxxxx. Hosting by Elsevier B.V. All rights reserved.
Collapse
Affiliation(s)
- Paula Pérez-Ramos
- Department of Organic and Inorganic Chemistry, University of Oviedo, Instituto Universitario de Química Organometálica Enrique Moles, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Enmanuel Cornielle
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Humberto Rodríguez-Solla
- Department of Organic and Inorganic Chemistry, University of Oviedo, Instituto Universitario de Química Organometálica Enrique Moles, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Sara M Soto
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Raquel G Soengas
- Department of Organic and Inorganic Chemistry, University of Oviedo, Instituto Universitario de Química Organometálica Enrique Moles, C/ Julián Clavería 8, 33006 Oviedo, Spain.
| |
Collapse
|
6
|
Fulgencio S, Scaccaglia M, Frei A. Exploration of Rhenium Bisquinoline Tricarbonyl Complexes for their Antibacterial Properties. Chembiochem 2024; 25:e202400435. [PMID: 38785033 DOI: 10.1002/cbic.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Metal complexes have emerged as a promising source for novel classes of antibacterial agents to combat the rise of antimicrobial resistance around the world. In the exploration of the transition metal chemical space for novel metalloantibiotics, the rhenium tricarbonyl moiety has been identified as a promising scaffold. Here we have prepared eight novel rhenium bisquinoline tricarbonyl complexes and explored their antibacterial properties. Significant activity against both Gram-positive and Gram-negative bacteria was observed. However, all complexes also showed significant toxicity against human cells, putting into question the prospects of this specific rhenium compound class as metalloantibiotics. To better understand their biological effects, we conduct the first mode of action studies on rhenium bisquinoline complexes and show that they are able to form pores through bacterial membranes. Their straight-forward synthesis and tuneability suggests that further optimisation of this compound class could lead to compounds with enhanced bacterial specificity.
Collapse
Affiliation(s)
- Sofia Fulgencio
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Mirco Scaccaglia
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Angelo Frei
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
- Department of Chemistry, University of York, York, YO10 5DD, U.K
| |
Collapse
|
7
|
Jakopec S, Hamzic LF, Bočkor L, Car I, Perić B, Kirin SI, Sedić M, Raić-Malić S. Coumarin-modified ruthenium complexes: Synthesis, characterization, and antiproliferative activity against human cancer cells. Arch Pharm (Weinheim) 2024; 357:e2400271. [PMID: 38864840 DOI: 10.1002/ardp.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
Among ruthenium complexes studied as anticancer metallodrugs, NKP-1339, NAMI-A, RM175, and RAPTA-C have already entered clinical trials due to their potent antitumor activity demonstrated in preclinical studies and reduced toxicity in comparison with platinum drugs. Considering the advantages of ruthenium-based anticancer drugs and the cytostatic activity of organometallic complexes with triazole- and coumarin-derived ligands, we set out to synthesize Ru(II) complexes of coumarin-1,2,3,-triazole hybrids (L) with the general formula [Ru(L)(p-cymene)(Cl)]ClO4. The molecular structure of the complex [Ru(2a)(p-cymene)(Cl)]ClO4 (2aRu) was determined by single-crystal X-ray diffraction, which confirmed the coordination of the ligand to the central ruthenium(II) cation by bidentate mode of coordination. Coordination with Ru(II) resulted in the enhancement of cytostatic activity in HepG2 hepatocellular carcinoma cells and PANC-1 pancreatic cancer cells. Coumarin derivative 2a positively regulated the expression and activity of c-Myc and NPM1 in RKO colon carcinoma cells, while the Ru(II) half-sandwich complex 2cRu induced downregulation of AKT and ERK signaling in PANC-1 cells concomitant with reduced intracellular levels of reactive oxygen species. Altogether, our findings indicated that coumarin-modified half-sandwich Ru(II) complexes held potential as anticancer agents against gastrointestinal malignancies.
Collapse
Affiliation(s)
- Silvio Jakopec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Lejla F Hamzic
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Luka Bočkor
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Iris Car
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Berislav Perić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Srećko I Kirin
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mirela Sedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Pantelic L, Skaro Bogojevic S, Andrejević TP, Pantović BV, Marković VR, Ašanin DP, Milanović Ž, Ilic-Tomic T, Nikodinovic-Runic J, Glišić BĐ, Lazic J. Copper(II) and Zinc(II) Complexes with Bacterial Prodigiosin Are Targeting Site III of Bovine Serum Albumin and Acting as DNA Minor Groove Binders. Int J Mol Sci 2024; 25:8395. [PMID: 39125963 PMCID: PMC11313072 DOI: 10.3390/ijms25158395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The negative environmental and social impacts of food waste accumulation can be mitigated by utilizing bio-refineries' approach where food waste is revalorized into high-value products, such as prodigiosin (PG), using microbial bioprocesses. The diverse biological activities of PG position it as a promising compound, but its high production cost and promiscuous bioactivity hinder its wide application. Metal ions can modulate the electronic properties of organic molecules, leading to novel mechanisms of action and increased target potency, while metal complex formation can improve the stability, solubility and bioavailability of the parent compound. The objectives of this study were optimizing PG production through bacterial fermentation using food waste, allowing good quantities of the pure natural product for further synthesizing and evaluating copper(II) and zinc(II) complexes with it. Their antimicrobial and anticancer activities were assessed, and their binding affinity toward biologically important molecules, bovine serum albumin (BSA) and DNA was investigated by fluorescence emission spectroscopy and molecular docking. The yield of 83.1 mg/L of pure PG was obtained when processed meat waste at 18 g/L was utilized as the sole fermentation substrate. The obtained complexes CuPG and ZnPG showed high binding affinity towards target site III of BSA, and molecular docking simulations highlighted the affinity of the compounds for DNA minor grooves.
Collapse
Affiliation(s)
- Lena Pantelic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| | - Tina P. Andrejević
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (T.P.A.); (B.V.P.); (V.R.M.)
| | - Bojana V. Pantović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (T.P.A.); (B.V.P.); (V.R.M.)
| | - Violeta R. Marković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (T.P.A.); (B.V.P.); (V.R.M.)
| | - Darko P. Ašanin
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.P.A.); (Ž.M.)
| | - Žiko Milanović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.P.A.); (Ž.M.)
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| | - Biljana Đ. Glišić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (T.P.A.); (B.V.P.); (V.R.M.)
| | - Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| |
Collapse
|
9
|
Hashimoto N, Taguchi J, Kasagi T, Arichi N, Inuki S, Ohno H. Construction of the Akuammiline Alkaloid Core Structure via Stereoselective E-Ring Formation. J Org Chem 2024; 89:10388-10392. [PMID: 38952036 DOI: 10.1021/acs.joc.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Construction of the core structure of akuammiline alkaloids with three-dimensional cage-like structures for their diversity-oriented synthesis was investigated. Extensive exploration centered around the introduction of nitrogen functional groups and construction of the E-ring in an intramolecular or intermolecular manner revealed that a Claisen rearrangement approach involving intramolecular amination provided a common precursor, potentially facilitating divergent access to various types of akuammiline alkaloids.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junichi Taguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Kasagi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Stanković M, Skaro Bogojevic S, Kljun J, Milanović Ž, Stevanović NL, Lazic J, Vojnovic S, Turel I, Djuran MI, Glišić BĐ. Silver(I) complexes with voriconazole as promising anti-Candida agents. J Inorg Biochem 2024; 256:112572. [PMID: 38691971 DOI: 10.1016/j.jinorgbio.2024.112572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV-Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1-3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02-1.05 μM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a - 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.
Collapse
Affiliation(s)
- Mia Stanković
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Sanja Skaro Bogojevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Jakob Kljun
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Žiko Milanović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena Lj Stevanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Jelena Lazic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sandra Vojnovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Iztok Turel
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
11
|
Ruan ML, Ni WX, Chu JCH, Lam TL, Law KC, Zhang Y, Yang G, He Y, Zhang C, Fung YME, Liu T, Huang T, Lok CN, Chan SLF, Che CM. Iridium(III) carbene complexes as potent girdin inhibitors against metastatic cancers. Proc Natl Acad Sci U S A 2024; 121:e2316615121. [PMID: 38861602 PMCID: PMC11194514 DOI: 10.1073/pnas.2316615121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Many cancer-driving protein targets remain undruggable due to a lack of binding molecular scaffolds. In this regard, octahedral metal complexes with unique and versatile three-dimensional structures have rarely been explored as inhibitors of undruggable protein targets. Here, we describe antitumor iridium(III) pyridinium-N-heterocyclic carbene complex 1a, which profoundly reduces the viability of lung and breast cancer cells as well as cancer patient-derived organoids at low micromolar concentrations. Compound 1a effectively inhibits the growth of non-small-cell lung cancer and triple-negative breast cancer xenograft tumors, impedes the metastatic spread of breast cancer cells, and can be modified into an antibody-drug conjugate payload to achieve precise tumor delivery in mice. Identified by thermal proteome profiling, an important molecular target of 1a in cellulo is Girdin, a multifunctional adaptor protein that is overexpressed in cancer cells and unequivocally serves as a signaling hub for multiple pivotal oncogenic pathways. However, specific small-molecule inhibitors of Girdin have not yet been developed. Notably, 1a exhibits high binding affinity to Girdin with a Kd of 1.3 μM and targets the Girdin-linked EGFR/AKT/mTOR/STAT3 cancer-driving pathway, inhibiting cancer cell proliferation and metastatic activity. Our study reveals a potent Girdin-targeting anticancer compound and demonstrates that octahedral metal complexes constitute an untapped library of small-molecule inhibitors that can fit into the ligand-binding pockets of key oncoproteins.
Collapse
Affiliation(s)
- Mei-Ling Ruan
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou515041, Guangdong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou515041, Guangdong, China
| | - Jacky C. H. Chu
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tsz-Lung Lam
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok-Chung Law
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yiwei Zhang
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guanya Yang
- AI And Life Sciences Institute (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Ying He
- AI And Life Sciences Institute (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Chunlei Zhang
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou515041, Guangdong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou515041, Guangdong, China
| | - Tao Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou515041, Guangdong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou515041, Guangdong, China
| | - Chun-Nam Lok
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sharon Lai-Fung Chan
- Department of Applied Biology and Chemical Biology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chi-Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
12
|
Mbaba M, Golding TM, Omondi RO, Mohunlal R, Egan TJ, Reader J, Birkholtz LM, Smith GS. Exploring the modulatory influence on the antimalarial activity of amodiaquine using scaffold hybridisation with ferrocene integration. Eur J Med Chem 2024; 271:116429. [PMID: 38663284 DOI: 10.1016/j.ejmech.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Amodiaquine (AQ) is a potent antimalarial drug used in combination with artesunate as part of artemisinin-based combination therapies (ACTs) for malarial treatment. Due to the rising emergence of resistant malaria parasites, some of which have been reported for ACT, the usefulness of AQ as an efficacious therapeutic drug is threatened. Employing the organometallic hybridisation approach, which has been shown to restore the antimalarial activity of chloroquine in the form of an organometallic hybrid clinical candidate ferroquine (FQ), the present study utilises this strategy to modulate the biological performance of AQ by incorporating ferrocene. Presently, we have conceptualised ferrocenyl AQ derivatives and have developed facile, practical routes for their synthesis. A tailored library of AQ derivatives was assembled and their antimalarial activity evaluated against chemosensitive (NF54) and multidrug-resistant (K1) strains of the malaria parasite, Plasmodium falciparum. The compounds generally showed enhanced or comparable activities to those of the reference clinical drugs chloroquine and AQ, against both strains, with higher selectivity for the sensitive phenotype, mostly in the double-digit nanomolar IC50 range. Moreover, representative compounds from this series show the potential to block malaria transmission by inhibiting the growth of stage II/III and V gametocytes in vitro. Preliminary mechanistic insights also revealed hemozoin inhibition as a potential mode of action.
Collapse
Affiliation(s)
- Mziyanda Mbaba
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Taryn M Golding
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Reinner O Omondi
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Roxanne Mohunlal
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Gregory S Smith
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
13
|
Kench T, Rahardjo A, Terrones GG, Bellamkonda A, Maher TE, Storch M, Kulik HJ, Vilar R. A Semi-Automated, High-Throughput Approach for the Synthesis and Identification of Highly Photo-Cytotoxic Iridium Complexes. Angew Chem Int Ed Engl 2024; 63:e202401808. [PMID: 38404222 DOI: 10.1002/anie.202401808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The discovery of new compounds with pharmacological properties is usually a lengthy, laborious and expensive process. Thus, there is increasing interest in developing workflows that allow for the rapid synthesis and evaluation of libraries of compounds with the aim of identifying leads for further drug development. Herein, we apply combinatorial synthesis to build a library of 90 iridium(III) complexes (81 of which are new) over two synthesise-and-test cycles, with the aim of identifying potential agents for photodynamic therapy. We demonstrate the power of this approach by identifying highly active complexes that are well-tolerated in the dark but display very low nM phototoxicity against cancer cells. To build a detailed structure-activity relationship for this class of compounds we have used density functional theory (DFT) calculations to determine some key electronic parameters and study correlations with the experimental data. Finally, we present an optimised semi-automated synthesise-and-test protocol to obtain multiplex data within 72 hours.
Collapse
Affiliation(s)
- Timothy Kench
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Arielle Rahardjo
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Gianmarco G Terrones
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
| | | | - Thomas E Maher
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
- Institute of Chemical Biology, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Marko Storch
- Department of Infectious Disease, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
- London Biofoundry, Imperial College Translation and Innovation Hub, W12 0BZ, London, UK
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
- Institute of Chemical Biology, Imperial College London, White City Campus, W12 0BZ, London, UK
| |
Collapse
|
14
|
Casini A, Pöthig A. Metals in Cancer Research: Beyond Platinum Metallodrugs. ACS CENTRAL SCIENCE 2024; 10:242-250. [PMID: 38435529 PMCID: PMC10906246 DOI: 10.1021/acscentsci.3c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 03/05/2024]
Abstract
The discovery of the medicinal properties of platinum complexes has fueled the design and synthesis of new anticancer metallodrugs endowed with unique modes of action (MoA). Among the various families of experimental antiproliferative agents, organometallics have emerged as ideal platforms to control the compounds' reactivity and stability in a physiological environment. This is advantageous to efficiently deliver novel prodrug activation strategies, as well as to design metallodrugs acting only via noncovalent interactions with their pharmacological targets. Noteworthy, another justification for the advance of organometallic compounds for therapy stems from their ability to catalyze bioorthogonal reactions in cancer cells. When not yet ideal as drug leads, such compounds can be used as selective chemical tools that benefit from the advantages of catalytic amplification to either label the target of interest (e.g., proteins) or boost the output of biochemical signals. Examples of metallodrugs for the so-called "catalysis in cells" are considered in this Outlook together with other organometallic drug candidates. The selected case studies are discussed in the frame of more general challenges in the field of medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Angela Casini
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry,
School of Natural Sciences, Technical University
of Munich, Lichtenbergstraße 4, D-85748 Garching b. München, Germany
| | - Alexander Pöthig
- Catalysis
Research Center & Department of Chemistry, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, D-85748 Garching b. München, Germany
| |
Collapse
|
15
|
Wang Q, Fu X, Yan Y, Liu T, Xie Y, Song X, Zhou Y, Xu M, Wang P, Fu P, Huang J, Huang N. Structure-Based Identification of Organoruthenium Compounds as Nanomolar Antagonists of Cannabinoid Receptors. J Chem Inf Model 2024; 64:761-774. [PMID: 38215394 DOI: 10.1021/acs.jcim.3c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Metal complexes exhibit a diverse range of coordination geometries, representing novel privileged scaffolds with convenient click types of preparation inaccessible for typical carbon-centered organic compounds. Herein, we explored the opportunity to identify biologically active organometallic complexes by reverse docking of a rigid, minimum-size octahedral organoruthenium scaffold against thousands of protein-binding pockets. Interestingly, cannabinoid receptor type 1 (CB1) was identified based on the docking scores and the degree of overlap between the docked organoruthenium scaffold and the hydrophobic scaffold of the cocrystallized ligand. Further structure-based optimization led to the discovery of organoruthenium complexes with nanomolar binding affinities and high selectivity toward CB2. Our work indicates that octahedral organoruthenium scaffolds may be advantageous for targeting the large and hydrophobic binding pockets and that the reverse docking approach may facilitate the discovery of novel privileged scaffolds, such as organometallic complexes, for exploring chemical space in lead discovery.
Collapse
Affiliation(s)
- Qing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xuegang Fu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yuting Yan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yuting Xie
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiaoqing Song
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yu Zhou
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Min Xu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Ping Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Peng Fu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Niu Huang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
16
|
Stanković M, Kljun J, Stevanović NL, Lazic J, Skaro Bogojevic S, Vojnovic S, Zlatar M, Nikodinovic-Runic J, Turel I, Djuran MI, Glišić BĐ. Silver(I) complexes containing antifungal azoles: significant improvement of the anti- Candida potential of the azole drug after its coordination to the silver(I) ion. Dalton Trans 2024; 53:2218-2230. [PMID: 38193719 DOI: 10.1039/d3dt03010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Inspired by the emergence of resistance to currently available antifungal therapy and by the great potential of metal complexes for the treatment of various diseases, we synthesized three new silver(I) complexes containing clinically used antifungal azoles as ligands, [Ag(ecz)2]SbF6 (1, ecz is econazole), {[Ag(vcz)2]SbF6}n (2, vcz is voriconazole), and [Ag(ctz)2]SbF6 (3, ctz is clotrimazole), and investigated their antimicrobial properties. The synthesized complexes were characterized by mass spectrometry, IR, UV-vis and 1H NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction analysis. In the mononuclear complexes 1 and 3 with ecz and ctz, respectively, the silver(I) ion has the expected linear geometry, in which the azoles are monodentately coordinated to this metal center through the N3 imidazole nitrogen atom. In contrast, the vcz-containing complex 2 has a polymeric structure in the solid state in which the silver(I) ions are coordinated by four nitrogen atoms in a distorted tetrahedral geometry. DFT calculations were done to predict the most favorable structures of the studied complexes in DMSO solution. All the studied silver(I) complexes have shown excellent antifungal and good to moderate antibacterial activities with minimal inhibitory concentration (MIC) values in the ranges of 0.01-27.1 and 2.61-47.9 μM on the selected panel of fungi and bacteria, respectively. Importantly, the complexes 1-3 have exhibited a significantly improved antifungal activity compared to the free azoles, with the most pronounced effect observed in the case of complex 2 compared to the parent vcz against Candida glabrata with an increase of activity by five orders of magnitude. Moreover, the silver(I)-azole complexes 2 and 3 significantly inhibited the formation of C. albicans hyphae and biofilms at the subinhibitory concentration of 50% MIC. To investigate the impact of the complex 3 more thoroughly on Candida pathogenesis, its effect on the adherence of C. albicans to A549 cells (human adenocarcinoma alveolar basal epithelial cells), as an initial step of the invasion of host cells, was studied.
Collapse
Affiliation(s)
- Mia Stanković
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jakob Kljun
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Nevena Lj Stevanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jelena Lazic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sanja Skaro Bogojevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sandra Vojnovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Matija Zlatar
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Iztok Turel
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
17
|
Weng C, Tan YLK, Koh WG, Ang WH. Harnessing Transition Metal Scaffolds for Targeted Antibacterial Therapy. Angew Chem Int Ed Engl 2023; 62:e202310040. [PMID: 37621226 DOI: 10.1002/anie.202310040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Antimicrobial resistance, caused by persistent adaptation and growing resistance of pathogenic bacteria to overprescribed antibiotics, poses one of the most serious and urgent threats to global public health. The limited pipeline of experimental antibiotics in development further exacerbates this looming crisis and new drugs with alternative modes of action are needed to tackle evolving pathogenic adaptation. Transition metal complexes can replenish this diminishing stockpile of drug candidates by providing compounds with unique properties that are not easily accessible using pure organic scaffolds. We spotlight four emerging strategies to harness these unique properties to develop new targeted antibacterial agents.
Collapse
Affiliation(s)
- Cheng Weng
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | | | - Wayne Gareth Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
18
|
Li X, Wang Z, Hao X, Zhang J, Zhao X, Yao Y, Wei W, Cai R, He C, Duan C, Guo Z, Zhao J, Wang X. Optically Pure Double-Stranded Dinuclear Ir(III) Metallohelices Enabled Chirality-Induced Photodynamic Responses. J Am Chem Soc 2023. [PMID: 37366343 DOI: 10.1021/jacs.3c03310] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Investigation on the interactions between enantiomers of chiral drugs and biomolecules can help precisely understand their biological behaviors in vivo and provide insights into the design of new drugs. Herein, we designed and synthesized a pair of optically pure, cationic, double-stranded dinuclear Ir(III)-metallohelices (Λ2R4-H and Δ2S4-H), and their dramatic enantiomer-dependent photodynamic therapy (PDT) responses were thoroughly studied in vitro and in vivo. Compared to the mononuclear enantiomeric or racemic [Ir(ppy)2(dppz)][PF6] (Λ-/Δ-Ir, rac-Ir) that with high dark toxicity and low photocytotoxicity index (PI) values, both of the optically pure metallohelices displayed negligible toxicity in the dark while exhibiting very distinctive light toxicity upon light irradiation. The PI value of Λ2R4-H was approximately 428, however, Δ2S4-H significantly reached 63,966. Interestingly, only Δ2S4-H was found to migrate from mitochondria to nucleus after light irradiation. Further proteomic analysis verified that Δ2S4-H activated the ATP-dependent migration process after light irradiation, and subsequently inhibited the activities of the nuclear proteins such as superoxide dismutase 1 (SOD1) and eukaryotic translation initiation factor 5A (EIF5A) to trigger the accumulation of superoxide anions and downregulate mRNA splicing processes. Molecular docking simulations suggested that the interactions between metallohelices and nuclear pore complex NDC1 dominated the migration process. This work presents a new kind of Ir(III) metallohelices-based agent with the highest PDT efficacy, highlights the importance of metallohelices' chirality, and provides inspirations for the future design of chiral helical metallodrugs.
Collapse
Affiliation(s)
- Xuezhao Li
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zhicheng Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaorou Hao
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jingyi Zhang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing Zhao
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yougang Yao
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rui Cai
- Instrumental Analysis Center of Dalian University of Technology, Dalian University of Technology, Dalian 116024, China
| | - Cheng He
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zijian Guo
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Yusoh NA, Tiley PR, James SD, Harun SN, Thomas JA, Saad N, Hii LW, Chia SL, Gill MR, Ahmad H. Discovery of Ruthenium(II) Metallocompound and Olaparib Synergy for Cancer Combination Therapy. J Med Chem 2023; 66:6922-6937. [PMID: 37185020 DOI: 10.1021/acs.jmedchem.3c00322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Synergistic drug combinations can extend the use of poly(ADP-ribose) polymerase inhibitors (PARPi) such as Olaparib to BRCA-proficient tumors and overcome acquired or de novo drug resistance. To identify new synergistic combinations for PARPi, we screened a "micro-library" comprising a mix of commercially available drugs and DNA-binding ruthenium(II) polypyridyl complexes (RPCs) for Olaparib synergy in BRCA-proficient triple-negative breast cancer cells. This identified three hits: the natural product Curcumin and two ruthenium(II)-rhenium(I) polypyridyl metallomacrocycles. All combinations identified were effective in BRCA-proficient breast cancer cells, including an Olaparib-resistant cell line, and spheroid models. Mechanistic studies indicated that synergy was achieved via DNA-damage enhancement and resultant apoptosis. Combinations showed low cytotoxicity toward non-malignant breast epithelial cells and low acute and developmental toxicity in zebrafish embryos. This work identifies RPC metallomacrocycles as a novel class of agents for cancer combination therapy and provides a proof of concept for the inclusion of metallocompounds within drug synergy screens.
Collapse
Affiliation(s)
- Nur Aininie Yusoh
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Paul R Tiley
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K
| | - Steffan D James
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K
| | - Siti Norain Harun
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Ling-Wei Hii
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Suet Lin Chia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Martin R Gill
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K
| | - Haslina Ahmad
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Giacomazzo GE, Conti L, Fagorzi C, Pagliai M, Andreini C, Guerri A, Perito B, Mengoni A, Valtancoli B, Giorgi C. Ruthenium(II) Polypyridyl Complexes and Metronidazole Derivatives: A Powerful Combination in the Design of Photoresponsive Antibacterial Agents Effective under Hypoxic Conditions. Inorg Chem 2023; 62:7716-7727. [PMID: 37163381 DOI: 10.1021/acs.inorgchem.3c00214] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ruthenium(II) polypyridyl complexes (RPCs) are gaining momentum in photoactivated chemotherapy (PACT), thanks to the possibility of overcoming the classical reliance on molecular oxygen of photodynamic therapy while preserving the selective drug activation by using light. However, notwithstanding the intriguing perspectives, the translation of such an approach in the development of new antimicrobials has been only barely considered. Herein, MTZH-1 and MTZH-2, two novel analogues of metronidazole (MTZ), a mainstay drug in the treatment of anaerobic bacterial infections, were designed and inserted in the strained ruthenium complexes [Ru(tpy)(dmp)(MTZ-1)]PF6 (Ru2) and [Ru(tpy)(dmp)(MTZ-2)]PF6 (Ru3) (tpy = terpyridine, dmp = 2,9-dimethyl-1,10-phenanthroline) (Chart 1). Analogously to the parental compound [Ru(tpy)(dmp)(5NIM)]PF6 (Ru1) (5-nitroimidazolate), the Ru(II)-imidazolate coordination of MTZ derivatives resulted in promising Ru(II) photocages, capable to easily unleash the bioactive ligands upon light irradiation and increase the antibacterial activity against Bacillus subtilis, which was chosen as a model of Gram-positive bacteria. The photoreleased 5-nitroimidazole-based ligands led to remarkable phototoxicities under hypoxic conditions (<1% O2), with the lead compound Ru3 that exhibited the highest potency across the series, being comparable to the one of the clinical drug MTZ. Besides, the chemical architectures of MTZ derivatives made their interaction with NimAunfavorable, being NimA a model of reductases responsible for bacterial resistance against 5-nitroimidazole-based antibiotics, thus hinting at their possible use to combat antimicrobial resistance. This work may therefore provide fundamental knowledge in the design of novel photoresponsive tools to be used in the fight against infectious diseases. For the first time, the effectiveness of the "photorelease antimicrobial therapy" under therapeutically relevant hypoxic conditions was demonstrated.
Collapse
Affiliation(s)
- Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Marco Pagliai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Claudia Andreini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Annalisa Guerri
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Brunella Perito
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
21
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
22
|
Investigation of bioorganometallic artemisinins as antiplasmodials. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Andrejević TP, Aleksic I, Kljun J, Počkaj M, Zlatar M, Vojnovic S, Nikodinovic-Runic J, Turel I, Djuran MI, Glišić BĐ. Copper(ii) and silver(i) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex. RSC Adv 2023; 13:4376-4393. [PMID: 36744286 PMCID: PMC9890663 DOI: 10.1039/d2ra07401j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz) was used as a ligand for the synthesis of new copper(ii) and silver(i) complexes, [CuCl2(py-2pz)]2 (1), [Cu(CF3SO3)(H2O)(py-2pz)2]CF3SO3·2H2O (2), [Ag(py-2pz)2]PF6 (3) and {[Ag(NO3)(py-2pz)]·0.5H2O} n (4). The complexes were characterized by spectroscopic and electrochemical methods, while their structures were determined by single crystal X-ray diffraction analysis. The X-ray analysis revealed the bidentate coordination mode of py-2pz to the corresponding metal ion via its pyridine and pyrazine nitrogen atoms in all complexes, while in polynuclear complex 4, the heterocyclic pyrazine ring of one py-2pz additionally behaves as a bridging ligand between two Ag(i) ions. DFT calculations were performed to elucidate the structures of the investigated complexes in solution. The antimicrobial potential of the complexes 1-4 was evaluated against two bacterial (Pseudomonas aeruginosa and Staphylococcus aureus) and two Candida (C. albicans and C. parapsilosis) species. Silver(i) complexes 3 and 4 have shown good antibacterial and antifungal properties with minimal inhibitory concentration (MIC) values ranging from 4.9 to 39.0 μM (3.9-31.2 μg mL-1). All complexes inhibited the filamentation of C. albicans and hyphae formation, while silver(i) complexes 3 and 4 had also the ability to inhibit the biofilm formation process of this fungus. The binding affinity of the complexes 1-4 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied by fluorescence emission spectroscopy to clarify the mode of their antimicrobial activity. Catechol oxidase biomimetic catalytic activity of copper(ii) complexes 1 and 2 was additionally investigated by using 3,5-di-tert-butylcatechol (3,5-DTBC) and o-aminophenol (OAP) as substrates.
Collapse
Affiliation(s)
- Tina P Andrejević
- Department of Chemistry, Faculty of Science, University of Kragujevac R. Domanovića 12 34000 Kragujevac Serbia
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Vojvode Stepe 444a 11042 Belgrade Serbia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana Večna Pot 113 Ljubljana SI-1000 Slovenia
| | - Marta Počkaj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana Večna Pot 113 Ljubljana SI-1000 Slovenia
| | - Matija Zlatar
- Department of Chemistry, University of Belgrade-Institute of Chemistry, Technology and Metallurgy Njegoševa 12 11000 Belgrade Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Vojvode Stepe 444a 11042 Belgrade Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Vojvode Stepe 444a 11042 Belgrade Serbia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana Večna Pot 113 Ljubljana SI-1000 Slovenia
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts Knez Mihailova 35 11000 Belgrade Serbia
| | - Biljana Đ Glišić
- Department of Chemistry, Faculty of Science, University of Kragujevac R. Domanovića 12 34000 Kragujevac Serbia
| |
Collapse
|
24
|
Karges J, Giardini MA, Blacque O, Woodworth B, Siqueira-Neto JL, Cohen SM. Enantioselective inhibition of the SARS-CoV-2 main protease with rhenium(i) picolinic acid complexes. Chem Sci 2023; 14:711-720. [PMID: 36741526 PMCID: PMC9848156 DOI: 10.1039/d2sc05473f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022] Open
Abstract
Infections of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have triggered a global pandemic with millions of deaths worldwide. Herein, the synthesis of functionalized Re(i) tricarbonyl complexes as inhibitors of the SARS-CoV-2 main protease, also referred to as the 3-chymotrypsin-like protease (3CLpro), is presented. The metal complexes were found to inhibit the activity of the enzyme with IC50 values in the low micromolar range. Mass spectrometry revealed that the metal complexes formed a coordinate covalent bond with the enzyme. Chiral separation of the enantiomers of the lead compound showed that one enantiomer was significantly more active than the other, consistent with specific binding and much like that observed for conventional organic small molecule inhibitors and druglike compounds. Evaluation of the lead compound against SARS-CoV-2 in a cell-based infection assay confirmed enantiospecific inhibition against the virus. This study represents a significant advancement in the use of metal complexes as coordinate covalent inhibitors of enzymes, as well as a novel starting point for the development of novel SARS-CoV-2 inhibitors.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of CaliforniaLa JollaSan DiegoCalifornia 92093USA
| | - Miriam A. Giardini
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of CaliforniaLa JollaSan DiegoCalifornia 92093USA
| | - Olivier Blacque
- Department of Chemistry, University of ZurichWinterthurerstrasse 190CH-8057ZurichSwitzerland
| | - Brendon Woodworth
- Department of Medicine, Division of Infectious Diseases, University of California San DiegoLa JollaCalifornia 92093USA
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of CaliforniaLa JollaSan DiegoCalifornia 92093USA
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of CaliforniaLa JollaSan DiegoCalifornia 92093USA
| |
Collapse
|
25
|
Integrative Metallomics Studies of Toxic Metal(loid) Substances at the Blood Plasma–Red Blood Cell–Organ/Tumor Nexus. INORGANICS 2022. [DOI: 10.3390/inorganics10110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Globally, an estimated 9 million deaths per year are caused by human exposure to environmental pollutants, including toxic metal(loid) species. Since pollution is underestimated in calculations of the global burden of disease, the actual number of pollution-related deaths per year is likely to be substantially greater. Conversely, anticancer metallodrugs are deliberately administered to cancer patients, but their often dose-limiting severe adverse side-effects necessitate the urgent development of more effective metallodrugs that offer fewer off-target effects. What these seemingly unrelated events have in common is our limited understanding of what happens when each of these toxic metal(loid) substances enter the human bloodstream. However, the bioinorganic chemistry that unfolds at the plasma/red blood cell interface is directly implicated in mediating organ/tumor damage and, therefore, is of immediate toxicological and pharmacological relevance. This perspective will provide a brief synopsis of the bioinorganic chemistry of AsIII, Cd2+, Hg2+, CH3Hg+ and the anticancer metallodrug cisplatin in the bloodstream. Probing these processes at near-physiological conditions and integrating the results with biochemical events within organs and/or tumors has the potential to causally link chronic human exposure to toxic metal(loid) species with disease etiology and to translate more novel anticancer metal complexes to clinical studies, which will significantly improve human health in the 21st century.
Collapse
|
26
|
Cunningham L, Portela MS, Fletcher SP. Scale-Up of a Rh-Catalyzed Asymmetric sp 3–sp 2 Suzuki–Miyaura-Type Reaction. Org Process Res Dev 2022; 26:3153-3160. [DOI: 10.1021/acs.oprd.2c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Laura Cunningham
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | | | - Stephen P. Fletcher
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
27
|
Frei A, Elliott AG, Kan A, Dinh H, Bräse S, Bruce AE, Bruce MR, Chen F, Humaidy D, Jung N, King AP, Lye PG, Maliszewska HK, Mansour AM, Matiadis D, Muñoz MP, Pai TY, Pokhrel S, Sadler PJ, Sagnou M, Taylor M, Wilson JJ, Woods D, Zuegg J, Meyer W, Cain AK, Cooper MA, Blaskovich MAT. Metal Complexes as Antifungals? From a Crowd-Sourced Compound Library to the First In Vivo Experiments. JACS AU 2022; 2:2277-2294. [PMID: 36311838 PMCID: PMC9597602 DOI: 10.1021/jacsau.2c00308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
There are currently fewer than 10 antifungal drugs in clinical development, but new fungal strains that are resistant to most current antifungals are spreading rapidly across the world. To prevent a second resistance crisis, new classes of antifungal drugs are urgently needed. Metal complexes have proven to be promising candidates for novel antibiotics, but so far, few compounds have been explored for their potential application as antifungal agents. In this work, we report the evaluation of 1039 metal-containing compounds that were screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD). We show that 20.9% of all metal compounds tested have antimicrobial activity against two representative Candida and Cryptococcus strains compared with only 1.1% of the >300,000 purely organic molecules tested through CO-ADD. We identified 90 metal compounds (8.7%) that show antifungal activity while not displaying any cytotoxicity against mammalian cell lines or hemolytic properties at similar concentrations. The structures of 21 metal complexes that display high antifungal activity (MIC ≤1.25 μM) are discussed and evaluated further against a broad panel of yeasts. Most of these have not been previously tested for antifungal activity. Eleven of these metal complexes were tested for toxicity in the Galleria mellonella moth larva model, revealing that only one compound showed signs of toxicity at the highest injected concentration. Lastly, we demonstrated that the organo-Pt(II) cyclooctadiene complex Pt1 significantly reduces fungal load in an in vivo G. mellonella infection model. These findings showcase that the structural and chemical diversity of metal-based compounds can be an invaluable tool in the development of new drugs against infectious diseases.
Collapse
Affiliation(s)
- Angelo Frei
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
- Department
of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012Bern, Switzerland
| | - Alysha G. Elliott
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Alex Kan
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Hue Dinh
- School
of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW2109, Australia
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute
of Technology, Fritz-Haber-Weg 6, 76131Karlsruhe, Germany
- Institute
of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - Alice E. Bruce
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Mitchell R. Bruce
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Feng Chen
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CoventryCV4 7AL, U.K.
| | - Dhirgam Humaidy
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Nicole Jung
- Karlsruhe
Nano Micro Facility (KNMF), Karlsruhe Institute
of Technology, Hermann-von-Helmholtz-Platz 1, 76344Eggenstein-Leopoldshafen, Germany
- Institute
of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - A. Paden King
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14853, United States
| | - Peter G. Lye
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Hanna K. Maliszewska
- School
of Chemistry, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, U.K.
| | - Ahmed M. Mansour
- Chemistry
Department, Faculty of Science, Cairo University, Giza12613, Egypt
| | - Dimitris Matiadis
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, 15310Athens, Greece
| | - María Paz Muñoz
- School
of Chemistry, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, U.K.
| | - Tsung-Yu Pai
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Shyam Pokhrel
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CoventryCV4 7AL, U.K.
| | - Marina Sagnou
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, 15310Athens, Greece
| | - Michelle Taylor
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Justin J. Wilson
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14853, United States
| | - Dean Woods
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Johannes Zuegg
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Wieland Meyer
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Amy K. Cain
- School
of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW2109, Australia
| | - Matthew A. Cooper
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| |
Collapse
|
28
|
Kennedy C, McPhie K, Rittinger K. Targeting the ubiquitin system by fragment-based drug discovery. Front Mol Biosci 2022; 9:1019636. [PMID: 36275626 PMCID: PMC9580268 DOI: 10.3389/fmolb.2022.1019636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
The ubiquitin system contains a wealth of potential drug targets for many diseases and conditions, including neurodegenerative, immune, metabolic and developmental diseases, as well as multiple cancers. Despite years of research, relatively few clinical inhibitors or specific chemical probes for proteins within the ubiquitin system exist, with many interesting target proteins yet to be explored. Fragment-based drug discovery (FBDD) offers efficient and broad coverage of chemical space with small libraries, using covalent and non-covalent approaches. Coupled with advances in structural biology and proteomics, FBDD now provides a thorough screening platform for inhibitor discovery within the ubiquitin system. In this mini review, we summarise the current scope of FBDD and how it has been applied to ubiquitin-activating (E1), ubiquitin-conjugating (E2), ubiquitin ligase (E3) and deubiquitinating (DUB) enzymes. We also discuss the newest frontiers of FBDD and how they could be applied to enable inhibitor and novel chemical probe discovery and provide functional insight into the ubiquitin system.
Collapse
Affiliation(s)
| | | | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
29
|
Cooper SM, Siakalli C, White AJP, Frei A, Miller PW, Long NJ. Synthesis and anti-microbial activity of a new series of bis(diphosphine) rhenium(V) dioxo complexes. Dalton Trans 2022; 51:12791-12795. [PMID: 35920379 DOI: 10.1039/d2dt02157a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhenium-based metallodrugs have recently been highlighted as promising candidates for new antibiotics to combat multi-drug resistant (MDR) pathogens. A new class of rhenium(V) dioxo complexes were prepared from readily accessible diphosphine ligands, and have been shown to possess potent activity against Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) alongside low human cell toxicity.
Collapse
Affiliation(s)
- Saul M Cooper
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Christina Siakalli
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Angelo Frei
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Philip W Miller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| |
Collapse
|
30
|
Lengacher R, Marlin A, Śmiłowicz D, Boros E. Medicinal inorganic chemistry - challenges, opportunities and guidelines to develop the next generation of radioactive, photoactivated and active site inhibiting metal-based medicines. Chem Soc Rev 2022; 51:7715-7731. [PMID: 35942718 DOI: 10.1039/d2cs00407k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Medicinal inorganic chemistry is a burgeoning subfield of medicinal chemistry that focuses on the development of metal-based diagnostic and therapeutic agents. This tutorial review aims to provide an introductory primer, present a timely overview of recent discoveries and identify current challenges and opportunities of the field. Three specific areas of discovery are highlighted herein. The first part focuses on metal-based radiopharmaceuticals for diagnostic and therapeutic purposes and specific design criteria for the development of radiopharmaceuticals that combine fundamental aqueous coordination chemistry with elucidation of pharmacokinetics. The second part describes approaches to photodynamic therapy with metal complexes. Here, photophysical characterization, combined with the challenge of careful control of the chemical behavior and selective biological deposition of transition metals with significant off-target toxicity, is discussed. In the third part, we summarize emerging strategies to modulate enzyme inhibition with coordination chemistry, while also highlighting the utility of the unique properties of metal ions for the characterization of mechanisms of action of these emerging diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Raphael Lengacher
- Department of Chemistry, Stony Brook University, Stony Brook, 11790 New York, USA.
| | - Axia Marlin
- Department of Chemistry, Stony Brook University, Stony Brook, 11790 New York, USA.
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, Stony Brook, 11790 New York, USA.
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, 11790 New York, USA.
| |
Collapse
|
31
|
Towards systematic exploration of chemical space: building the fragment library module in molecular property diagnostic suite. Mol Divers 2022:10.1007/s11030-022-10506-5. [PMID: 35925528 PMCID: PMC9362107 DOI: 10.1007/s11030-022-10506-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 11/04/2022]
Abstract
A fragment-based drug discovery (FBDD) approach has traditionally been of utmost significance in drug design studies. It allows the exploration of large chemical space to find novel scaffolds and chemotypes which can be improved into selective inhibitors with good affinity. In the current work, several public domain chemical libraries (ChEMBL, DrugCentral, PDB ligands, COCONUT, and SAVI) comprising bioactive and virtual molecules were retrieved to develop a fragment library. A systematic fragmentation method that breaks a given molecule into rings, linkers, and substituents was used to cleave the molecules and the fragments were analyzed. Further, only the ring framework was taken into the consideration to develop a fragment library that consists of a total number of 107,614 unique fragments. This set represents a rich diverse structure framework that covers a wide variety of yet-to-be-explored fragments for a wide range of small molecule-based applications. This fragment library is an integral part of the molecular property diagnostic suite (MPDS) suite that can be used with other modeling and informatics methods for FBDD approaches. The fragment library module of MPDS can be accessed at http://mpds.neist.res.in:8085.
Collapse
|
32
|
Luciani L, Galassi R, Wang J, Marchini C, Cogo A, Di Paolo ML, Dalla Via L. Coinage Metal Compounds With 4-Methoxy-Diphenylphosphane Benzoate Ligand Inhibit Female Cancer Cell Growth. Front Chem 2022; 10:924584. [PMID: 35910727 PMCID: PMC9325969 DOI: 10.3389/fchem.2022.924584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
In the continuous effort to find new metal-based compounds as alternatives to platinum-related anticancer drugs, 11th group metal phosphane compounds have been thoroughly taken into consideration. Tris-arylphosphane metal derivatives have been extensively considered as heteroleptic metal compounds exhibiting remarkable cytotoxic activities. Functional groups in the aryl moieties modulate the activity reinforcing or eliminating it. Previous works have highlighted that the presence of hydrophilic groups in the phosphane ligands, such as COOH or OH, hampers the anticancer activity of gold azolate/PPh3 compounds. To increase the polarity of the triarylphosphane ligand without affecting the activity, we considered the preparation of esters starting from the 4-diphenylphosphane-benzoic acid. The resulting phosphanes are poorer donators than the PPh3, leading to poly-phosphane M(I) compounds, and they exhibit intense emissive properties. A homologous series of L3MX-type compounds (where M = Au and X = Cl, M = Cu and X = BF4, and M = Ag and X = PF6) were obtained with the 4-methoxy-diphenylphosphane benzoate. The homologous metal compounds have been characterized by analytical and spectroscopic methods and, remarkably, their formation was associated with high frequencies of 31P NMR chemical shift variations (5–35 ppm in CDCl3). The new complexes and the ligand were evaluated on sensitive and cisplatin-resistant human tumor cell lines. The ligand is ineffective on cells while the complexes exert a notable antiproliferative effect. The homologous series of the L3MX complexes were able to significantly reduce the cell viability of human triple-negative breast cancer cells (MDA-MB-231), representing the most aggressive subtype of breast cancer, and of ovarian carcinoma (A2780). Among these coinage metal compounds, L3AgPF6 results the most interesting, showing the lowest GI50 values in all cell lines. Interestingly, this silver complex is more cytotoxic than cisplatin, taken as reference drug. The investigation of the mechanism of action of L3AgPF6 in A2780 cells highlighted the induction of the apoptotic pathway, the depolarization of the mitochondrial inner membrane, and a significant accumulation in cells.
Collapse
Affiliation(s)
- Lorenzo Luciani
- School of Science and Technology, University of Camerino, Camerino, Italy
| | - Rossana Galassi
- School of Science and Technology, University of Camerino, Camerino, Italy
- *Correspondence: Rossana Galassi, ; Lisa Dalla Via,
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Alessia Cogo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - Maria Luisa Di Paolo
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Padova, Italy
| | - Lisa Dalla Via
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
- *Correspondence: Rossana Galassi, ; Lisa Dalla Via,
| |
Collapse
|
33
|
Gill MR, Jarman PJ, Hearnden V, Fairbanks SD, Bassetto M, Maib H, Palmer J, Ayscough KR, Thomas JA, Smythe C. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. Angew Chem Int Ed Engl 2022; 61:e202117449. [PMID: 35416386 PMCID: PMC9323417 DOI: 10.1002/anie.202117449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/05/2022]
Abstract
The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10‐phenanthroline, tpphz=tetrapyridophenazine) “RuRuPhen” blocks the transformation of G‐actin monomers to F‐actin filaments with no disassembly of pre‐formed F‐actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G‐actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late‐stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Collapse
Affiliation(s)
- Martin R. Gill
- Department of Chemistry Faculty of Science and Engineering Swansea University UK
| | - Paul J. Jarman
- Department of Biomedical Science University of Sheffield UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering University of Sheffield UK
| | | | - Marcella Bassetto
- Department of Chemistry Faculty of Science and Engineering Swansea University UK
| | - Hannes Maib
- Department of Biomedical Science University of Sheffield UK
| | - John Palmer
- Department of Biomedical Science University of Sheffield UK
| | | | | | - Carl Smythe
- Department of Biomedical Science University of Sheffield UK
| |
Collapse
|
34
|
Gill MR, Jarman PJ, Hearnden V, Fairbanks SD, Bassetto M, Maib H, Palmer J, Ayscough KR, Thomas JA, Smythe C. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117449. [PMID: 38505667 PMCID: PMC10947085 DOI: 10.1002/ange.202117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/10/2022]
Abstract
The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10-phenanthroline, tpphz=tetrapyridophenazine) "RuRuPhen" blocks the transformation of G-actin monomers to F-actin filaments with no disassembly of pre-formed F-actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G-actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late-stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Collapse
Affiliation(s)
- Martin R. Gill
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversityUK
| | - Paul J. Jarman
- Department of Biomedical ScienceUniversity of SheffieldUK
| | - Vanessa Hearnden
- Department of Materials Science and EngineeringUniversity of SheffieldUK
| | | | - Marcella Bassetto
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversityUK
| | - Hannes Maib
- Department of Biomedical ScienceUniversity of SheffieldUK
| | - John Palmer
- Department of Biomedical ScienceUniversity of SheffieldUK
| | | | | | - Carl Smythe
- Department of Biomedical ScienceUniversity of SheffieldUK
| |
Collapse
|
35
|
Gawrońska M, Kowalik M, Duch J, Kazimierczuk K, Makowski M. Sulfonamides with hydroxyphenyl moiety: Synthesis, structure, physicochemical properties, and ability to form complexes with Rh(III) ion. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
|
37
|
Busto N, Vigueras G, Cutillas N, García B, Ruiz J. Inert cationic iridium(III) complexes with phenanthroline-based ligands: application in antimicrobial inactivation of multidrug-resistant bacterial strains. Dalton Trans 2022; 51:9653-9663. [PMID: 35713595 DOI: 10.1039/d2dt00752e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antimicrobial activity of a new series of heteroleptic iridium(III) complexes of the type [Ir(C^N)2(N^N)][PF6] (C^N = deprotonated 2-phenylbenzimidazole-κN, κC; N^N = phen (Ir1), dpq (Ir2), dppz (Ir3), dppn (Ir4), and dppz-idzo (Ir5)) was studied towards two Gram positive (vancomycin-resistant Enterococcus faecium and a methicillin-resistant Staphylococcus aureus) and two Gram negative (Acinetobacter baumanii and Pseudomonas aeruginosa) multidrug-resistant bacterial strains of clinical interest. Although the complexes were inactive towards Gram negative bacteria, their effectiveness against Gram positive strains was remarkable, especially for Ir1 and Ir2, the most bactericidal complexes that were even more active (10 times) than the fluoroquinolone antibiotic norfloxacin and displayed no toxicity in human kidney cells (HEK293). Mechanistic studies revealed that the cell wall and membrane of MRSA S. aureus remained intact on treatment with these compounds and that DNA was not their main target. It is important to note that the complexes were able to induce ROS generation, this being the feature key to their antimicrobial activity.
Collapse
Affiliation(s)
- Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, E-09001, Burgos, Spain. .,Departamento de Ciencias de la Salud. Facultad de Ciencias de la Salud. Universidad de Burgos, Hospital Militar, Paseo de los Comendadores, s/n, 09001 Burgos, Spain.
| | - Gloria Vigueras
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, E-09001, Burgos, Spain.
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| |
Collapse
|
38
|
Li H, Yuan S, Wei X, Sun H. Metal-based strategies for the fight against COVID-19. Chem Commun (Camb) 2022; 58:7466-7482. [PMID: 35730442 DOI: 10.1039/d2cc01772e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emerging COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed over six million lives globally to date. Despite the availability of vaccines, the pandemic still cannot be fully controlled owing to rapid mutation of the virus that renders enhanced transmissibility and antibody evasion. This is thus an unmet need to develop safe and effective therapeutic options for COVID-19, in particular, remedies that can be used at home. Considering the great success of multi-targeted cocktail therapy for the treatment of viral infections, metal-based drugs might represent a unique and new source of antivirals that resemble a cocktail therapy in terms of their mode of actions. In this review, we first summarize the role that metal ions played in SARS-CoV-2 viral replication and pathogenesis, then highlight the chemistry of metal-based strategies in the fight against SARS-CoV-2 infection, including both metal displacement and chelation based approaches. Finally, we outline a perspective and direction on how to design and develop metal-based antivirals for the fight against the current or future coronavirus pandemic.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Shuofeng Yuan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
39
|
Wang ZZ, Wang MS, Wang F, Shi XX, Huang W, Hao GF, Yang GF. Exploring the kinase-inhibitor fragment interaction space facilitates the discovery of kinase inhibitor overcoming resistance by mutations. Brief Bioinform 2022; 23:6596988. [PMID: 35649390 DOI: 10.1093/bib/bbac203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Protein kinases play crucial roles in many cellular signaling processes, making them become important targets for drug discovery. But drug resistance mediated by mutation puts a barrier to the therapeutic effect of kinase inhibitors. Fragment-based drug discovery has been successfully applied to overcome such resistance. However, the complicate kinase-inhibitor fragment interaction and fragment-to-lead process seriously limit the efficiency of kinase inhibitor discovery against resistance caused by mutation. Here, we constructed a comprehensive web platform KinaFrag for the fragment-based kinase inhibitor discovery to overcome resistance. The kinase-inhibitor fragment space was investigated from 7783 crystal kinase-inhibitor fragment complexes, and the structural requirements of kinase subpockets were analyzed. The core fragment-based virtual screening workflow towards specific subpockets was developed to generate new kinase inhibitors. A series of tropomyosin receptor kinase (TRK) inhibitors were designed, and the most potent compound YT9 exhibits up to 70-fold activity improvement than marketed drugs larotrectinib and selitrectinib against G595R, G667C and F589L mutations of TRKA. YT9 shows promising antiproliferative against tumor cells in vitro and effectively inhibits tumor growth in vivo for wild type TRK and TRK mutants. Our results illustrate the great potential of KinaFrag in the kinase inhibitor discovery to combat resistance mediated by mutation. KinaFrag is freely available at http://chemyang.ccnu.edu.cn/ccb/database/KinaFrag/.
Collapse
Affiliation(s)
- Zhi-Zheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ming-Shu Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Fan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xing-Xing Shi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
40
|
Heteroleptic Rh(III) Phenylpyridyl Complexes Based on an Aminoquinoline-Benzimidazole Hybrid Scaffold: Antiplasmodial evaluation and mechanistic insights. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Stevanović NL, Kljun J, Aleksic I, Bogojevic SS, Milivojevic D, Veselinovic A, Turel I, Djuran MI, Nikodinovic-Runic J, Glišić BĐ. Clinically used antifungal azoles as ligands for gold(III) complexes: the influence of the Au(III) ion on the antimicrobial activity of the complex. Dalton Trans 2022; 51:5322-5334. [PMID: 35293926 DOI: 10.1039/d2dt00411a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a search for novel antimicrobial metal-based therapeutic agents, mononuclear gold(III) complexes 1-7 of the general formula [AuCl3(azole)], where azole stands for imidazole (im, 1), 1-isopropylimidazole (ipim, 2), 1-phenylimidazole (phim, 3), clotrimazole (ctz, 4), econazole (ecz, 5), tioconazole (tcz, 6) and voriconazole (vcz, 7) were synthesized, characterized and biologically evaluated. In all complexes, the corresponding azole ligand is monodentately coordinated to the Au(III) via the imidazole or triazole nitrogen atom, while the remaining coordination sites are occupied by chloride anions leading to the square-planar arrangement. In vitro antimicrobial assays showed that the complexation of inactive azoles, imidazole, 1-isopropylimidazole and 1-phenylimidazole, to the Au(III) ion led to complexes 1-3, respectively, with moderate activity against the investigated strains and low cytotoxicity on the human normal lung fibroblast cell line (MRC-5). Moreover, gold(III) complexes 4-7 with clinically used antifungal agents clotrimazole, econazole, tioconazole and voriconazole, respectively, have, in most cases, enhanced antimicrobial effectiveness relative to the corresponding azoles, with the best improvement achieved after complexation of tioconazole (6) and voriconazole (7). The complexes 4-7 and the corresponding antifungal azoles inhibited the growth of dermatophyte Microsporum canis at 50 and 25 μg mL-1. Gold(III) complexes 1-3 significantly reduced the amount of ergosterol in the cell membrane of Candida albicans at the subinhibitory concentration of 0.5 × MIC (minimal inhibitory concentration), while the corresponding imidazole ligands did not significantly affect the ergosterol content, indicating that the mechanism of action of the gold(III)-azole complexes is associated with inhibition of ergosterol biosynthesis. Finally, complexes 5 and 6 significantly reduced the production of pyocyanin, a virulence factor in Pseudomonas aeruginosa controlled by quorum sensing, and increased cell survival after exposure to this bacterium. These findings could be of importance for the development of novel gold(III)-based antivirulence therapeutic agents that attenuate virulence without pronounced effect on the growth of the pathogens, offering a lower risk for resistance development.
Collapse
Affiliation(s)
- Nevena Lj Stevanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Aleksandar Veselinovic
- University of Niš, Faculty of Medicine, Department of Chemistry, Blvd. Dr Zorana Đinđića 81, 18108 Niš, Serbia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
42
|
Gur'eva YA, Zalevskaya OA, Shevchenko OG, Slepukhin PA, Makarov VA, Kuchin AV. Copper(ii) complexes with terpene derivatives of ethylenediamine: synthesis, and antibacterial, antifungal and antioxidant activity. RSC Adv 2022; 12:8841-8851. [PMID: 35424859 PMCID: PMC8985105 DOI: 10.1039/d2ra00223j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of new chiral copper(ii) complexes with terpene derivatives of ethylenediamine and the results of studying their antibacterial, antifungal and antioxidant activity in vitro are discussed. All studied copper complexes (1-4) showed significantly higher antifungal activity against the strains of C. albicans, S. salmonicolor and P. notatum compared to the activity of the clinical antifungal drug amphotericin. High antibacterial activity of copper complexes with terpene derivatives of ethylenediamine was revealed against the S. aureus (MRSA) strain, which is resistant to the reference antibiotic ciprofloxacin. Using various test systems, a comparative assessment of the antioxidant activity (AOA) of the synthesized copper complexes and the ligands was carried out. The salen-type complex 4, which has the highest AOA in the model of initiated oxidation of a substrate containing animal lipids, was superior to other copper complexes in the ability to protect erythrocytes under conditions of H2O2-induced hemolysis.
Collapse
Affiliation(s)
- Yana A Gur'eva
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences 48, Pervomayskaya St. Syktyvkar 167000 Komi Republic Russian Federation
| | - Olga A Zalevskaya
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences 48, Pervomayskaya St. Syktyvkar 167000 Komi Republic Russian Federation
| | - Oksana G Shevchenko
- Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences 28, Kommunisticheskaya St. Syktyvkar 167982 Komi Republic Russian Federation
| | - Pavel A Slepukhin
- I.Ya. Postovskii Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences 22/20, S. Kovalevskoy St. Ekaterinburg 620108 Russian Federation
| | - Vadim A Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences 33-2, Leninsky Prospekt Moscow 119071 Russian Federation
| | - Aleksandr V Kuchin
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences 48, Pervomayskaya St. Syktyvkar 167000 Komi Republic Russian Federation
| |
Collapse
|
43
|
Medina-Franco JL, López-López E, Andrade E, Ruiz-Azuara L, Frei A, Guan D, Zuegg J, Blaskovich MA. Bridging informatics and medicinal inorganic chemistry: toward a database of metallodrugs and metallodrug candidates. Drug Discov Today 2022; 27:1420-1430. [DOI: 10.1016/j.drudis.2022.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
|
44
|
de Esch IJP, Erlanson DA, Jahnke W, Johnson CN, Walsh L. Fragment-to-Lead Medicinal Chemistry Publications in 2020. J Med Chem 2022; 65:84-99. [PMID: 34928151 PMCID: PMC8762670 DOI: 10.1021/acs.jmedchem.1c01803] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 12/28/2022]
Abstract
Fragment-based drug discovery (FBDD) continues to evolve and make an impact in the pharmaceutical sciences. We summarize successful fragment-to-lead studies that were published in 2020. Having systematically analyzed annual scientific outputs since 2015, we discuss trends and best practices in terms of fragment libraries, target proteins, screening technologies, hit-optimization strategies, and the properties of hit fragments and the leads resulting from them. As well as the tabulated Fragment-to-Lead (F2L) programs, our 2020 literature review identifies several trends and innovations that promise to further increase the success of FBDD. These include developing structurally novel screening fragments, improving fragment-screening technologies, using new computer-aided design and virtual screening approaches, and combining FBDD with other innovative drug-discovery technologies.
Collapse
Affiliation(s)
- Iwan J. P. de Esch
- Division
of Medicinal Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daniel A. Erlanson
- Frontier
Medicines, 151 Oyster
Point Blvd., South San Francisco, California 94080, United States
| | - Wolfgang Jahnke
- Novartis
Institutes for Biomedical Research, Chemical
Biology and Therapeutics, 4002 Basel, Switzerland
| | - Christopher N. Johnson
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Louise Walsh
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
45
|
Namiecińska E, Grazul M, Sadowska B, Więckowska-Szakiel M, Hikisz P, Pasternak B, Budzisz E. Arene-Ruthenium(II) Complexes with Carbothiamidopyrazoles as a Potential Alternative for Antibiotic Resistance in Human. Molecules 2022; 27:468. [PMID: 35056783 PMCID: PMC8781304 DOI: 10.3390/molecules27020468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/25/2022] Open
Abstract
To meet the demand for alternatives to commonly used antibiotics, this paper evaluates the antimicrobial potential of arene-ruthenium(II) complexes and their salts, which may be of value in antibacterial treatment. Their antimicrobial activity (MIC, MBC/MFC) was examined in vitro against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus vulgaris and Candida albicans and compared with classic antibiotics used as therapeutics. Selected arene-ruthenium(II) complexes were found to have synergistic effects with oxacillin and vancomycin against staphylococci. Their bactericidal effect was found to be associated with cell lysis and the ability to cut microbial DNA. To confirm the safety of the tested arene-ruthenium(II) complexes in vivo, their cytotoxicity was also investigated against normal human foreskin fibroblasts (HFF-1). In addition, the antioxidant and thus pro-health potential of the compounds, i.e., their nonenzymatic antioxidant capacity (NEAC), was determined by two different methods: ferric-TPTZ complex and DPPH assay.
Collapse
Affiliation(s)
- Ewelina Namiecińska
- Department of the Chemistry of Cosmetic Raw Materials, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Magdalena Grazul
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Beata Sadowska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (B.S.); (M.W.-S.)
| | - Marzena Więckowska-Szakiel
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (B.S.); (M.W.-S.)
| | - Paweł Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Beata Pasternak
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland;
| | - Elzbieta Budzisz
- Department of the Chemistry of Cosmetic Raw Materials, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
46
|
Tyagi M, Adolfsson DE, Singh P, Ådén J, Jayaweera SW, Gharibyan A, Bharate JB, Kiss A, Sarkar S, Olofsson A, Almqvist F. Tandem Ring Opening/Intramolecular [2 + 2] Cycloaddition Reaction for the Synthesis of Cyclobutane Fused Thiazolino-2-Pyridones. J Org Chem 2021; 86:16582-16592. [PMID: 34767366 PMCID: PMC8650012 DOI: 10.1021/acs.joc.1c01875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Reaction of thiazoline
fused 2-pyridones with alkyl halides in
the presence of cesium carbonate opens the thiazoline ring via S-alkylation and generates N-alkenyl functionalized
2-pyridones. In the reaction with propargyl bromide, the thiazoline
ring opens and subsequently closes via a [2 + 2] cycloaddition between
an in situ generated allene and the α,β-unsaturated
methyl ester. This method enabled the synthesis of a variety of cyclobutane
fused thiazolino-2-pyridones, of which a few analogues inhibit amyloid
β1–40 fibril formation. Furthermore, other
analogues were able to bind mature α-synuclein and amyloid β1−40 fibrils. Several thiazoline fused 2-pyridones with
biological activity tolerate this transformation, which in addition
provides an exocyclic alkene as a potential handle for tuning bioactivity.
Collapse
Affiliation(s)
- Mohit Tyagi
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Dan E Adolfsson
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Pardeep Singh
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | | | - Anna Gharibyan
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | | | - Anita Kiss
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Souvik Sarkar
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | | |
Collapse
|
47
|
Zalevskaya OA, Gur’eva YA. Recent Studies on the Antimicrobial Activity of Copper Complexes. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Welsh A, Mbaba M, Prince S, Smith GS. Synthesis, molecular modeling and preliminary anticancer evaluation of 2-ferrocenylbenzimidazole metallofragments. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
de Oliveira Neto J, Marinho MM, Silveira JADM, Rocha DG, Lima NCB, Gouveia Júnior FS, Lopes LGDF, de Sousa EHS, Martins AMC, Marinho AD, Jorge RJB, Monteiro HSA. Synthesis and potential vasorelaxant effect of a novel ruthenium-based nitro complex. J Inorg Biochem 2021; 228:111666. [PMID: 34923187 DOI: 10.1016/j.jinorgbio.2021.111666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the synthesis and potential vasodilator effect of a novel ruthenium complex, cis-[Ru(bpy)2(2-MIM)(NO2)]PF6 (bpy = 2,2'-bipyridine and 2-MIM = 2-methylimidazole) (FOR711A), containing an imidazole derivative via an in silico molecular docking model using β1 H-NOX (Heme-nitric oxide/oxygen binding) domain proteins of reduced and oxidized soluble guanylate cyclase (sGC). In addition, pharmacokinetic properties in the human organism were predicted through computational simulations and the potential for acute irritation of FOR711A was also investigated in vitro using the hen's egg chorioallantoic membrane (HET-CAM). FOR711A interacted with sites of the β1 H-NOX domain of reduced and oxidized sGC, demonstrating shorter bond distances to several residues and negative values of total energy. The predictive study revealed molar refractivity (RM): 127.65; Log Po/w = 1.29; topological polar surface area (TPSA): 86.26 Å2; molar mass (MM) = 541.55 g/mol; low solubility, high unsaturation index, high gastrointestinal absorption; toxicity class 4; failure to cross the blood-brain barrier and to react with cytochrome P450 (CYP) enzymes CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4. After the HET-CAM assay, the FOR711A complex was classified as non-irritant (N.I.) and its vasodilator effect was confirmed through greater evidence of blood vessels after the administration and ending of the observation period of 5 min. These results suggest that FOR711A presented a potential stimulator/activator effect of sGC via NO/sGC/cGMP. However, results indicate it needs a vehicle for oral administration.
Collapse
Affiliation(s)
- Joselito de Oliveira Neto
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Márcia Machado Marinho
- State University of Ceará, Iguatu Faculty of Education, Science and Letters, Iguatu, CE, Brazil
| | - João Alison de Moraes Silveira
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil.
| | - Danilo Galvão Rocha
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Natália Cavalcante Barbosa Lima
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | | | | | | | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aline Diogo Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Roberta Jeane Bezerra Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Helena Serra Azul Monteiro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| |
Collapse
|
50
|
Cziferszky M, Truong D, Hartinger CG, Gust R. Determination of Relative Stabilities of Metal-Peptide Bonds in the Gas Phase. Chemistry 2021; 27:16401-16406. [PMID: 34554615 PMCID: PMC9298285 DOI: 10.1002/chem.202102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/09/2022]
Abstract
Understanding binding site preferences in biological systems as well as affinities to binding partners is a crucial aspect in metallodrug development. We here present a mass spectrometry‐based method to compare relative stabilities of metal‐peptide adducts in the gas phase. Angiotensin 1 and substance P were used as model peptides. Incubation with isostructural N‐heterocyclic carbene (NHC) complexes of RuII, OsII, RhIII, and IrIII led to the formation of various adducts, which were subsequently studied by energy‐resolved fragmentation experiments. The gas‐phase stability of the metal‐peptide bonds depended on the metal and the binding partner. Of the four complexes used, the OsII derivative bound strongest to Met, while RuII formed the most stable coordination bond with His. RhIII was identified as the weakest peptide binder and IrIII formed peptide adducts with intermediate stability. Probing these intrinsic gas‐phase properties can help in the interpretation of biological activities and the design of site‐specific protein binding metal complexes.
Collapse
Affiliation(s)
- Monika Cziferszky
- Department of Chemistry and Pharmacy, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Dianna Truong
- School of Chemical Sciences, University of Auckland Private Bag, 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland Private Bag, 92019, Auckland 1142, New Zealand
| | - Ronald Gust
- Department of Chemistry and Pharmacy, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| |
Collapse
|