1
|
Wang F, Feng J, Jin A, Shao Y, Shen M, Ma J, Lei L, Liu L. Extracellular Vesicles for Disease Treatment. Int J Nanomedicine 2025; 20:3303-3337. [PMID: 40125438 PMCID: PMC11928757 DOI: 10.2147/ijn.s506456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Traditional drug therapies suffer from problems such as easy drug degradation, side effects, and treatment resistance. Traditional disease diagnosis also suffers from high error rates and late diagnosis. Extracellular vesicles (EVs) are nanoscale spherical lipid bilayer vesicles secreted by cells that carry various biologically active components and are integral to intercellular communication. EVs can be found in different body fluids and may reflect the state of the parental cells, making them ideal noninvasive biomarkers for disease-specific diagnosis. The multifaceted characteristics of EVs render them optimal candidates for drug delivery vehicles, with evidence suggesting their efficacy in the treatment of various ailments. However, poor stability and easy degradation of natural EVs have affected their applications. To solve the problems of poor stability and easy degradation of natural EVs, they can be engineered and modified to obtain more stable and multifunctional EVs. In this study, we review the shortcomings of traditional drug delivery methods and describe how to modify EVs to form engineered EVs to improve their utilization. An innovative stimulus-responsive drug delivery system for EVs has also been proposed. We also summarize the current applications and research status of EVs in the diagnosis and treatment of different systemic diseases, and look forward to future research directions, providing research ideas for scholars.
Collapse
Affiliation(s)
- Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Mengen Shen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiaqi Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, People’s Republic of China
| |
Collapse
|
2
|
Cao Y, Liu C, Ye W, Zhao T, Fu F. Functional Hydrogel Interfaces for Cartilage and Bone Regeneration. Adv Healthc Mater 2025; 14:e2403079. [PMID: 39791312 DOI: 10.1002/adhm.202403079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Effective treatment of bone diseases is quite tricky due to the unique nature of bone tissue and the complexity of the bone repair process. In combination with biological materials, cells and biological factors can provide a highly effective and safe treatment strategy for bone repair and regeneration, especially based on these multifunctional hydrogel interface materials. However, itis still a challenge to formulate hydrogel materials with fascinating properties (e.g., biological activity, controllable biodegradability, mechanical strength, excellent cell/tissue adhesion, and controllable release properties) for their clinical applications in complex bone repair processes. In this review, we will highlight recent advances in developing functional interface hydrogels. We then discuss the barriers to producing of functional hydrogel materials without sacrificing their inherent properties, and potential applications in cartilage and bone repair are discussed. Multifunctional hydrogel interface materials can serve as a fundamental building block for bone tissue engineering.
Collapse
Affiliation(s)
- Yucheng Cao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Changyi Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenjun Ye
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tianrui Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fanfan Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
3
|
Sim B, Chang JJ, Lin Q, Wong JHM, Ow V, Leow Y, Wong YJ, Boo YJ, Goh R, Loh XJ. Hydrogels Based on Polyelectrolyte Complexes: Underlying Principles and Biomedical Applications. Biomacromolecules 2024; 25:7563-7580. [PMID: 39557662 DOI: 10.1021/acs.biomac.4c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Ionic complexes of electrostatically charged biomacromolecules are key players in various biological processes like nucleotide transportation, organelle formation, and protein folding. These complexes, abundant in biological systems, contribute to the function, responsiveness, and mechanical properties of organisms. Coherent with these natural phenomena, hydrogels formed through the complexation of oppositely charged polymers exhibit unique attributes, such as rapid self-assembly, hierarchical microstructures, tunable properties, and protective encapsulation. Consequently, polyelectrolyte complex (PEC) hydrogels have garnered considerable interest, emerging as an up-and-coming platform for various biomedical applications. This review outlines the underlying principles governing PEC hydrogels. The classification of polyelectrolytes and the self-assembly of PEC hydrogels are discussed, including the factors influencing their self-assembly process. Recent developments of PEC hydrogels for biomedical applications, including drug delivery, tissue engineering, wound healing and management, and wearable sensors, are summarized. This review concludes with the prospective directions for the next generation of PEC hydrogel research.
Collapse
Affiliation(s)
- Belynn Sim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Jun Jie Chang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Valerie Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Yi Jing Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Singapore
| |
Collapse
|
4
|
Madhusudhan A, Suhagia TA, Sharma C, Jaganathan SK, Purohit SD. Carbon Based Polymeric Nanocomposite Hydrogel Bioink: A Review. Polymers (Basel) 2024; 16:3318. [PMID: 39684062 DOI: 10.3390/polym16233318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Carbon-based polymeric nanocomposite hydrogels (NCHs) represent a groundbreaking advancement in biomedical materials by integrating nanoparticles such as graphene, carbon nanotubes (CNTs), carbon dots (CDs), and activated charcoal (AC) into polymeric matrices. These nanocomposites significantly enhance the mechanical strength, electrical conductivity, and bioactivity of hydrogels, making them highly effective for drug delivery, tissue engineering (TE), bioinks for 3D Bioprinting, and wound healing applications. Graphene improves the mechanical and electrical properties of hydrogels, facilitating advanced tissue scaffolding and drug delivery systems. CNTs, with their exceptional mechanical strength and conductivity, enhance rheological properties, facilitating their use as bioinks in supporting complex 3D bioprinting tasks for neural, bone, and cardiac tissues by mimicking the natural structure of tissues. CDs offer fluorescence capabilities for theranostic applications, integrating imaging and therapeutic functions. AC enhances mechanical strength, biocompatibility, and antibacterial effectiveness, making it suitable for wound healing and electroactive scaffolds. Despite these promising features, challenges remain, such as optimizing nanoparticle concentrations, ensuring biocompatibility, achieving uniform dispersion, scaling up production, and integrating multiple functionalities. Addressing these challenges through continued research and development is crucial for advancing the clinical and industrial applications of these innovative hydrogels.
Collapse
Affiliation(s)
- Alle Madhusudhan
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| | | | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Saravana Kumar Jaganathan
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN67TS, UK
| | - Shiv Dutt Purohit
- Department of Biomedical Engineering & Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
5
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
6
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
7
|
Huang Y, Ye K, He A, Wan S, Wu M, Hu D, Xu K, Wei P, Yin J. Dual-layer conduit containing VEGF-A - Transfected Schwann cells promotes peripheral nerve regeneration via angiogenesis. Acta Biomater 2024; 180:323-336. [PMID: 38561075 DOI: 10.1016/j.actbio.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Peripheral nerve injuries (PNIs) can cause neuropathies and significantly affect the patient's quality of life. Autograft transplantation is the gold standard for conventional treatment; however, its application is limited by nerve unavailability, size mismatch, and local tissue adhesion. Tissue engineering, such as nerve guidance conduits, is an alternative and promising strategy to guide nerve regeneration for peripheral nerve repair; however, only a few conduits could reach the high repair efficiency of autografts. The healing process of PNI is frequently accompanied by not only axonal and myelination regeneration but also angiogenesis, which initializes nerve regeneration through vascular endothelial growth factor A (VEGF-A). In this study, a composite nerve conduit with a poly (lactic-co-glycolic acid) (PLGA) hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with VEGF-A transfected Schwann cells (SCs) as the inner layer was established to evaluate its promising ability for peripheral nerve repair. A rat model of peripheral nerve defect was used to examine the efficiency of PLGA/GelMA-SC (VA) conduits, whereas autograft, PLGA, PLGA/GelMA, and PLGA/GelMA-SC (NC) were used as controls. VEGF-A-transfected SCs can provide a stable source for VEGF-A secretion. Furthermore, encapsulation in GelMA cannot only promote proliferation and tube formation of human umbilical vein endothelial cells but also enhance dorsal root ganglia and neuronal cell extension. Previous animal studies have demonstrated that the regenerative effects of PLGA/GelMA-SC (VA) nerve conduit were similar to those of autografts and much better than those of other conduits. These findings indicate that combination of VEGF-A-overexpressing SCs and PLGA/GelMA conduit-guided peripheral nerve repair provides a promising method that enhances angiogenesis and regeneration during nerve repair. STATEMENT OF SIGNIFICANCE: Nerve guidance conduits shows promise for peripheral nerve repair, while achieving the repair efficiency of autografts remains a challenge. In this study, a composite nerve conduit with a PLGA hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with vascular endothelial growth factor A (VEGF-A)-transfected Schwann cells (SCs) as the inner layer was established to evaluate its potential ability for peripheral nerve repair. This approach preserves growth factor bioactivity and enhances material properties. GelMA insertion promotes Schwann cell proliferation and morphology extension. Moreover, transfected SCs serve as a stable VEGF-A source and fostering angiogenesis. This study offers a method preserving growth factor efficacy and safeguarding SCs, providing a comprehensive solution for enhanced angiogenesis and nerve regeneration.
Collapse
Affiliation(s)
- Yuye Huang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Kai Ye
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Andong He
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Shaobo Wan
- Yuyao Traditional Chinese Medicine Hospital, Ningbo 315010, China
| | - Miaoben Wu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Donghao Hu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kailei Xu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China.
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China.
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Lee J, Dutta SD, Acharya R, Park H, Kim H, Randhawa A, Patil TV, Ganguly K, Luthfikasari R, Lim KT. Stimuli-Responsive 3D Printable Conductive Hydrogel: A Step toward Regulating Macrophage Polarization and Wound Healing. Adv Healthc Mater 2024; 13:e2302394. [PMID: 37950552 DOI: 10.1002/adhm.202302394] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Conductive hydrogels (CHs) are promising alternatives for electrical stimulation of cells and tissues in biomedical engineering. Wound healing and immunomodulation are complex processes that involve multiple cell types and signaling pathways. 3D printable conductive hydrogels have emerged as an innovative approach to promote wound healing and modulate immune responses. CHs can facilitate electrical and mechanical stimuli, which can be beneficial for altering cellular metabolism and enhancing the efficiency of the delivery of therapeutic molecules. This review summarizes the recent advances in 3D printable conductive hydrogels for wound healing and their effect on macrophage polarization. This report also discusses the properties of various conductive materials that can be used to fabricate hydrogels to stimulate immune responses. Furthermore, this review highlights the challenges and limitations of using 3D printable CHs for future material discovery. Overall, 3D printable conductive hydrogels hold excellent potential for accelerating wound healing and immune responses, which can lead to the development of new therapeutic strategies for skin and immune-related diseases.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
9
|
Zhang P, Qi J, Zhang R, Zhao Y, Yan J, Gong Y, Liu X, Zhang B, Wu X, Wu X, Zhang C, Zhao B, Li B. Recent advances in composite hydrogels: synthesis, classification, and application in the treatment of bone defects. Biomater Sci 2024; 12:308-329. [PMID: 38108454 DOI: 10.1039/d3bm01795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bone defects are often difficult to treat due to their complexity and specificity, and therefore pose a serious threat to human life and health. Currently, the clinical treatment of bone defects is mainly surgical. However, this treatment is often more harmful to patients and there is a potential risk of rejection and infection. Hydrogels have a unique three-dimensional structure that can accommodate a variety of materials, including particles, polymers and small molecules, making them ideal for treating bone defects. Therefore, emerging composite hydrogels are considered one of the most promising candidates for the treatment of bone defects. This review describes the use of different types of composite hydrogel in the treatment of bone defects. We present the basic concepts of hydrogels, different preparation techniques (including chemical and physical crosslinking), and the clinical requirements for hydrogels used to treat bone defects. In addition, a review of numerous promising designs of different types of hydrogel doped with different materials (e.g., nanoparticles, polymers, carbon materials, drugs, and active factors) is also highlighted. Finally, the current challenges and prospects of composite hydrogels for the treatment of bone defects are presented. This review will stimulate research efforts in this field and promote the application of new methods and innovative ideas in the clinical field of composite hydrogels.
Collapse
Affiliation(s)
- Pengfei Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Jin Qi
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Ran Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yifan Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Jingyu Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yajuan Gong
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiaoming Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Binbin Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiao Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiuping Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Bing Zhao
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
10
|
Gupta D, Singh AK, Bellare J. Natural bone inspired core-shell triple-layered gel/PCL/gel 3D printed scaffolds for bone tissue engineering. Biomed Mater 2023; 18:065027. [PMID: 37879307 DOI: 10.1088/1748-605x/ad06c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Despite technological advancements in bone tissue engineering, it is still a challenge to fabricate a scaffold with high bioactivity as well as high mechanical strength that can promote osteogenesis as well as bear load. Here we developed a 3D printed gel-polymer multi-layered hybrid scaffold. The innermost layer is porous gel-based framework made of gelatin/carboxymethyl-chitin/nano-hydroxyapatite and is cryogenically 3D printed. Further, the second and middle layer of micro-engineered polycaprolactone (PCL) is infused in the gel with controlled penetration and tuneable coating thickness. The PCL surface is further coated with a third and final thin layer of gel matrix used for the first layer. This triple-layered structure demonstrates compression strength and modulus of 13.07 ± 1.15 MPa and 21.8 ± 0.82 MPa, respectively, post 8 weeks degradation which is >3000% and >700% than gel scaffold. It also shows degradation of 6.84 ± 0.70% (83% reduction than gel scaffold) after 12 weeks and swelling of 69.09 ± 6.83% (81% reduction) as compared to gel scaffolds. Further, nearly 300%, 250%, 50%, and 440% increase in cellular attachment, proliferation, protein generation, and mineralization, respectively are achieved as compared to only PCL scaffolds. Thus, these hybrid scaffolds offer high mechanical strength, slow degradation rate, high bioactivity, and high osteoconductivity. These multifunctional scaffolds have potential for reconstructing non-load-bearing bone defects like sinus lift, jaw cysts, and moderate load-bearing like reconstructing hard palate, orbital palate, and other craniomaxillofacial bone defects.
Collapse
Affiliation(s)
- Deepak Gupta
- Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
| | - Atul Kumar Singh
- Central Research Facility (CRF), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jayesh Bellare
- Chemical Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Tata Centre for Technology and Design, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Wadhwani Research Centre for Bioengineering (WRCB), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
12
|
Gu L, Huang R, Ni N, Gu P, Fan X. Advances and Prospects in Materials for Craniofacial Bone Reconstruction. ACS Biomater Sci Eng 2023; 9:4462-4496. [PMID: 37470754 DOI: 10.1021/acsbiomaterials.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The craniofacial region is composed of 23 bones, which provide crucial function in keeping the normal position of brain and eyeballs, aesthetics of the craniofacial complex, facial movements, and visual function. Given the complex geometry and architecture, craniofacial bone defects not only affect the normal craniofacial structure but also may result in severe craniofacial dysfunction. Therefore, the exploration of rapid, precise, and effective reconstruction of craniofacial bone defects is urgent. Recently, developments in advanced bone tissue engineering bring new hope for the ideal reconstruction of the craniofacial bone defects. This report, presenting a first-time comprehensive review of recent advances of biomaterials in craniofacial bone tissue engineering, overviews the modification of traditional biomaterials and development of advanced biomaterials applying to craniofacial reconstruction. Challenges and perspectives of biomaterial development in craniofacial fields are discussed in the end.
Collapse
Affiliation(s)
- Li Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Rui Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
13
|
Akiyama N, Patel KD, Jang EJ, Shannon MR, Patel R, Patel M, Perriman AW. Tubular nanomaterials for bone tissue engineering. J Mater Chem B 2023; 11:6225-6248. [PMID: 37309580 DOI: 10.1039/d3tb00905j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nanotubes (CNTs), titanium oxide nanotubes (TNTs), halloysite nanotubes (HNTs), silica nanotubes (SiNTs), and hydroxyapatite nanotubes (HANTs) have shown significant potential across a broad range of applications due to their high surface area, versatile surface chemistry, well-defined mechanical properties, excellent biocompatibility, and monodispersity. These include drug delivery vectors, imaging contrast agents, and scaffolds for bone tissue engineering. This review is centered on the recent developments in TN-based biomaterials for structural tissue engineering, with a strong focus on bone tissue regeneration. It includes a detailed literature review on TN-based orthopedic coatings for metallic implants and composite scaffolds to enhance in vivo bone regeneration.
Collapse
Affiliation(s)
- Naomi Akiyama
- Department of Chemical Engineering, The Cooper Union of the Advancement of Science and Art, New York City, NY 10003, USA
| | - Kapil D Patel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Eun Jo Jang
- Nano Science and Engineering (NSE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Mark R Shannon
- Bristol Composites Institute (BCI), University of Bristol, Bristol, BS8 1UP, UK
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
14
|
Xu K, Huang Y, Wu M, Yin J, Wei P. 3D bioprinting of multi-cellular tumor microenvironment for prostate cancer metastasis. Biofabrication 2023; 15:035020. [PMID: 37236173 DOI: 10.1088/1758-5090/acd960] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/26/2023] [Indexed: 05/28/2023]
Abstract
Prostate cancer (PCa) is one of the most lethal cancers in men worldwide. The tumor microenvironment (TME) plays an important role in PCa development, which consists of tumor cells, fibroblasts, endothelial cells, and extracellular matrix (ECM). Hyaluronic acid (HA) and cancer-associated fibroblasts (CAFs) are the major components in the TME and are correlated with PCa proliferation and metastasis, while the underlying mechanism is still not fully understood due to the lack of biomimetic ECM components and coculture models. In this study, gelatin methacryloyl/chondroitin sulfate-based hydrogels were physically crosslinked with HA to develop a novel bioink for the three-dimensional bioprinting of a coculture model that can be used to investigate the effect of HA on PCa behaviors and the mechanism underlying PCa-fibroblasts interaction. PCa cells demonstrated distinct transcriptional profiles under HA stimulation, where cytokine secretion, angiogenesis, and epithelial to mesenchymal transition were significantly upregulated. Further coculture of PCa with normal fibroblasts activated CAF transformation, which could be induced by the upregulated cytokine secretion of PCa cells. These results suggested HA could not only promote PCa metastasis individually but also induce PCa cells to activate CAF transformation and form HA-CAF coupling effects to further promote PCa drug resistance and metastasis.
Collapse
Affiliation(s)
- Kailei Xu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo 315010, People's Republic of China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang 315010, People's Republic of China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, People's Republic of China
| | - Yuye Huang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo 315010, People's Republic of China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang 315010, People's Republic of China
| | - Miaoben Wu
- School of Medicine, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo 315010, People's Republic of China
| |
Collapse
|
15
|
Wang X, Ma Y, Lu F, Chang Q. The diversified hydrogels for biomedical applications and their imperative roles in tissue regeneration. Biomater Sci 2023; 11:2639-2660. [PMID: 36790251 DOI: 10.1039/d2bm01486f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Repair and regeneration of tissues after injury are complex pathophysiological processes. Microbial infection, malnutrition, and an ischemic and hypoxic microenvironment in the injured area can impede the typical healing cascade. Distinguished by biomimicry of the extracellular matrix, high aqueous content, and diverse functions, hydrogels have revolutionized clinical practices in tissue regeneration owing to their outstanding hydrophilicity, biocompatibility, and biodegradability. Various hydrogels such as smart hydrogels, nanocomposite hydrogels, and acellular matrix hydrogels are widely used for applications ranging from bench-scale to an industrial scale. In this review, some emerging hydrogels in the biomedical field are briefly discussed. The protective roles of hydrogels in wound dressings and their diverse biological effects on multiple tissues such as bone, cartilage, nerve, muscle, and adipose tissue are also discussed. The vehicle functions of hydrogels for chemicals and cell payloads are detailed. Additionally, this review emphasizes the particular characteristics of hydrogel products that promote tissue repair and reconstruction such as anti-infection, inflammation regulation, and angiogenesis.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Yuan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| |
Collapse
|
16
|
Bashir MH, Korany NS, Farag DBE, Abbass MMS, Ezzat BA, Hegazy RH, Dörfer CE, Fawzy El-Sayed KM. Polymeric Nanocomposite Hydrogel Scaffolds in Craniofacial Bone Regeneration: A Comprehensive Review. Biomolecules 2023; 13:biom13020205. [PMID: 36830575 PMCID: PMC9953024 DOI: 10.3390/biom13020205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Nanocomposite biomaterials combine a biopolymeric matrix structure with nanoscale fillers. These bioactive and easily resorbable nanocomposites have been broadly divided into three groups, namely natural, synthetic or composite, based on the polymeric origin. Preparing such nanocomposite structures in the form of hydrogels can create a three-dimensional natural hydrophilic atmosphere pivotal for cell survival and new tissue formation. Thus, hydrogel-based cell distribution and drug administration have evolved as possible options for bone tissue engineering and regeneration. In this context, nanogels or nanohydrogels, created by cross-linking three-dimensional polymer networks, either physically or chemically, with high biocompatibility and mechanical properties were introduced as promising drug delivery systems. The present review highlights the potential of hydrogels and nanopolymers in the field of craniofacial tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Maha H. Bashir
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Nahed S. Korany
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Dina B. E. Farag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Bassant A. Ezzat
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Radwa H. Hegazy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence: ; Tel.: +49-431-500-26210
| |
Collapse
|
17
|
Wu J, Wang S, Zheng Z, Li J. Fabrication of Biologically Inspired Electrospun Collagen/Silk fibroin/bioactive glass composited nanofibrous scaffold to accelerate the treatment efficiency of bone repair. Regen Ther 2022; 21:122-138. [PMID: 35844293 PMCID: PMC9253997 DOI: 10.1016/j.reth.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/15/2022] [Accepted: 05/15/2022] [Indexed: 12/03/2022] Open
Abstract
Bone disease and disorder treatment might be difficult because of its complicated nature. Millions of patients each year need bone substitutes that may help them recover quickly from a variety of illnesses. Synthetic bone replacements that mirror the structural, chemical, and biological features of bone matrix structure will be very helpful and in high demand. In this research, the inorganic bioactive glass nanoparticles matrixed with organic collagen and silk fibroin structure (COL/SF/CaO-SiO2) were used to create multifunctional bone-like fibers in this study, which we describe here. The fiber structure is organized in a layered fashion comparable to the sequence in which apatite and neo tissue are formed. The amino groups in COL and SF combined with CaO-SiO2 to stabilize the resulting composite nanofiber. Morphological and functional studies confirmed that crystalline CaO-SiO2 nanoparticles with average sizes of 20 ± 5 nm are anchored on a 115 ± 10 nm COL/SF nanofiber matrix. X-ray photoelectron spectroscopic (XPS) results confirmed the presence of C, N, O, Ca, and Si in the composite fiber with an atomic percentage of 59.46, 3.30, 20.25, 3.38 and 13.61%. respectively. The biocompatibility examination with osteoblast cells (Saos-2) revealed that the CAL/SF/CaO-SiO2 composite nanofiber had enhanced osteogenic activity. Finally, when the CAL/SF/CaO-SiO2 composite nanofiber scaffolds were used to treat an osteoporotic bone defect in a rat model, the composite nanofiber scaffolds significantly promoted bone regeneration and vascularization. This novel fibrous scaffold class represents a potential breakthrough in the design of advanced materials for complicated bone regeneration.
Collapse
Affiliation(s)
- Jianjun Wu
- Department of Spine Surgery, The Third Clinical Medical College, Fujian Medical University
- Department of Spine Surgery, Fuzhou Second Hospital, PR China
- Corresponding author. No. 47, Shangteng Road, Cangshan District, Fuzhou 350007, Fujian Province, China.
| | - Shengxuan Wang
- Department of Spine Surgery, The Third Clinical Medical College, Fujian Medical University
- Department of Spine Surgery, Fuzhou Second Hospital, PR China
| | - Zhong Zheng
- Department of Spine Surgery, The Third Clinical Medical College, Fujian Medical University
- Department of Spine Surgery, Fuzhou Second Hospital, PR China
| | - Jianbao Li
- Department of Spine Surgery, The Third Clinical Medical College, Fujian Medical University
- Department of Spine Surgery, Fuzhou Second Hospital, PR China
| |
Collapse
|
18
|
The application of 3D bioprinting in urological diseases. Mater Today Bio 2022; 16:100388. [PMID: 35967737 PMCID: PMC9364106 DOI: 10.1016/j.mtbio.2022.100388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Urologic diseases are commonly diagnosed health problems affecting people around the world. More than 26 million people suffer from urologic diseases and the annual expenditure was more than 11 billion US dollars. The urologic cancers, like bladder cancer, prostate cancer and kidney cancer are always the leading causes of death worldwide, which account for approximately 22% and 10% of the new cancer cases and death, respectively. Organ transplantation is one of the major clinical treatments for urological diseases like end-stage renal disease and urethral stricture, albeit strongly limited by the availability of matching donor organs. Tissue engineering has been recognized as a highly promising strategy to solve the problems of organ donor shortage by the fabrication of artificial organs/tissue. This includes the prospective technology of three-dimensional (3D) bioprinting, which has been adapted to various cell types and biomaterials to replicate the heterogeneity of urological organs for the investigation of organ transplantation and disease progression. This review discusses various types of 3D bioprinting methodologies and commonly used biomaterials for urological diseases. The literature shows that advances in this field toward the development of functional urological organs or disease models have progressively increased. Although numerous challenges still need to be tackled, like the technical difficulties of replicating the heterogeneity of urologic organs and the limited biomaterial choices to recapitulate the complicated extracellular matrix components, it has been proved by numerous studies that 3D bioprinting has the potential to fabricate functional urological organs for clinical transplantation and in vitro disease models. Outline the advantages and characteristics of 3D printing compared with traditional methods for urological diseases. Guide the selection of 3D bioprinting technology and material in urological tissue engineering. Discuss the challenges and future perspectives of 3D bioprinting in urological diseases and clinical translation.
Collapse
|
19
|
Phan VHG, Murugesan M, Huong H, Le TT, Phan TH, Manivasagan P, Mathiyalagan R, Jang ES, Yang DC, Li Y, Thambi T. Cellulose Nanocrystals-Incorporated Thermosensitive Hydrogel for Controlled Release, 3D Printing, and Breast Cancer Treatment Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42812-42826. [PMID: 36112403 DOI: 10.1021/acsami.2c05864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In situ-gel-forming thermoresponsive copolymers have been widely exploited in controlled delivery applications because their critical gel temperature is similar to human body temperature. However, there are limitations to controlling the delivery of biologics from a hydrogel network because of the poor networking and reinforcement between the copolymer networks. This study developed an in situ-forming robust injectable and 3D printable hydrogel network based on cellulose nanocrystals (CNCs) incorporated amphiphilic copolymers, poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide (PCLA). In addition, the physicochemical and mechanical properties of injectable hydrogels were controlled by physically incorporating CNCs with amphiphilic PCLA copolymers. CNCs played an unprecedented role in physically reinforcing the PCLA copolymers' micelle network via intermicellar bridges. Apart from that, the free-flowing closely packed rod-like CNCs incorporated PCLA micelle networks at low temperature transformed to a stable viscoelastic hydrogel network at physiological temperature. CNC incorporated PCLA copolymer sols effectively coordinated with hydrophobic doxorubicin and water-soluble lysozyme by a combination of hydrophobic and hydrogen bonding interaction and controlled the release of biologics. As shown by the 3D printing results, the biocompatible PCLA hydrogels continuously extruded during printing had good injectability and maintained high shape fidelity after printing without any secondary cross-linking steps. The interlayer bonding between the printed layers was high and formed stable 3D structures up to 10 layers. Subcutaneous injection of free-flowing CNC incorporated PCLA copolymer sols to BALB/c mice formed a hydrogel instantly and showed controlled biodegradation of the hydrogel depot without induction of toxicity at the implantation sites or surrounding tissues. At the same time, the in vivo antitumor effect on the MDA-MB-231 tumor xenograft model demonstrated that DOX-loaded hydrogel formulation significantly inhibited the tumor growth. In summary, the CNC incorporated biodegradable hydrogels developed in this study exhibit a prolonged release with special release kinetics for hydrophobic and hydrophilic biologics.
Collapse
Affiliation(s)
- V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Ha Huong
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Thanh-Tam Le
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Thuy-Hien Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Panchanathan Manivasagan
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China
| | - Thavasyappan Thambi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
20
|
Assali M, Kittana N, Alhaj-Qasem S, Hajjyahya M, Abu-Rass H, Alshaer W, Al-Buqain R. Noncovalent functionalization of carbon nanotubes as a scaffold for tissue engineering. Sci Rep 2022; 12:12062. [PMID: 35835926 PMCID: PMC9283586 DOI: 10.1038/s41598-022-16247-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Tissue engineering is one of the hot topics in recent research that needs special requirements. It depends on the development of scaffolds that allow tissue formation with certain characteristics, carbon nanotubes (CNTs)-collagen composite attracted the attention of the researchers with this respect. However, CNTs suffer from low water dispersibility, which hampered their utilization. Therefore, we aim to functionalize CNTs non-covalently with pyrene moiety using an appropriate hydrophilic linker derivatized from polyethylene glycol (PEG) terminated with hydroxyl or carboxyl group to disperse them in water. The functionalization of the CNTs is successfully confirmed by TEM, absorption spectroscopy, TGA, and zeta potential analysis. 3T3 cells-based engineered connective tissues (ECTs) are generated with different concentrations of the functionalized CNTs (f-CNTs). These tissues show a significant enhancement in electrical conductivity at a concentration of 0.025%, however, the cell viability is reduced by about 10 to 20%. All ECTs containing f-CNTs show a significant reduction in tissue fibrosis and matrix porosity relative to the control tissues. Taken together, the developed constructs show great potential for further in vivo studies as engineered tissue.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Naim Kittana
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sahar Alhaj-Qasem
- Department of Pharmacy, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine
| | - Muna Hajjyahya
- Department of Physics, Faculty of Sciences, An-Najah National University, Nablus, Palestine
| | - Hanood Abu-Rass
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Rula Al-Buqain
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
21
|
A hierarchical vascularized engineered bone inspired by intramembranous ossification for mandibular regeneration. Int J Oral Sci 2022; 14:31. [PMID: 35732648 PMCID: PMC9217949 DOI: 10.1038/s41368-022-00179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Mandibular defects caused by injuries, tumors, and infections are common and can severely affect mandibular function and the patient’s appearance. However, mandible reconstruction with a mandibular bionic structure remains challenging. Inspired by the process of intramembranous ossification in mandibular development, a hierarchical vascularized engineered bone consisting of angiogenesis and osteogenesis modules has been produced. Moreover, the hierarchical vascular network and bone structure generated by these hierarchical vascularized engineered bone modules match the particular anatomical structure of the mandible. The ultra-tough polyion complex has been used as the basic scaffold for hierarchical vascularized engineered bone for ensuring better reconstruction of mandible function. According to the results of in vivo experiments, the bone regenerated using hierarchical vascularized engineered bone is similar to the natural mandibular bone in terms of morphology and genomics. The sonic hedgehog signaling pathway is specifically activated in hierarchical vascularized engineered bone, indicating that the new bone in hierarchical vascularized engineered bone underwent a process of intramembranous ossification identical to that of mandible development. Thus, hierarchical vascularized engineered bone has a high potential for clinical application in mandibular defect reconstruction. Moreover, the concept based on developmental processes and bionic structures provides an effective strategy for tissue regeneration.
Collapse
|
22
|
Saberi A, Behnamghader A, Aghabarari B, Yousefi A, Majda D, Huerta MVM, Mozafari M. 3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles. Int J Biol Macromol 2022; 207:9-22. [PMID: 35181332 DOI: 10.1016/j.ijbiomac.2022.02.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 01/20/2023]
Abstract
In this study, a three-dimensional composite scaffold is proposed consisting of polylactic acid and spray dried glass-ceramic microparticles (SGCMs). The compositional and structural characterization showed that the obtained spray dried powder formed as glass-ceramic (GC) with a completely interconnected porosity structure. Before direct printing of scaffolds, the rheological behavior of polylactic acid (PLA) and PLA-GC (PLA matrix containing SGCMs) inks were investigated. The PLA-GC composite ink represents sharper shear-thinning behavior and higher loss and storage modulus comparable to that of pure PLA. Microscopic observations and elemental mapping elements showed that 3D scaffolds had well-defined interconnected porosity and uniform distribution of the glass-ceramic particles. Mechanical tests indicated that compression strength is dependent on the scaffold porosity and the presence of SGCMs. Apatite formation evaluation besides ion release study showed better biomineralization capacity of PLA-GC scaffolds, as larger and denser sediments formed on the PLA-GC scaffolds after 7- and 14-day soaking. The preliminary cell response was studied with primary human mesenchymal stem cells (hMSCs) and revealed that SGCMs improved cell adhesion and viability and ALP activity. The appropriate combination of the biomaterials/methods to fabricate 3D porous constructs and their available bioactivity and biocompatibility, both being important characteristics for bone tissue engineering applications.
Collapse
Affiliation(s)
- Azadeh Saberi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Tehran, Iran
| | - Aliasghar Behnamghader
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Tehran, Iran.
| | - Behzad Aghabarari
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Tehran, Iran
| | - Aliakbar Yousefi
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Dorota Majda
- Department of Chemical technology, Jagiellonian University, Kraków, Poland
| | | | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Kamkar M, Ghaffarkhah A, Ajdary R, Lu Y, Ahmadijokani F, Mhatre SE, Erfanian E, Sundararaj U, Arjmand M, Rojas OJ. Structured Ultra-Flyweight Aerogels by Interfacial Complexation: Self-Assembly Enabling Multiscale Designs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200220. [PMID: 35279945 DOI: 10.1002/smll.202200220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The rapid co-assembly of graphene oxide (GO) nanosheets and a surfactant at the oil/water (O/W) interface is harnessed to develop a new class of soft materials comprising continuous, multilayer, interpenetrated, and tubular structures. The process uses a microfluidic approach that enables interfacial complexation of two-phase systems, herein, termed as "liquid streaming" (LS). LS is demonstrated as a general method to design multifunctional soft materials of specific hierarchical order and morphology, conveniently controlled by the nature of the oil phase and extrusion's injection pressure, print-head speed, and nozzle diameter. The as-obtained LS systems can be readily converted into ultra-flyweight aerogels displaying worm-like morphologies with multiscale porosities (micro- and macro-scaled). The presence of reduced GO nanosheets in such large surface area systems renders materials with outstanding mechanical compressibility and tailorable electrical activity. This platform for engineering soft materials and solid constructs opens up new horizons toward advanced functionality and tunability, as demonstrated here for ultralight printed conductive circuits and electromagnetic interference shields.
Collapse
Affiliation(s)
- Milad Kamkar
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Rubina Ajdary
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, Espoo, FI-00076, Finland
| | - Yi Lu
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Farhad Ahmadijokani
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sameer E Mhatre
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Elnaz Erfanian
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Orlando J Rojas
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, Espoo, FI-00076, Finland
| |
Collapse
|
24
|
Wu Y, Liu T, Shi Y, Wang H. Dramatically enhancing mechanical properties of hydrogels by drying reactive polymers at elevated temperatures to introduce strong physical and chemical crosslinks. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Qiao K, Xu L, Tang J, Wang Q, Lim KS, Hooper G, Woodfield TBF, Liu G, Tian K, Zhang W, Cui X. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnology 2022; 20:141. [PMID: 35303876 PMCID: PMC8932118 DOI: 10.1186/s12951-022-01342-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
With the gradual demographic shift toward an aging and obese society, an increasing number of patients are suffering from bone and cartilage injuries. However, conventional therapies are hindered by the defects of materials, failing to adequately stimulate the necessary cellular response to promote sufficient cartilage regeneration, bone remodeling and osseointegration. In recent years, the rapid development of nanomedicine has initiated a revolution in orthopedics, especially in tissue engineering and regenerative medicine, due to their capacity to effectively stimulate cellular responses on a nanoscale with enhanced drug loading efficiency, targeted capability, increased mechanical properties and improved uptake rate, resulting in an improved therapeutic effect. Therefore, a comprehensive review of advancements in nanomedicine for bone and cartilage diseases is timely and beneficial. This review firstly summarized the wide range of existing nanotechnology applications in the medical field. The progressive development of nano delivery systems in nanomedicine, including nanoparticles and biomimetic techniques, which are lacking in the current literature, is further described. More importantly, we also highlighted the research advancements of nanomedicine in bone and cartilage repair using the latest preclinical and clinical examples, and further discussed the research directions of nano-therapies in future clinical practice.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lu Xu
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Dermatology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 61004, Sichuan, China
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, China
| | - Kang Tian
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Weiguo Zhang
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Xiaolin Cui
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand.
| |
Collapse
|
26
|
Hatt LP, Thompson K, Helms JA, Stoddart MJ, Armiento AR. Clinically relevant preclinical animal models for testing novel cranio-maxillofacial bone 3D-printed biomaterials. Clin Transl Med 2022; 12:e690. [PMID: 35170248 PMCID: PMC8847734 DOI: 10.1002/ctm2.690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Bone tissue engineering is a rapidly developing field with potential for the regeneration of craniomaxillofacial (CMF) bones, with 3D printing being a suitable fabrication tool for patient-specific implants. The CMF region includes a variety of different bones with distinct functions. The clinical implementation of tissue engineering concepts is currently poor, likely due to multiple reasons including the complexity of the CMF anatomy and biology, and the limited relevance of the currently used preclinical models. The 'recapitulation of a human disease' is a core requisite of preclinical animal models, but this aspect is often neglected, with a vast majority of studies failing to identify the specific clinical indication they are targeting and/or the rationale for choosing one animal model over another. Currently, there are no suitable guidelines that propose the most appropriate animal model to address a specific CMF pathology and no standards are established to test the efficacy of biomaterials or tissue engineered constructs in the CMF field. This review reports the current clinical scenario of CMF reconstruction, then discusses the numerous limitations of currently used preclinical animal models employed for validating 3D-printed tissue engineered constructs and the need to reduce animal work that does not address a specific clinical question. We will highlight critical research aspects to consider, to pave a clinically driven path for the development of new tissue engineered materials for CMF reconstruction.
Collapse
Affiliation(s)
- Luan P. Hatt
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
- Department of Health Sciences and TechonologyInstitute for BiomechanicsETH ZürichZürichSwitzerland
| | - Keith Thompson
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| | - Jill A. Helms
- Division of Plastic and Reconstructive SurgeryDepartment of Surgery, Stanford School of MedicineStanford UniversityPalo AltoCalifornia
| | - Martin J. Stoddart
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| | - Angela R. Armiento
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| |
Collapse
|
27
|
Anandhapadman A, Venkateswaran A, Jayaraman H, Ghone NV. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects. Biotechnol Prog 2022; 38:e3234. [PMID: 35037419 DOI: 10.1002/btpr.3234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/11/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
The conventional methods of using autografts and allografts for repairing defects in bone, the osteochondral bone and the cartilage tissue have many disadvantages, like donor site morbidity and shortage of donors. Moreover, only 30% of the implanted grafts are shown to be successful in treating the defects. Hence, exploring alternative techniques such as tissue engineering to treat bone tissue associated defects is promising as it eliminates the above-mentioned limitations. To enhance the mechanical and biological properties of the tissue engineered product, it is essential to fabricate the scaffold used in tissue engineering by the combination of various biomaterials. Three-dimensional (3D) printing, with its ability to print composite materials and with complex geometry seems to have a huge potential in scaffold fabrication technique for engineering bone associated tissues.This review summarizes the recent applications and future perspectives of 3D printing technologies in the fabrication of composite scaffolds used in bone, osteochondral and cartilage tissue engineering. Key developments in the field of 3D printing technologies involves the incorporation of various biomaterials and cells in printing composite scaffolds mimicking physiologically relevant complex geometry & gradient porosity. Much recently, the emerging trend of printing smart scaffolds which can respond to external stimulus such as temperature, pH and magnetic field, known as 4D printing is gaining immense popularity and can be considered as the future of 3D printing applications in the field of tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ashwin Anandhapadman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Ajay Venkateswaran
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Hariharan Jayaraman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Nalinkanth Veerabadran Ghone
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam, Tamil Nadu, India
| |
Collapse
|
28
|
Liu G, ZHOU YUAN, Zhang X, Guo S. Advances in Hydrogels for Stem Cell Therapy: Regulation Mechanisms and Tissue Engineering Applications. J Mater Chem B 2022; 10:5520-5536. [DOI: 10.1039/d2tb01044e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stem cell therapy has shown unparalleled potential in tissue engineering, but it still faces challenges in the regulation of stem cell fate. Inspired by the native stem cell niche, a...
Collapse
|
29
|
Bakhtiary N, Liu C, Ghorbani F. Bioactive Inks Development for Osteochondral Tissue Engineering: A Mini-Review. Gels 2021; 7:274. [PMID: 34940334 PMCID: PMC8700778 DOI: 10.3390/gels7040274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Nowadays, a prevalent joint disease affecting both cartilage and subchondral bone is osteoarthritis. Osteochondral tissue, a complex tissue unit, exhibited limited self-renewal potential. Furthermore, its gradient properties, including mechanical property, bio-compositions, and cellular behaviors, present a challenge in repairing and regenerating damaged osteochondral tissues. Here, tissue engineering and translational medicine development using bioprinting technology provided a promising strategy for osteochondral tissue repair. In this regard, personalized stratified scaffolds, which play an influential role in osteochondral regeneration, can provide potential treatment options in early-stage osteoarthritis to delay or avoid the use of joint replacements. Accordingly, bioactive scaffolds with possible integration with surrounding tissue and controlling inflammatory responses have promising future tissue engineering perspectives. This minireview focuses on introducing biologically active inks for bioprinting the hierarchical scaffolds, containing growth factors and bioactive materials for 3D printing of regenerative osteochondral substitutes.
Collapse
Affiliation(s)
- Negar Bakhtiary
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14115-114, Iran;
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK;
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| |
Collapse
|
30
|
李 永, 周 俊, 胡 书, 王 家, 王 坤, 王 伟. [Methods of improving the mechanical properties of hydrogels and their research progress in bone tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1615-1622. [PMID: 34913320 PMCID: PMC8669179 DOI: 10.7507/1002-1892.202107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/13/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To review the methods of improving the mechanical properties of hydrogels and the research progress in bone tissue engineering. METHODS The recent domestic and foreign literature on hydrogels in bone tissue engineering was reviewed, and the methods of improving the mechanical properties of hydrogels and the effect of bone repair in vivo and in vitro were summarized. RESULTS Hydrogels are widely used in bone tissue engineering, but their mechanical properties are poor. Improving the mechanical properties of hydrogels can enhance bone repair. The methods of improving the mechanical properties of hydrogels include the construction of dual network structures, inorganic nanoparticle composites, introduction of conductive materials, and fiber network reinforcement. These methods can improve the mechanical properties of hydrogels to various degrees while also demonstrating a significant bone repair impact. CONCLUSION The mechanical properties of hydrogels can be effectively improved by modifying the system, components, and fiber structure, and bone repair can be effectively promoted.
Collapse
Affiliation(s)
- 永伟 李
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 俊鹏 周
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 书刚 胡
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 家麟 王
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 坤正 王
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 伟 王
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| |
Collapse
|
31
|
Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021; 13:1994. [PMID: 34959276 PMCID: PMC8703496 DOI: 10.3390/pharmaceutics13121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Daniela Placha
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
| |
Collapse
|
32
|
Vitus V, Ibrahim F, Wan Kamarul Zaman WS. Modelling of Stem Cells Microenvironment Using Carbon-Based Scaffold for Tissue Engineering Application-A Review. Polymers (Basel) 2021; 13:4058. [PMID: 34883564 PMCID: PMC8658938 DOI: 10.3390/polym13234058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
A scaffold is a crucial biological substitute designed to aid the treatment of damaged tissue caused by trauma and disease. Various scaffolds are developed with different materials, known as biomaterials, and have shown to be a potential tool to facilitate in vitro cell growth, proliferation, and differentiation. Among the materials studied, carbon materials are potential biomaterials that can be used to develop scaffolds for cell growth. Recently, many researchers have attempted to build a scaffold following the origin of the tissue cell by mimicking the pattern of their extracellular matrix (ECM). In addition, extensive studies were performed on the various parameters that could influence cell behaviour. Previous studies have shown that various factors should be considered in scaffold production, including the porosity, pore size, topography, mechanical properties, wettability, and electroconductivity, which are essential in facilitating cellular response on the scaffold. These interferential factors will help determine the appropriate architecture of the carbon-based scaffold, influencing stem cell (SC) response. Hence, this paper reviews the potential of carbon as a biomaterial for scaffold development. This paper also discusses several crucial factors that can influence the feasibility of the carbon-based scaffold architecture in supporting the efficacy and viability of SCs.
Collapse
Affiliation(s)
- Vieralynda Vitus
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
33
|
Liu H, Chen J, Qiao S, Zhang W. Carbon-Based Nanomaterials for Bone and Cartilage Regeneration: A Review. ACS Biomater Sci Eng 2021; 7:4718-4735. [PMID: 34586781 DOI: 10.1021/acsbiomaterials.1c00759] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the main load-bearing structure in the human body, bone and cartilage are susceptible to damage in sports and other activities. The repair and regeneration of bone and articular cartilage have been extensively studied in the past decades. Traditional approaches have been widely applied in clinical practice, but the effect varies from person to person and may cause side effects. With the rapid development of tissue engineering and regenerative medicine, various biomaterials show great potential in the regeneration of bone and cartilage. Carbon-based nanomaterials are solid materials with different structures and properties composed of allotropes of carbon, which are classified into zero-, one-, and two-dimensional ones. This Review systemically summarizes the different types of carbon-based nanomaterials, including zero-dimensional (fullerene, carbon dots, nanodiamonds), one-dimensional (carbon nanotubes), and two-dimensional (graphenic materials) as well as their applications in bone, cartilage, and osteochondral regeneration. Current limitations and future perspectives of carbon-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421 Homburg, Germany
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
34
|
Chen L, Xiao Y, Wu Q, Yan X, Zhao P, Ruan J, Shan J, Chen D, Weitz DA, Ye F. Emulsion Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102579. [PMID: 34390183 DOI: 10.1002/smll.202102579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Hierarchical emulsions are interesting for both scientific researches and practical applications. Hierarchical emulsions prepared by microfluidics require complicated device geometry and delicate control of flow rates. Here, a versatile method is developed to design hierarchical emulsions using microfluidic 3D droplet printing in droplet. The process of droplet printing in droplet mimics the dragonfly laying eggs and has advantages of easy processing and flexible design. To demonstrate the capability of the method, double emulsions and triple emulsions with tunable core number, core size, and core composition are prepared. The hierarchical emulsions are excellent templates for the developments of functional materials. Flattened crescent-moon-shaped particles are then fabricated using double emulsions printed in confined 2D space as templates. The particles are excellent delivery vehicles for 2D interfaces, which can load and transport cargos through a well-defined trajectory under external magnetic steering. Microfluidic 3D droplet printing in droplet provides a powerful platform with improved simplicity and flexibility for the design of hierarchical emulsions and functional materials.
Collapse
Affiliation(s)
- Li Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Yao Xiao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Qinglin Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xiaoxiao Yan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Dong Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
35
|
El-Habashy SE, El-Kamel AH, Essawy MM, Abdelfattah EZA, Eltaher HM. 3D printed bioinspired scaffolds integrating doxycycline nanoparticles: Customizable implants for in vivo osteoregeneration. Int J Pharm 2021; 607:121002. [PMID: 34390809 DOI: 10.1016/j.ijpharm.2021.121002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
3D printing has revolutionized pharmaceutical research, with applications encompassing tissue regeneration and drug delivery. Adopting 3D printing for pharmaceutical drug delivery personalization via nanoparticle-reinforced hydrogel scaffolds promises great regenerative potential. Herein, we engineered novel core/shell, bio-inspired, drug-loaded polymeric hydrogel scaffolds for pharmaceutically personalized drug delivery and superior osteoregeneration. Scaffolds were developed using biopolymeric blends of gelatin, polyvinyl alcohol and hyaluronic acid and integrated with composite doxycycline/hydroxyapatite/polycaprolactone nanoparticles (DX/HAp/PCL) innovatively via 3D printing. The developed scaffolds were optimized for swelling pattern and in-vitro drug release through tailoring the biphasic microstructure and wet/dry state to attain various pharmaceutical personalization platforms. Freeze-dried scaffolds with nanoparticles reinforcing the core phase (DX/HAp/PCL-LCS-FD) demonstrated favorably controlled swelling, preserved structural integrity and controlled drug release over 28 days. DX/HAp/PCL-LCS-FD featured double-ranged pore size (90.4 ± 3.9 and 196.6 ± 38.8 µm for shell and core phases, respectively), interconnected porosity and superior mechanical stiffness (74.5 ± 6.8 kPa) for osteogenic functionality. Cell spreading analysis, computed tomography and histomorphometry in a rabbit tibial model confirmed osteoconduction, bioresorption, immune tolerance and bone regenerative potential of the original scaffolds, affording complete defect healing with bone tissue. Our findings suggest that the developed platforms promise prominent local drug delivery and bone regeneration.
Collapse
Affiliation(s)
- Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, 21500 Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, 21131 Alexandria, Egypt
| | | | - Hoda M Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| |
Collapse
|
36
|
He M, Hou Y, Zhu C, He M, Jiang Y, Feng G, Liu L, Li Y, Chen C, Zhang L. 3D-Printing Biodegradable PU/PAAM/Gel Hydrogel Scaffold with High Flexibility and Self-Adaptibility to Irregular Defects for Nonload-Bearing Bone Regeneration. Bioconjug Chem 2021; 32:1915-1925. [PMID: 34247477 DOI: 10.1021/acs.bioconjchem.1c00322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A three-dimensional (3D) printed biodegradable hydrogel scaffold with a strong self-expanding ability to conform to the contour of irregular bone defects and be closely adjacent to host tissues is reported herein. The scaffold has a triple cross-linked network structure consisting of photo-cross-linked polyacrylamide (PAAM) and polyurethane (PU) as the primary IPN network and chemical cross-linked gelatin (Gel) as the secondary network, which confers the scaffold with good mechanical properties. The addition of PU in the polymerization process of acrylamide (AAM) can improve the ultraviolet (UV) photocuring efficiency of the hydrogel and incorporate abundant hydrogen bonds between the PAAM copolymer chain and the PU chain. The results show that the hydrogel scaffold contains regular structures with smooth morphology, excellent dimensional stability, and uniform aperture. The degradation rate of the hydrogel scaffold is controllable through adjusting cross-linking agents and can be up to about 60% after degradation for 28 days. More importantly, the rapid self-inflating characteristic of the scaffold in water, that is, the volume of hydrogel scaffold can increase to about 8 times that of their own in an hour and can generate a slight compressive stress on the surrounding host tissue, thus stimulating the reconstruction and growth of new bone tissues. The in vitro experiment indicates that the scaffold is nontoxic and biocompatible. The in vivo experiment shows that the PU/PAAM/Gel chemically cross-linked scaffold displays the desirable osteogenic capability. This UV-curable 3D printed self-adaptive and degradable hydrogel scaffold holds great potential for nonload-bearing bone repair.
Collapse
Affiliation(s)
- Meiling He
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Hou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Miaomiao He
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Yulin Jiang
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yubao Li
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Chen Chen
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Li Zhang
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
37
|
Cheng L, Suresh K S, He H, Rajput RS, Feng Q, Ramesh S, Wang Y, Krishnan S, Ostrovidov S, Camci-Unal G, Ramalingam M. 3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives. Int J Nanomedicine 2021; 16:4289-4319. [PMID: 34211272 PMCID: PMC8239380 DOI: 10.2147/ijn.s311001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.
Collapse
Affiliation(s)
- Lijia Cheng
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Shoma Suresh K
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hongyan He
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Ritu Singh Rajput
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Qiyang Feng
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Saravanan Ramesh
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Yuzhuang Wang
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Sasirekha Krishnan
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Serge Ostrovidov
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
38
|
El-Habashy SE, El-Kamel AH, Essawy MM, Abdelfattah EZA, Eltaher HM. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration. Biomater Sci 2021; 9:4019-4039. [PMID: 33899858 DOI: 10.1039/d1bm00062d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The versatility of 3D printing has rendered it an indispensable tool for the fabrication of composite hydrogel scaffolds, offering bone biomimetic features through inorganic and biopolymeric components as promising platforms for osteoregeneration. In this work, extrusion-based 3D printing was employed for the realization of osteoconductive composite biopolymer-based hydrogel scaffolds reinforced with hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles (HAp/PCL NPs) for osteoregeneration. The printing technique was optimized for ink printability and viscosity and crosslinking parameters, where a biopolymeric blend of gelatin, polyvinyl alcohol and hyaluronic acid was developed as innovative plain polymeric ink (PPI). Scaffolds were fabricated by 3D printing adopting a biphasic core/shell geometry, where the core phase of the scaffolds was reinforced with HAp/PCL NPs; the scaffolds were then freeze-dried. Novel composite freeze-dried, loaded-core scaffolds, HAp/PCL NPs-LCS-FD exhibited controlled swelling and maintained structural integrity for 28 days. The developed HAp/PCL NPs-LCS-FD also demonstrated double-ranged pore size, interconnected porosity and efficient mechanical stiffness and strength, favorable for osteoconductive actions. Cell infiltration studies, computed tomography and histomorphometry demonstrated that HAp/PCL NPs-LCS-FD afforded osteoconduction, biodegradation, biocompatibility and bone healing in rabbit tibial model, acting as a template for new bone formation. Our findings suggest that HAp/PCL NPs-LCS-FD could offer prominent bone regeneration and could be involved in various bone defects.
Collapse
Affiliation(s)
- Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | | | | | | | | |
Collapse
|
39
|
Qu M, Wang C, Zhou X, Libanori A, Jiang X, Xu W, Zhu S, Chen Q, Sun W, Khademhosseini A. Multi-Dimensional Printing for Bone Tissue Engineering. Adv Healthc Mater 2021; 10:e2001986. [PMID: 33876580 PMCID: PMC8192454 DOI: 10.1002/adhm.202001986] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Indexed: 02/05/2023]
Abstract
The development of 3D printing has significantly advanced the field of bone tissue engineering by enabling the fabrication of scaffolds that faithfully recapitulate desired mechanical properties and architectures. In addition, computer-based manufacturing relying on patient-derived medical images permits the fabrication of customized modules in a patient-specific manner. In addition to conventional 3D fabrication, progress in materials engineering has led to the development of 4D printing, allowing time-sensitive interventions such as programed therapeutics delivery and modulable mechanical features. Therapeutic interventions established via multi-dimensional engineering are expected to enhance the development of personalized treatment in various fields, including bone tissue regeneration. Here, recent studies utilizing 3D printed systems for bone tissue regeneration are summarized and advances in 4D printed systems are highlighted. Challenges and perspectives for the future development of multi-dimensional printed systems toward personalized bone regeneration are also discussed.
Collapse
Affiliation(s)
- Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Canran Wang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Alberto Libanori
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weizhe Xu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
40
|
Adorinni S, Rozhin P, Marchesan S. Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine. Biomedicines 2021; 9:570. [PMID: 34070138 PMCID: PMC8158376 DOI: 10.3390/biomedicines9050570] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Carbon nanomaterials include diverse structures and morphologies, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. They have attracted great interest in medicine for their high innovative potential, owing to their unique electronic and mechanical properties. In this review, we describe the most recent advancements in their inclusion in hydrogels to yield smart systems that can respond to a variety of stimuli. In particular, we focus on graphene and carbon nanotubes, for applications that span from sensing and wearable electronics to drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
41
|
Yang Y, Xu T, Zhang Q, Piao Y, Bei HP, Zhao X. Biomimetic, Stiff, and Adhesive Periosteum with Osteogenic-Angiogenic Coupling Effect for Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006598. [PMID: 33705605 DOI: 10.1002/smll.202006598] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/17/2021] [Indexed: 05/14/2023]
Abstract
Current periosteal grafts have limitations related to low mechanical strength, tissue adhesiveness, and poor osteogenesis and angiogenesis potential. Here, a periosteum mimicking bone aid (PMBA) with similar structure and function to natural periosteum is developed by electrospinning photocrosslinkable methacrylated gelatin (GelMA), l-arginine-based unsaturated poly(ester amide) (Arg-UPEA), and methacrylated hydroxyapatite nanoparticles (nHAMA). Such combination of materials enhances the material mechanical strength, favors the tissue adhesion, and guarantees the sustained activation of nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling pathway, with well-coordinated osteogenic-angiogenic coupling effect for accelerated bone regeneration. This work presents a proof-of-concept demonstration of thoroughly considering the progression of implant biomaterials: that is, the initial material components (i.e., GelMA, Arg-UPEA, and nHAMA) equip the scaffold with suitable structure and function, while its degradation products (i.e., Ca2+ and l-arginine) are involved in long-term mediation of physiological activities. It is envisioned that the strategy will inspire the design of high-performance bioscaffolds toward bone and periosteum tissue engineering.
Collapse
Affiliation(s)
- Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Tianpeng Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yun Piao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
42
|
Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci 2021; 9:535-573. [DOI: 10.1039/d0bm00973c] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, 3D bioprinting has received immense attention from research communities to bridge the divergence between artificially engineered tissue constructs and native tissues.
Collapse
Affiliation(s)
- Mohsen Askari
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Moqaddaseh Afzali Naniz
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Monireh Kouhi
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | - Azadeh Saberi
- Nanotechnology and Advanced Materials Department
- Materials and Energy Research Center
- Tehran
- Iran
| | | | - Mahdi Bodaghi
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| |
Collapse
|
43
|
Processing Methods Used in the Fabrication of Macrostructures Containing 1D Carbon Nanomaterials for Catalysis. Processes (Basel) 2020. [DOI: 10.3390/pr8111329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A large number of methodologies for fabrication of 1D carbon nanomaterials have been developed in the past few years and are extensively described in the literature. However, for many applications, and in particular in catalysis, a translation of the materials to a macro-structured form is often required towards their use in practical operation conditions. This review intends to describe the available methods currently used for fabrication of such macro-structures, either already applied or with potential for application in the fabrication of macro-structured catalysts containing 1D carbon nanomaterials. A review of the processing methods used in the fabrication of macrostructures containing 1D sp2 hybridized carbon nanomaterials is presented. The carbon nanomaterials here discussed include single- and multi-walled carbon nanotubes, and several types of carbon nanofibers (fishbone, platelet, stacked cup, etc.). As the processing methods used in the fabrication of the macrostructures are generally very similar for any of the carbon nanotubes or nanofibers due to their similar chemical nature (constituted by stacked ordered graphene planes), the review aggregates all under the carbon nanofiber (CNF) moniker. The review is divided into methods where the CNFs are synthesized already in the form of a macrostructure (in situ methods) or where the CNFs are previously synthesized and then further processed into the desired macrostructures (ex situ methods). We highlight in particular the advantages of each approach, including a (non-exhaustive) description of methods commonly described for in situ and ex situ preparation of the catalytic macro-structures. The review proposes methods useful in the preparation of catalytic structures, and thus a number of techniques are left out which are used in the fabrication of CNF-containing structures with no exposure of the carbon materials to reactants due to, for example, complete coverage of the CNF. During the description of the methodologies, several different macrostructures are described. A brief overview of the potential applications of such structures in catalysis is also offered herein, together with a short description of the catalytic potential of CNFs in general.
Collapse
|
44
|
Mehrotra D, Dwivedi R, Nandana D, Singh RK. From injectable to 3D printed hydrogels in maxillofacial tissue engineering: A review. J Oral Biol Craniofac Res 2020; 10:680-689. [PMID: 33072505 DOI: 10.1016/j.jobcr.2020.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction This review aims at describing different types of hydrogels in context to their composition, fabrication techniques and other specific features along with an insight into the latest advancements including smart hydrogels, 3D printed, programmable, shape memory and self-healing hydrogels for their applicability as scaffold in maxillofacial bone and cartilage tissue regeneration. Methods Electronic database searches were undertaken on PubMed, Ovid, Medline, Embase, ProQuest and science direct for English language literature, published for application of hydrogels in maxillofacial bone and cartilage tissue engineering. The search items used in this article were hydrogel, bone and cartilage tissue engineering, maxillofacial, clinical trials. Reviews and in vitro studies were excluded. Results Search for injectable hydrogel showed 4955 articles, when restricted to bone tissue engineering results were reduced to 463 and for cartilage engineering to 335; when we limited it to maxillofacial bone and cartilage tissue engineering, search results showed 49 articles to which 9 additional articles were included from references, after exclusion of in-vitro studies and duplicates 16 articles were obtained for our study. Similarly, for 3D printed hydrogels, result showed 1126 articles, which got restricted to 19 when searched for maxillofacial bone and cartilage engineering, then 2 additional articles were included directly from references, and finally after exclusion of the invitro studies and duplicates, a total of 5 articles were obtained. Conclusion Modifications in hydrogel can improve the mechanical properties, biocompatibility and unique chemistries for its use in bone and cartilage tissue engineering for future research.
Collapse
Affiliation(s)
- Divya Mehrotra
- Professor, Dept of Oral & Maxillofacial Surgery, King George's Medical University, Lucknow, India
| | - Ruby Dwivedi
- Research Student, Dept of Oral & Maxillofacial Surgery, King George's Medical University, Lucknow, India
| | - Deepti Nandana
- Research Student, Dept of Oral & Maxillofacial Surgery, King George's Medical University, Lucknow, India
| | - R K Singh
- Professor, Dept of Oral & Maxillofacial Surgery, King George's Medical University, Lucknow, India
| |
Collapse
|
45
|
Harris JT, McNeil AJ. Localized hydrogels based on cellulose nanofibers and wood pulp for rapid removal of methylene blue. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Justin T. Harris
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| | - Anne J. McNeil
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
46
|
Szymański T, Mieloch AA, Richter M, Trzeciak T, Florek E, Rybka JD, Giersig M. Utilization of Carbon Nanotubes in Manufacturing of 3D Cartilage and Bone Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4039. [PMID: 32933020 PMCID: PMC7560098 DOI: 10.3390/ma13184039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022]
Abstract
Cartilage and bone injuries are prevalent ailments, affecting the quality of life of injured patients. Current methods of treatment are often imperfect and pose the risk of complications in the long term. Therefore, tissue engineering is a rapidly developing branch of science, which aims at discovering effective ways of replacing or repairing damaged tissues with the use of scaffolds. However, both cartilage and bone owe their exceptional mechanical properties to their complex ultrastructure, which is very difficult to reproduce artificially. To address this issue, nanotechnology was employed. One of the most promising nanomaterials in this respect is carbon nanotubes, due to their exceptional physico-chemical properties, which are similar to collagens-the main component of the extracellular matrix of these tissues. This review covers the important aspects of 3D scaffold development and sums up the existing research tackling the challenges of scaffold design. Moreover, carbon nanotubes-reinforced bone and cartilage scaffolds manufactured using the 3D bioprinting technique will be discussed as a novel tool that could facilitate the achievement of more biomimetic structures.
Collapse
Affiliation(s)
- Tomasz Szymański
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland
| | - Adam Aron Mieloch
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland
| | - Magdalena Richter
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 czerwca 1956r. Street No. 135/147, 61-545 Poznan, Poland;
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 czerwca 1956r. Street No. 135/147, 61-545 Poznan, Poland;
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
| | - Michael Giersig
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
- Department of Physics, Institute of Experimental Physics, Freie Universität, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
47
|
Zhao Y, Li Z, Jiang Y, Liu H, Feng Y, Wang Z, Liu H, Wang J, Yang B, Lin Q. Bioinspired mineral hydrogels as nanocomposite scaffolds for the promotion of osteogenic marker expression and the induction of bone regeneration in osteoporosis. Acta Biomater 2020; 113:614-626. [PMID: 32565370 DOI: 10.1016/j.actbio.2020.06.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Osteoporosis is one of the most prevalent age-related diseases worldwide and is characterized by a systemic deterioration of bone strength (bone mineral density and bone quality) with a resulting increase in fragility fractures. Due to the complex osteoporotic pathological environment, it is a huge challenge to induce bone regeneration under osteoporosis conditions. In this study, we successfully nanoengineer a bioinspired mineralized hydrogel from the supramolecular assembly of nano-hydroxyapatite, sodium carbonate, and polyacrylic acid, termed as CHAp-PAA. The resultant nanocomposite hydrogels can maintain their initial morphology and mechanical properties under physiological conditions, while exhibiting good primary stability, biocompatibility, bioactivity, and osteoconductivity. We demonstrate that this optimized hydrogel scaffold has shown superior performance for bone marrow stem cells (BMSCs) proliferation, differentiation, and extracellular matrix production in vitro. Remarkably, the mineralized CHAp-PAA hydrogels could be used as scaffolds for the critical-sized bone defect (6.0 mm diameter and 10.0 mm depth) in the osteoporotic rabbit model. Without the delivery of additional therapeutic agents or stem cells, these CHAp-PAA hydrogel scaffolds can improve bone ingrowth and accelerate new bone formation even in complex osteoporotic pathological environments. Therefore, this work presents a type of bioinspired multifunctional mineral hydrogel that offers an alternative strategy to manage osteoporosis. STATEMENT OF SIGNIFICANCE.
Collapse
|
48
|
Jha R, Singh A, Sharma P, Fuloria NK. Smart carbon nanotubes for drug delivery system: A comprehensive study. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Feng J, Mu X, Wang W, Xu Y. A topic analysis method based on a three-dimensional strategic diagram. J Inf Sci 2020. [DOI: 10.1177/0165551520930907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the tremendous growth of scientific literature in recent years, methods of detecting and analysing research topics have become more and more important. This study proposes a topic analysis method combining latent Dirichlet allocation (LDA) and a three-dimensional strategic diagram. This study constructs the three-dimensional strategic diagram by three dimensions of centrality, density and novelty, and we classify topics into seven categories according to their strategic positions. Using this topic analysis method, the paper analyses 62,340 publications in the field of medical informatics between 1991 and 2018. Results show that the research scope of medical informatics has become increasingly interdisciplinary. Data analytical methods and technologies are sub-domains with persistent popularity. New health technologies, drug safety, algorithm optimisation and standardisation of medical information are emerging research topics. We hope the findings could help researchers identify potential research topics and facilitate in-depth analysis of the current state of various fields.
Collapse
Affiliation(s)
- Jia Feng
- Department of Medical Informatics, Public Health School, Jilin University, China
| | - Xiaomin Mu
- Department of Medical Informatics, Public Health School, Jilin University, China
| | - Wei Wang
- Department of Medical Informatics, Public Health School, Jilin University, China
| | - Ying Xu
- School of Computer Science and Technology, Jilin University, China
| |
Collapse
|
50
|
Synthesis, Characterization, and In Vitro and In Vivo Evaluations of Cellulose Hydrogels Enriched with Larrea tridentata for Regenerative Applications. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1425402. [PMID: 32382527 PMCID: PMC7193276 DOI: 10.1155/2020/1425402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 04/10/2020] [Indexed: 11/17/2022]
Abstract
Introduction Tissue engineering is an elementary necessity for several applications in the biomedical field through the use of several biopolymers derived from plants. Larrea tridentata (LT) is a very used plant for various medicinal applications with interesting properties; however, its use into cellulose hydrogels for possible regenerative therapeutics is still limited. Cellulose films could be applied in medical field as wound healing, scaffold for connective tissue for periodontal applications, and so on. The aim of this study was to evaluate the mechanical properties and in vivo and in vitro biocompatibility of cellulose hydrogels that have been enriched with LT in a rat model. Methods By in vivo and in vitro assays, the concentration of LT was varied from 1 to 5 wt%, respectively. Hydrogel films were implanted intramuscularly into female Wistar rats, 250 g in weight and aged 2 months, to analyze their cytocompatibility and biocompatibility. Results No case showed any evidence of inflammation or toxicity. Regarding cell morphology and adhesion, the prepared LT cellulose films had better cytocompatibility values than when polystyrene (PS) dishes were used as the control. In all cases, the results suggest that the addition of LT to the hydrogel films did not affect their cytocompatibility or biocompatibility properties and increases their clinical application due to the reported uses of LT. Conclusions Cellulose hydrogel films enriched with LT have the potential to be used in the biomedical field acting as regenerative scaffolds.
Collapse
|