1
|
Shi X, Pu H, Shi LL, He TC, Chen J. Advancing transistor-based point-of-care (POC) biosensors: additive manufacturing technologies and device integration strategies for real-life sensing. NANOSCALE 2025; 17:9804-9833. [PMID: 40171618 DOI: 10.1039/d4nr04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Infectious pathogens pose a significant threat to public health and healthcare systems, making the development of a point-of-care (POC) detection platform for their early identification a key focus in recent decades. Among the numerous biosensors developed over the years, transistor-based biosensors, particularly those incorporating nanomaterials, have emerged as promising candidates for POC detection, given their unique electronic characteristics, compact size, broad dynamic range, and real-time biological detection capabilities with limits of detection (LODs) down to zeptomolar levels. However, the translation of laboratory-based biosensors into practical applications faces two primary challenges: the cost-effective and scalable fabrication of high-quality transistor sensors and functional device integration. This review is structured into two main parts. The first part examines recent advancements in additive manufacturing technologies-namely in screen printing, inkjet printing, aerosol jet printing, and digital light processing-and evaluates their applications in the mass production of transistor-based biosensors. While additive manufacturing offers significant advantages, such as high quality, cost-effectiveness, rapid prototyping, less instrument reliance, less material waste, and adaptability to diverse surfaces, challenges related to uniformity and yield remain to be addressed before these technologies can be widely adopted for large-scale production. The second part focuses on various functional integration strategies to enhance the practical applicability of these biosensors, which is essential for their successful translation from laboratory research to commercialization. Specifically, it provides a comprehensive review of current miniaturized lab-on-a-chip systems, microfluidic manipulation, simultaneous sampling and detection, wearable implementation, and integration with the Internet of Things (IoT).
Collapse
Affiliation(s)
- Xiaoao Shi
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Haihui Pu
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Junhong Chen
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Tolibia SM, Salinas RA, Millán-Pacheco C, Castrejón González EO, Vázquez-Montelongo EA, Romero JE, Santana G, Dutt A. Efficient one-step immobilization of DNA probes on 1DZnO nanoplatforms targeting a low-mutation region of SARS-CoV-2. Biofabrication 2025; 17:025029. [PMID: 40096751 DOI: 10.1088/1758-5090/adc159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Fabricating cost-effective biosensors with rapid response times is highly desirable during pandemic scenarios, where accuracy, swift detection, and portability are crucial for making prompt decisions. The design and conceptualization of these devices at early stages are critical for enhancing their output responses. In this work, we implemented a one-step immobilization strategy for DNA probes targeting a low-mutation region from the envelope protein of SARS-CoV-2 onto one-dimensional ZnO nanostructures (1DZnO) to achieve high detection efficiency. First, DNA probes were designed to select a highly conserved region (L28-A36) among SARS-CoV-2 subvariants using bioinformatic analysis. Then, dynamic simulations were performed to estimate the binding affinity of DNA to 1DZnO, where phosphate molecules were identified as the functional groups with the highest affinity to the ZnO surface, followed by the sugar rings and the base pairs. In addition, linear interaction energies and their average contributions were calculated for the ssDNA/ZnO interfaces. Computational simulations were correlated to experimental techniques, where suitable DNA immobilization and target detection were confirmed by FTIR, photoluminescence (PL), transmission electron microscopy, and elemental mapping, corroborating the adsorption of DNA across the entire 1DZnO surface. Intense peaks related to C-C, C=C, C=N, P-O, and N-H were identified as the most important by FTIR characterizations, whereas PL showed a distinctive shift in deep level emission band between 520-530 nm, with a partial quenching of the near band emission signal, obtaining as well variations in the calculated bandgap. In summary, it is suggested that structural oxygen vacancies of 1DZnO nanoplatforms provide a significant proportion of active available sites for an easy and strong interaction with the phosphate backbone of DNA, enhancing physical adsorption. Furthermore, molecular validation by PCR confirmed the long-term stability of immobilized DNA probes, probing their suitability for further biosensing devices.
Collapse
Affiliation(s)
- Shirlley Martínez Tolibia
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales Universidad Nacional Autoénoma de Meéxico, Meéxico City 04510, Mexico
| | - Rafael A Salinas
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales Universidad Nacional Autoénoma de Meéxico, Meéxico City 04510, Mexico
| | - Cesar Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos. Cuernavaca, Morelos 62209, Mexico
| | - Edgar O Castrejón González
- Departamento de Ingeniería Química, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato 38010, Mexico
| | - Erik A Vázquez-Montelongo
- Departamento de Ingeniería Química, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato 38010, Mexico
| | - Josué E Romero
- Laboratorio Universitario de Microscopía Electrónica (LUME), Instituto de Investigaciones en Materiales Universidad Nacional Autoénoma de Meéxico, Meéxico City 04510, Mexico
| | - Guillermo Santana
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales Universidad Nacional Autoénoma de Meéxico, Meéxico City 04510, Mexico
| | - Ateet Dutt
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales Universidad Nacional Autoénoma de Meéxico, Meéxico City 04510, Mexico
| |
Collapse
|
3
|
Shoaib M, Li H, Zareef M, Khan IM, Iqbal MW, Niazi S, Raza H, Yan Y, Chen Q. Recent Advances in Food Safety Detection: Split Aptamer-Based Biosensors Development and Potential Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4397-4424. [PMID: 39943644 DOI: 10.1021/acs.jafc.4c06338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ensuring food safety is a shared responsibility across the entire food supply chain, encompassing manufacturers, processors, retailers, consumers, and regulatory bodies. However, traditional detection methods have several limitations, including slow processing times, high costs, limited sensitivity, and susceptibility to false positives or negatives. These shortcomings underscore the urgent need for faster, more accurate, and cost-effective detection technologies. Aptamers and aptasensors have emerged as promising alternatives. Aptamers offer advantages over traditional recognition probes due to their high affinity and specificity for diverse targets. The aptasensors enable rapid detection, cost reduction, shelf life extension, and minimal batch-to-batch variability, making them highly suitable for food safety applications. Detecting small molecules such as toxins, antibiotics, pesticides, contaminants, and heavy metals remains challenging due to steric hindrance, nonspecific binding, and reduced accuracy. Recent advancements in aptamer technology have focused on pre- and postmodifications to enhance detection performance. One of the most promising innovations is the development of split aptamers. These engineered aptamers, designed to operate in segments known as split aptamers, offer improved flexibility and binding specificity, effectively addressing the challenges of detecting small-sized targets. This review examines the evolution of aptamers and aptasensors, focusing on their application in detecting small molecules that are essential to food safety. It reported the strategies for modifying and optimizing selected aptamers, providing details on developing split aptamers as a promising approach to address the unique challenges of small-molecule detection. Additionally, recent advancements in split aptamer technology and its integration into aptasensor development are highlighted, showcasing how these innovations are revolutionizing the detection of food safety hazards by overcoming the limitations of traditional detection methods.
Collapse
Affiliation(s)
- Muhammad Shoaib
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 213013, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 213013, China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 213013, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Muhammad Waheed Iqbal
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 213013, China
| | - Sobia Niazi
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Husnain Raza
- Department of Food Science, Design and Consumer Behaviour, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Copenhagen, Denmark
| | - Yiyong Yan
- Shenzhen Bioeasy Biotechnology Co., Ltd., Shenzhen 518060, China
- Shenzhen Senlanthy Technology Co., Ltd., Shenzhen 518060, China
| | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
4
|
Yu H, Yu J, Yao G. Recent Advances in Aptamers-Based Nanosystems for Diagnosis and Therapy of Cardiovascular Diseases: An Updated Review. Int J Nanomedicine 2025; 20:2427-2443. [PMID: 40034222 PMCID: PMC11873322 DOI: 10.2147/ijn.s507715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
The increasing global prevalence of cardiovascular diseases highlights the urgent need for innovative diagnostic and therapeutic strategies. Aptamers, small single-stranded nucleic acid molecules with exceptional specificity and affinity for target biomolecules, have emerged as promising tools for precise diagnostics and targeted therapies. Their selective binding capabilities provide valuable insights into the molecular mechanisms underlying cardiovascular conditions. When integrated into nanosystems, aptamers enhance the delivery, bioavailability, and stability of diagnostic and therapeutic agents, addressing challenges of solubility and degradation. This integration enables more targeted drug delivery, advanced imaging techniques, and improved therapeutic interventions, ultimately improving the management of cardiovascular diseases. Recent advancements in aptamer selection methodologies, coupled with their unique three-dimensional structures, have significantly expanded their application potential in cardiovascular health. By combining aptamers with nanosystems, novel approaches to cardiovascular disease diagnosis and treatment are emerging, promising enhanced efficacy, safety, and precision. This review explores recent progress in the development and application of aptamer-based nanosystems in cardiovascular diagnostics and therapies.
Collapse
Affiliation(s)
- Hongqin Yu
- Department of Cardiovascular Medicine, Yantai Mountain Hospital, Yantai, 264000, People’s Republic of China
| | - Jie Yu
- Department of Cardiovascular Medicine, Yantai Mountain Hospital, Yantai, 264000, People’s Republic of China
| | - Gang Yao
- Department of Cardiovascular Medicine, Yantai Mountain Hospital, Yantai, 264000, People’s Republic of China
| |
Collapse
|
5
|
He Y, Tian R, Shen W, Zhang J, Tao C. An autocatalytic hybridization circuit-based FRET aptasensor for detection of low-abundant sulfameter in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125241. [PMID: 39388936 DOI: 10.1016/j.saa.2024.125241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Exposure to antibiotics is considered a potential risk factor for human health. Yet, the extensive and cost-effective detection of low-abundant antibiotics in complex matrices remains a significant challenge. Herein, an aptamer and an autocatalytic hybridization circuit (AHC) were used to fabricate a fluorescence resonance energy transfer (FRET) platform to detect sulfameter (SME) in human serum. The AHC system comprised two mutually motivated hybridization chain reactions (HCR) modules, ultimately producing long-branched DNA copolymeric nanowires. This mutually reciprocal activation of two HCR modules enables continuous signal amplification, providing the AHC system with wide linear range and high sensitivity for the SME detection. Compared to the HCR-based aptasensor, the AHC-based aptasensor exhibited a wider linear range and improved sensitivity (3.3 times greater). Under optimal conditions, the fluorescent AHC-based aptasensor demonstrated a linear range (R2 was 0.996) from 0.5 to 2000 nM, with a low detection limit of 0.301 nM (S/N = 3). The fluorescent aptasensor was also validated by SME-spiked human serum samples, showing average recoveries ranging from 96.40 % to 109.30 %, with a relative standard deviation below 10.45 %. Furthermore, when tested on six human serum samples, the aptasensor results were consistent with those obtained from the commercial ELISA method. These findings demonstrate that the proposed aptasensor provides a promising approach for the practical monitoring of low-abundant SME in human serum.
Collapse
Affiliation(s)
- Yanping He
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| | - Ruifen Tian
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Weili Shen
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Jingrui Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Chen Tao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| |
Collapse
|
6
|
Nirala NR, Sadhasivam S, Singh RK, Sionov E, Shtenberg G. Sensitive ratiometric detection of Fumonisin B 1 using a reusable Ag-pSi SERS platform. Food Chem X 2025; 25:102151. [PMID: 39850046 PMCID: PMC11754687 DOI: 10.1016/j.fochx.2024.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Food and agricultural commodities endure consistent contamination by mycotoxins, low molecular weight fungal metabolites, which pose severe health implications to humans together with staggering economic losses. Herein, a ratiometric aptasensor was constructed using silver-coated porous silicon (Ag-pSi) used as an efficient surface-enhanced Raman scattering (SERS) substrate. The bioassay included direct detection of fumonisin B1 (FB1), an abundant and widespread contaminant, by a specific aptamer sequence immobilized on the porous transducer. The inherent surface void and pore morphology were physically optimized to achieve a sufficient SERS effect (enhancement factor > 5 × 107). Under optimal conditions, the aptasensor exhibits high sensitivity, wide dynamic range, signal stability, selectivity and regeneration for consecutive FB1 detection (0.05 ppb, 0.1-1000 ppb, RSD of 5.2 %, no interference with competing mycotoxins and eight regeneration cycles, respectively). The efficacy of the designed aptasensor was elucidated in various spiked matrices (maize, onion, wheat and milk) with averaged recovery values of 93.3-113.6 % and satisfactory consistency with HPLC data for representative foodstuffs. Overall, the resulting validation emphasizes the transducer's reliability and suitability for practical use, including on-site analysis.
Collapse
Affiliation(s)
- Narsingh R. Nirala
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion, Israel
| | - Sudharsan Sadhasivam
- Institute of Postharvest and Food Sciences, ARO, Volcani Institute, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Rohit Kumar Singh
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion, Israel
| | - Edward Sionov
- Institute of Postharvest and Food Sciences, ARO, Volcani Institute, Rishon LeZion, Israel
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
7
|
Malecka-Baturo K, Grabowska I. Efficiency of electrochemical immuno- vs. apta(geno)sensors for multiple cancer biomarkers detection. Talanta 2025; 281:126870. [PMID: 39298804 DOI: 10.1016/j.talanta.2024.126870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The interest in biosensors technology has been constantly growing over the last few years. It is still the biggest challenge to design biosensors able to detect two or more analytes in a single measurement. Electrochemical methods are frequently used for this purpose, mainly due to the possibility of applying two or more different redox labels characterized by independent and distinguished electrochemical signals. In addition to antibodies, nucleic acids (aptamers) have been increasingly used as bioreceptors in the construction of such sensors. Within this review paper, we have collected the examples of electrochemical immuno- and geno(apta)sensors for simultaneous detection of multiple analytes. Based on many published literature examples, we have emphasized the recent application of multiplexed platforms for detection of cancer biomarkers. It has allowed us to compare the progress in design strategies, including novel nanomaterials and amplification of signals, to get as low as possible limits of detection. We have focused on multi-electrode and multi-label strategies based on redox-active labels, such as ferrocene, anthraquinone, methylene blue, thionine, hemin and quantum dots, or metal ions such as Ag+, Pb2+, Cd2+, Zn2+, Cu2+ and others. We have finally discussed the possible way of development, challenges and prospects in the area of multianalyte electrochemical immuno- and geno(apta)sensors.
Collapse
Affiliation(s)
- Kamila Malecka-Baturo
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
8
|
Selvam K, Najib MA, Khalid MF, Yunus MH, Wahab HA, Harun A, Zainulabid UA, Fadzli Mustaffa KM, Aziah I. Isolation and characterization of ssDNA aptamers against BipD antigen of Burkholderia pseudomallei. Anal Biochem 2024; 695:115655. [PMID: 39214325 DOI: 10.1016/j.ab.2024.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Melioidosis is difficult to diagnose due to its wide range of clinical symptoms. The culture method is time-consuming and less sensitive, emphasizing the importance of rapid and accurate diagnostic tests for melioidosis. Burkholderia invasion protein D (BipD) of Burkholderia pseudomallei is a potential diagnostic biomarker. This study aimed to isolate and characterize single-stranded DNA aptamers that specifically target BipD. METHODS The recombinant BipD protein was produced, followed by isolation of BipD-specific aptamers using Systematic Evolution of Ligands by EXponential enrichment. The binding affinity and specificity of the selected aptamers were evaluated using Enzyme-Linked Oligonucleotide Assay. RESULTS The fifth SELEX cycle showed a notable enrichment of recombinant BipD protein-specific aptamers. Sequencing analysis identified two clusters with a total of seventeen distinct aptamers. AptBipD1, AptBipD13, and AptBipD50 were chosen based on their frequency. Among them, AptBipD1 exhibited the highest binding affinity with a Kd value of 1.0 μM for the recombinant BipD protein. Furthermore, AptBipD1 showed significant specificity for B. pseudomallei compared to other tested bacteria. CONCLUSION AptBipD1 is a promising candidate for further development of reliable, affordable, and efficient point-of-care diagnostic tests for melioidosis.
Collapse
Affiliation(s)
- Kasturi Selvam
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Muhammad Hafiznur Yunus
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Ummu Afeera Zainulabid
- Department of Internal Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, 25200, Pahang, Malaysia
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
| |
Collapse
|
9
|
Dadmehr M, Shalileh F, Hosseini M. Enhancing mycotoxins detection through quantum dots-based optical biosensors. NANOTECHNOLOGY 2024; 36:042004. [PMID: 39508269 DOI: 10.1088/1361-6528/ad8c4d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Quantum dot-based optical biosensors represent a significant advancement for detection of mycotoxins that are toxic secondary metabolites produced by fungi and pose serious health risk effects. This review highlights the importance of detection of filamentous fungi such as Aspergillus, Penicillium, Fusarium, Claviceps, and Alternaria in mycotoxin production, leading to contamination of agricultural products and subsequent health issues. Conventional detection methods such as thin-layer chromatography, high-performance liquid chromatography, gas chromatography, and enzyme-linked immunosorbent assay are discussed with their respective advantages and limitations. Then the innovative use of quantum dots (QDs) in fabrication of biosensors is discussed in the present review, emphasizing their unique optical properties, such as size-tunable fluorescence and high photostability. These properties enable the development of highly sensitive and specific biosensors for mycotoxin detection. The application of QD-based biosensors, based on their applied bioreceptors including antibodies, molecularly imprinted polymers and aptamer, is explored through various detection strategies and recent advancements. The review concludes by underscoring the potential of QD-based biosensors in providing portable, cost-effective, and efficient solutions for real-time monitoring of mycotoxin for enhancing food safety and protecting public health.
Collapse
Affiliation(s)
- Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Farzaneh Shalileh
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Alanazi S, Rhouati A, Chrouda A, Cialla-May D, Popp J, Muthana S, Dasouki M, Zourob M. Design of an innovative aptasensor for the detection of chemotherapeutic drug Fludarabine phosphate. Sci Rep 2024; 14:26300. [PMID: 39487287 PMCID: PMC11530680 DOI: 10.1038/s41598-024-78039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Monitoring the concentration of Fludarabine phosphate, a standard chemotherapeutic drug widely used in cancer treatment, is vital for ensuring the drug's safety and effectiveness, tailoring treatments to individual needs, and consequently improving overall patient outcomes. Regarding the limitations of conventional techniques in terms of complexity, large time measurements, and a high cost, there is an urgent need to develop simple, rapid, and cost-effective devices. In this paper, we report the design of an aptasensor for the specific and selective detection of Fludarabine. Systematic evolution of ligands by exponential enrichment (SELEX) protocol was performed to select a specific aptamer for Fludarabine. Eleven rounds were carried out, and nine sequences were selected. Based on the dissociation constant (Kd), Ful-3, exhibiting the highest affinity (18.86 nM), was chosen and integrated into a simple electrochemical aptasensing platform for Fludarabine detection. Electrochemical results demonstrated good performance of the selected aptamer in detecting Fludarabine within the analytical range of 1 to 150 pg/mL and with LOD and LOQ in the order of 0.11 pg/mL (0.31 fM) and 0.39 pg/mL (1.06 fM), respectively. The developed platform also showed good selectivity against different analogous molecules and high applicability in serum-spiked samples, with recovery percentages ranging from 96.81 to 99.04%. Considering the encouraging results, this research presents an excellent alternative in terms of simplicity, stability, ease of use, reduction of sample volume, and low cost.
Collapse
Affiliation(s)
- Shamsa Alanazi
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh, 11355, Saudi Arabia
| | - Amina Rhouati
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh, 11355, Saudi Arabia
| | - Amani Chrouda
- Department of Chemistry, College of Science Al Zulfi, Majmaah University, Zulfi, Saudi Arabia
| | - Dana Cialla-May
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Saddam Muthana
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh, 11355, Saudi Arabia
| | - Majed Dasouki
- King Faisal Specialist Hospital and Research Center, (KFSHRC), Takhussessi street, Riyadh, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh, 11355, Saudi Arabia.
| |
Collapse
|
11
|
Pillai RG, Azyat K, Chan NWC, Jemere AB. Rapid assembly of mixed thiols for toll-like receptor-based electrochemical pathogen sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7021-7032. [PMID: 39283241 DOI: 10.1039/d4ay00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we describe a rapid and facile fabrication of electrochemical sensors utilizing two different toll-like receptor (TLR) proteins as biorecognition elements to detect bacterial pathogen associated molecular patterns (PAMPs). Using potential-assisted self-assembly, binary mixtures of 11-mercaptoundecanoic acid (MUA) and 6-mercapto-1-hexanol (MCH), or MUA and an in-house synthesized zwitterionic sulfobetaine thiol (DPS) were assembled on a gold working electrode within 5 minutes, which is >200 times shorter than other TLR sensors' preparation time. Electrochemical methods and X-ray photoelectron microscopy were used to characterize the SAM layers. SAMs composed of the betaine terminated thiol exhibited superior resistance to nonspecific interactions, and were used to develop the TLR sensors. Biosensors containing two individually immobilized TLRs (TLR4 and TLR9) were fabricated on separate MUA-DPS SAM modified Au electrodes (MUA-DPS/Au) and tested for their response towards their respective PAMPs. The changes to electron transfer resistance in EIS of the TLR4/MUA-DPS/Au sensor showed a detection limit of 4 ng mL-1 for E. coli 0157:H7 endotoxin (lipopolysaccharide, LPS) and a dynamic range of up to 1000 ng mL-1. The TLR4-based sensor showed negligible response when tested with LPS spiked human plasma samples, showing no interference from the plasma matrix. The TLR9/MUA-DPS/Au sensor responded linearly up to 350 μg mL-1 bacterial DNA, with a detection limit of 7 μg mL-1. The rapid assembly of the TLR sensors, excellent antifouling properties of the mixed SAM assembly, small size and ease of operation of EIS hold great promise for the development of a portable and automated broad-spectrum pathogen detection and classification tool.
Collapse
Affiliation(s)
- Rajesh G Pillai
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Khalid Azyat
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Nora W C Chan
- Defence Research and Development Canada - Suffield Research Centre, Medicine Hat T1A 8K6, AB, Canada
| | - Abebaw B Jemere
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
- Department of Chemistry, Queen's University, Kingston K7L 3N6, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, ON, Canada
| |
Collapse
|
12
|
Shahbazlou SV, Vandghanooni S, Dabirmanesh B, Eskandani M, Hasannia S. Recent advances in surface plasmon resonance for the detection of ovarian cancer biomarkers: a thorough review. Mikrochim Acta 2024; 191:659. [PMID: 39382786 DOI: 10.1007/s00604-024-06740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Early detection of ovarian cancer (OC) is crucial for effective management and treatment, as well as reducing mortality rates. However, the current diagnostic methods for OC are time-consuming and have low accuracy. Surface plasmon resonance (SPR) biosensors offer a promising alternative to conventional techniques, as they enable rapid and less invasive screening of various circulating indicators. These biosensors are widely used for biomolecular interaction analysis and detecting tumor markers, and they are currently being investigated as a rapid diagnostic tool for early-stage cancer detection. Our main focus is on the fundamental concepts and performance characteristics of SPR biosensors. We also discuss the latest advancements in SPR biosensors that enhance their sensitivity and enable high-throughput quantification of OC biomarkers, including CA125, HE4, CEA, and CA19-9. Finally, we address the future challenges that need to be overcome to advance SPR biosensors from research to clinical applications. The ultimate goal is to facilitate the translation of SPR biosensors into routine clinical practice for the early detection and management of OC.
Collapse
Affiliation(s)
- Shahnam Valizadeh Shahbazlou
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Qin Q, Liu X, Wang X, Zhou L, Wan H, Yin Q, Chen D. Facile Synthesis of Aptamer-Functionalized Polydopamine-Coated Magnetic Graphene Oxide Nanocomposites for Highly Efficient Purification of His-Tagged Proteins. J Sep Sci 2024; 47:e202400471. [PMID: 39319600 DOI: 10.1002/jssc.202400471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Recombinant proteins hold significant importance in numerous disciplines. As the demand for expressing and purifying these proteins grows, the scientific community is in dire need of a simple yet versatile methodology that can efficiently purify these proteins. Aptamers as synthetic nucleic acid-based ligands with high affinity have shown promise in this regard, as they can capture targets through molecular recognition. In this study, novel aptamer-functionalized polydopamine-coated magnetic graphene oxide nanocomposites were facilely prepared, achieving an impressive average aptamer coverage density (45 nmol/mg). These nanocomposites exhibited a uniform structure and robust magnetic responsiveness. The findings indicated that they possess several advantages, such as rapid adsorption, substantial capacity (171.4 mg/g), and excellent reusability. Notably, due to the inherent properties of nucleic acids, the immobilized aptamer-magnetic beads can be utilized repeatedly with high purification efficiency. Finally, the nanocomposites were further employed to purify His-tagged proteins from actual samples. Remarkably, they were able to selectively and efficiently isolate His-tagged retinoid X receptor alpha protein from complex Escherichia coli lysate. The purified His-tagged retinoid X receptor alpha protein was analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This confirmed the efficacy of developed nanocomposites, reinforcing their vast potential for purification of His-tagged recombinant proteins.
Collapse
Affiliation(s)
- Qian Qin
- College of Medical Laboratory, Dalian Medical University, Dalian, China
| | - Xiaolong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xun Wang
- College of Medical Imaging, Dalian Medical University, Dalian, China
| | - Lina Zhou
- Instrumental Analysis Center, Dalian University of Technology, Dalian, China
| | - Huihui Wan
- Instrumental Analysis Center, Dalian University of Technology, Dalian, China
| | - Qingxin Yin
- Instrumental Analysis Center, Dalian University of Technology, Dalian, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Awawdeh K, Buttkewitz MA, Bahnemann J, Segal E. Enhancing the performance of porous silicon biosensors: the interplay of nanostructure design and microfluidic integration. MICROSYSTEMS & NANOENGINEERING 2024; 10:100. [PMID: 39021530 PMCID: PMC11252414 DOI: 10.1038/s41378-024-00738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
This work presents the development and design of aptasensor employing porous silicon (PSi) Fabry‒Pérot thin films that are suitable for use as optical transducers for the detection of lactoferrin (LF), which is a protein biomarker secreted at elevated levels during gastrointestinal (GI) inflammatory disorders such as inflammatory bowel disease and chronic pancreatitis. To overcome the primary limitation associated with PSi biosensors-namely, their relatively poor sensitivity due to issues related to complex mass transfer phenomena and reaction kinetics-we employed two strategic approaches: First, we sought to optimize the porous nanostructure with respect to factors including layer thickness, pore diameter, and capture probe density. Second, we leveraged convection properties by integrating the resulting biosensor into a 3D-printed microfluidic system that also had one of two different micromixer architectures (i.e., staggered herringbone micromixers or microimpellers) embedded. We demonstrated that tailoring the PSi aptasensor significantly improved its performance, achieving a limit of detection (LOD) of 50 nM-which is >1 order of magnitude lower than that achieved using previously-developed biosensors of this type. Moreover, integration into microfluidic systems that incorporated passive and active micromixers further enhanced the aptasensor's sensitivity, achieving an additional reduction in the LOD by yet another order of magnitude. These advancements demonstrate the potential of combining PSi-based optical transducers with microfluidic technology to create sensitive label-free biosensing platforms for the detection of GI inflammatory biomarkers.
Collapse
Affiliation(s)
- Kayan Awawdeh
- Faculty of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, 320003 Haifa, Israel
| | - Marc A. Buttkewitz
- Institute of Technical Chemistry, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, 86159 Augsburg, Germany
| | - Ester Segal
- Faculty of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, 320003 Haifa, Israel
| |
Collapse
|
15
|
Bang S, Choi D, Shin J, Kim J, Choi Y, Lee SE, Hong S. Automated System for Attomolar-Level Detection of MiRNA as a Biomarker for Influenza A Virus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33897-33906. [PMID: 38902962 DOI: 10.1021/acsami.4c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We have developed an automated sensing system for the repeated detection of a specific microRNA (miRNA) of the influenza A (H1N1) virus. In this work, magnetic particles functionalized with DNAs, target miRNAs, and alkaline phosphate (ALP) enzymes formed sandwich structures. These particles were trapped on nickel (Ni) patterns of our sensor chip by an external magnetic field. Then, additional electrical signals from electrochemical markers generated by ALP enzymes were measured using the sensor, enabling the highly sensitive detection of target miRNA. The magnetic particles used on the sensor were easily removed by applying the opposite direction of external magnetic fields, which allowed us to repeat sensing measurements. As a proof of concept, we demonstrated the detection of miRNA-1254, one of the biomarkers for the H1N1 virus, with a high sensitivity down to 1 aM in real time. Moreover, our sensor could selectively detect the target from other miRNA samples. Importantly, our sensor chip showed reliable electrical signals even after six repeated miRNA sensing measurements. Furthermore, we achieved technical advances to utilize our sensor platform as part of an automated sensing system. In this regard, our reusable sensing platform could be utilized for versatile applications in the field of miRNA detection and basic research.
Collapse
Affiliation(s)
- Sunwoo Bang
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Danmin Choi
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Junghyun Shin
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Jeongsu Kim
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Yoonji Choi
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Sang-Eun Lee
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Massey RS, Johri S, Chan D, Holahan MR, Prakash R. Comparison of Aptamer and Antibody Bioreceptors in the OEGFET Biosensor Platform for Detecting α-Synuclein, a Parkinson's Biomarker. IEEE SENSORS LETTERS 2024; 8:1-4. [DOI: 10.1109/lsens.2024.3413575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Roslyn S. Massey
- Department of Electronics Engineering, Carleton University, Ottawa, ON, Canada
| | - Srishti Johri
- Department of Electronics Engineering, Carleton University, Ottawa, ON, Canada
| | - Dennis Chan
- Department of Neuroscience, Health Sciences Building, Carleton University, Ottawa, ON, Canada
| | - Matthew R. Holahan
- Department of Neuroscience, Health Sciences Building, Carleton University, Ottawa, ON, Canada
| | - Ravi Prakash
- Department of Electronics Engineering, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
17
|
Prinz Setter O, Gilboa A, Shalash G, Refael G, Tarazi Riess H, Shani Levi C, Lesmes U, Segal E. Introducing HaNTr – Halloysite Nanotubes Targeting System for The Selective Delivery of Antibiotics. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202315923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 01/04/2025]
Abstract
AbstractAntibiotics have been established to induce indiscriminate detrimental effects on the gut commensal bacteria which are vital for human health. This study unprecedently reports the mitigation of this challenge through the targeted delivery of antibiotics to a specific intestinal model pathogen using naturally occurring nanoclay. The designed Halloysite nanotubes targeting (HaNTr) system employs intrinsically mesoporous clay particles, functionalized with antibodies against Escherichia coli (E. coli). Loaded with the antibiotic ciprofloxacin (CIP), the HaNTr particles demonstrate enhanced selectivity of their payload in a human microbiome ex vivo system, preserving the composition of non‐target populations. Furthermore, the HaNTr system exhibits up to a 10‐fold increase in selectivity against E. coli, compared to neat CIP, in a heterogenous culture. This enhanced selectivity is attributed to the sustained and localized release of CIP from the HaNTr particles (≈0.8 ng CIP min−1 mg−1), following their specific binding to target bacteria, as quantitatively measured by high‐throughput imaging flow cytometry. Importantly, HaNTr particles are also shown to be biocompatible with Caco‐2 cells, mimicking the intestinal epithelium. This work highlights the prominent capability of the HaNTr system in alleviating antibiotic‐associated dysbiosis by the targeted delivery of antimicrobials to potentially any microorganism against which the immobilized capture probe can be customized.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering Technion – Israel Institute of Technology Technion City Haifa 3200003 Israel
| | - Alva Gilboa
- Department of Biotechnology and Food Engineering Technion – Israel Institute of Technology Technion City Haifa 3200003 Israel
| | - Ghazal Shalash
- Department of Biotechnology and Food Engineering Technion – Israel Institute of Technology Technion City Haifa 3200003 Israel
| | - Gil Refael
- Department of Biotechnology and Food Engineering Technion – Israel Institute of Technology Technion City Haifa 3200003 Israel
| | - Hila Tarazi Riess
- Department of Biotechnology and Food Engineering Technion – Israel Institute of Technology Technion City Haifa 3200003 Israel
| | - Carmit Shani Levi
- Department of Biotechnology and Food Engineering Technion – Israel Institute of Technology Technion City Haifa 3200003 Israel
| | - Uri Lesmes
- Department of Biotechnology and Food Engineering Technion – Israel Institute of Technology Technion City Haifa 3200003 Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering Technion – Israel Institute of Technology Technion City Haifa 3200003 Israel
- The Russel Berrie Nanotechnology Institute Technion – Israel Institute of Technology Technion City Haifa 3200003 Israel
| |
Collapse
|
18
|
Su Y, Xia C, Zhang H, Gan W, Zhang GQ, Yang Z, Li D. Emerging biosensor probes for glycated hemoglobin (HbA1c) detection. Mikrochim Acta 2024; 191:300. [PMID: 38709399 DOI: 10.1007/s00604-024-06380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of βVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengen Xia
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo-Qi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Zi Yang
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dapeng Li
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Di Mauro V, Lauta FC, Modica J, Appleton SL, De Franciscis V, Catalucci D. Diagnostic and Therapeutic Aptamers: A Promising Pathway to Improved Cardiovascular Disease Management. JACC Basic Transl Sci 2024; 9:260-277. [PMID: 38510714 PMCID: PMC10950404 DOI: 10.1016/j.jacbts.2023.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 03/22/2024]
Abstract
Despite advances in care, cardiovascular diseases remain the leading cause of death worldwide. As a result, identifying suitable biomarkers for early diagnosis and improving therapeutic and diagnostic strategies is crucial. Because of their significant advantages over other therapeutic approaches, nucleic-based therapies, particularly aptamers, are gaining increased attention. Aptamers are innovative synthetic polymers or oligomers of single-stranded DNA (ssDNA) or RNA molecules that can form 3-dimensional structures and thus interact with their targets with high specificity and affinity. Furthermore, they outperform classical protein-based antibodies in terms of in vitro selection, production, ease of modification and conjugation, high stability, low immunogenicity, and suitability for nanoparticle functionalization for targeted drug delivery. This work aims to review the advances made in the aptamers' field in biomarker detection, diagnosis, imaging, and targeted therapy, which highlight their huge potential in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- Veneto Institute of Molecular Medicine, Padua, Italy
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Jessica Modica
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Silvia Lucia Appleton
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Daniele Catalucci
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
20
|
Córdova-Espinoza MG, González-Vázquez R, Barron-Fattel RR, Gónzalez-Vázquez R, Vargas-Hernández MA, Albores-Méndez EM, Esquivel-Campos AL, Mendoza-Pérez F, Mayorga-Reyes L, Gutiérrez-Nava MA, Medina-Quero K, Escamilla-Gutiérrez A. Aptamers: A Cutting-Edge Approach for Gram-Negative Bacterial Pathogen Identification. Int J Mol Sci 2024; 25:1257. [PMID: 38279257 PMCID: PMC10817072 DOI: 10.3390/ijms25021257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Early and accurate diagnoses of pathogenic microorganisms is essential to correctly identify diseases, treating infections, and tracking disease outbreaks associated with microbial infections, to develop precautionary measures that allow a fast and effective response in epidemics and pandemics, thus improving public health. Aptamers are a class of synthetic nucleic acid molecules with the potential to be used for medical purposes, since they can be directed towards any target molecule. Currently, the use of aptamers has increased because they are a useful tool in the detection of specific targets. We present a brief review of the use of aptamers to detect and identify bacteria or even some toxins with clinical importance. This work describes the advances in the technology of aptamers, with the purpose of providing knowledge to develop new aptamers for diagnoses and treatment of different diseases caused by infectious microorganisms.
Collapse
Affiliation(s)
- María Guadalupe Córdova-Espinoza
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico;
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Hospital de Especialidades, “Dr. Antonio Fraga Mouret”, National Medical Center La Raza, Mexico City 02990, Mexico
| | - Rosa González-Vázquez
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Hospital de Especialidades, “Dr. Antonio Fraga Mouret”, National Medical Center La Raza, Mexico City 02990, Mexico
| | - Rolando Rafik Barron-Fattel
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
| | - Raquel Gónzalez-Vázquez
- Laboratory of Biotechnology, Department of Biological Systems, Metropolitana Campus Xochimilco, CONAHCYT—Universidad Autonoma, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico;
| | - Marco Antonio Vargas-Hernández
- Research Department, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Exsal Manuel Albores-Méndez
- Research Department, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Ana Laura Esquivel-Campos
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - Felipe Mendoza-Pérez
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - Lino Mayorga-Reyes
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - María Angélica Gutiérrez-Nava
- Laboratory of Microbial Ecology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, Mexico City 04960, Mexico;
| | - Karen Medina-Quero
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico;
| | - Alejandro Escamilla-Gutiérrez
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Microbiology Laboratory, Hospital General “Dr. Gaudencio González Garza”, National Medical Center La Raza, Mexico City 02990, Mexico
| |
Collapse
|
21
|
Lafi Z, Gharaibeh L, Nsairat H, Asha N, Alshaer W. Aptasensors: employing molecular probes for precise medical diagnostics and drug monitoring. Bioanalysis 2023; 15:1439-1460. [PMID: 37847048 DOI: 10.4155/bio-2023-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Accurate detection and monitoring of therapeutic drug levels are vital for effective patient care and treatment management. Aptamers, composed of single-stranded DNA or RNA molecules, are integral components of biosensors designed for both qualitative and quantitative detection of biological samples. Aptasensors play crucial roles in target identification, validation, detection of drug-target interactions and screening potential of drug candidates. This review focuses on the pivotal role of aptasensors in early disease detection, particularly in identifying biomarkers associated with various diseases such as cancer, infectious diseases and cardiovascular disorders. Aptasensors have demonstrated exceptional potential in enhancing disease diagnostics and monitoring therapeutic drug levels. Aptamer-based biosensors represent a transformative technology in the field of healthcare, enabling precise diagnostics, drug monitoring and disease detection.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Lobna Gharaibeh
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Nisreen Asha
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
22
|
Negahdary M, Veloso WB, Bacil RP, Buoro RM, Gutz IGR, Paixão TRLC, do Lago CL, Sakata SK, Meloni GN, França MC, de Oliveira TG, Ameku WA, Durazzo M, Angnes L. Aptasensing of beta-amyloid (Aβ(1−42)) by a 3D-printed platform integrated with leaf-shaped gold nanodendrites. SENSORS AND ACTUATORS B: CHEMICAL 2023; 393:134130. [DOI: 10.1016/j.snb.2023.134130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Alshammari A, van Zalinge H, Sandall I. In Situ Monitoring of Aptamer-Protein Binding on a ZnO Surface Using Spectroscopic Ellipsometry. SENSORS (BASEL, SWITZERLAND) 2023; 23:6353. [PMID: 37514647 PMCID: PMC10385375 DOI: 10.3390/s23146353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The dissolution of zinc oxide is investigated using spectroscopic ellipsometry to investigate its suitability as a platform for biosensing applications. The results indicate that once the ZnO surface has been functionalised, it is suitably protected, and no significant dissolving of the ZnO occurs. The binding kinetics of the SARS-CoV-2 spike protein on aptamer-functionalised zinc oxide surfaces are subsequently investigated. Values are extracted for the refractive index and associated optical constants for both the aptamer layer used and the protein itself. It is shown that upon an initial exposure to the protein, a rapid fluctuation in the surface density is observed. After around 20 min, this effect stabilises, and a fixed increase in the surface density is observed, which itself increases as the concentration of the protein is increased. This technique and setup are demonstrated to have a limit-of-detection down to 1 nanomole (nM) and display a linear response to concentrations up to 100 nM.
Collapse
Affiliation(s)
- Adeem Alshammari
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Harm van Zalinge
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Ian Sandall
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| |
Collapse
|
24
|
Narwade M, Shaikh A, Gajbhiye KR, Kesharwani P, Gajbhiye V. Advanced cancer targeting using aptamer functionalized nanocarriers for site-specific cargo delivery. Biomater Res 2023; 27:42. [PMID: 37149607 PMCID: PMC10164340 DOI: 10.1186/s40824-023-00365-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 05/08/2023] Open
Abstract
The non-specificity of standard anticancer therapies has profound detrimental consequences in clinical treatment. Therapeutic specificity can be precisely achieved using cutting-edge ligands. Small synthetic oligonucleotide-ligands chosen through Systematic evolution of ligands by exponential enrichment (SELEX) would be an unceasing innovation in using nucleic acids as aptamers, frequently referred to as "chemical antibodies." Aptamers act as externally controlled switching materials that can attach to various substrates, for example, membrane proteins or nucleic acid structures. Aptamers pose excellent specificity and affinity for target molecules and can be used as medicines to suppress tumor cell growth directly. The creation of aptamer-conjugated nanoconstructs has recently opened up innovative options in cancer therapy that are more effective and target tumor cells with minor toxicity to healthy tissues. This review focuses on a comprehensive description of the most capable classes of aptamer-tethered nanocarriers for precise recognition of cancer cells with significant development in proficiency, selectivity, and targetability for cancer therapy. Existing theranostic applications with the problems and future directions are also highlighted.
Collapse
Affiliation(s)
- Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Aazam Shaikh
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, 411 007, India
| | - Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, India.
- Savitribai Phule Pune University, Ganeshkhind, Pune, 411 007, India.
| |
Collapse
|
25
|
Xu R, Ouyang L, Chen H, Zhang G, Zhe J. Recent Advances in Biomolecular Detection Based on Aptamers and Nanoparticles. BIOSENSORS 2023; 13:bios13040474. [PMID: 37185549 PMCID: PMC10136534 DOI: 10.3390/bios13040474] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
The fast, accurate detection of biomolecules, ranging from nucleic acids and small molecules to proteins and cellular secretions, plays an essential role in various biomedical applications. These include disease diagnostics and prognostics, environmental monitoring, public health, and food safety. Aptamer recognition (DNA or RNA) has gained extensive attention for biomolecular detection due to its high selectivity, affinity, reproducibility, and robustness. Concurrently, biosensing with nanoparticles has been widely used for its high carrier capacity, stability and feasibility of incorporating optical and catalytic activity, and enhanced diffusivity. Biosensors based on aptamers and nanoparticles utilize the combination of their advantages and have become a promising technology for detecting of a wide variety of biomolecules with high sensitivity, reliability, specificity, and detection speed. Via various sensing mechanisms, target biomolecules have been quantified in terms of optical (e.g., colorimetric and fluorometric), magnetic, and electrical signals. In this review, we summarize the recent advances in and compare different aptamer-nanoparticle-based biosensors by nanoparticle types and detection mechanisms. We also share our views on the highlights and challenges of the different nanoparticle-aptamer-based biosensors.
Collapse
Affiliation(s)
- Ruiting Xu
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Leixin Ouyang
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Heyi Chen
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
26
|
Özyurt C, Uludağ İ, Sezgintürk MK. An ultrasensitive and disposable electrochemical aptasensor for prostate-specific antigen (PSA) detection in real serum samples. Anal Bioanal Chem 2023; 415:1123-1136. [PMID: 36155829 DOI: 10.1007/s00216-022-04309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 02/07/2023]
Abstract
In this study, we constructed a disposable indium tin oxide polyethylene terephthalate film (ITO-PET)-based electrochemical aptasensor for analyzing prostate-specific antigen (PSA), one of the most important biomarkers of prostate cancer. Because of their clinical importance, building PSA biosensing systems with high sensitivity and stability is essential. However, it still presents significant difficulties, such as low detection limits. We designed a platform to covalently bind the amino-terminated aptamer by modifying the ITO-PET surface with carboxyethylsilanetriol (CTES) to obtain a self-assembled monolayer (SAM). We also evaluated the potential for use in real human serum samples by investigating the optimal operating conditions and analytical performance characteristics of the developed biosensor. The design we present here exhibits excellent precision, with a limit of detection (LOD) as low as 8.74 fg/mL PSA. The broad linear detection range of the biosensor under optimal conditions was determined as 1.0-1500 fg/mL. The dissociation constant (Kd) for the aptamer was also calculated as 46.28 ± 5.63 nM by evaluating the impedimetric response as a function of PSA concentration. The aptasensor displayed considerable repeatability (1.3% RSD) and reproducibility (7.51% RSD) and good storage stability (98.34% of the initial activity for 8 weeks). Additionally, we demonstrated that the technique we developed was quite efficient in estimating the kinetics of aptamer-analyte interactions by determining the Kd and single-frequency impedance (SFI) data. In conclusion, we proposed a selective and sensitive biosensor with the potential for clinical application and superior performance in real serum samples.
Collapse
Affiliation(s)
- Canan Özyurt
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - İnci Uludağ
- Bioengineering Department, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| |
Collapse
|
27
|
Zhang Q, Liu S, Zhang X, Du C, Si S, Chen J. A high-frequency QCM biosensing platform for label-free detection of the SARS-CoV-2 spike receptor-binding domain: an aptasensor and an immunosensor. Analyst 2023; 148:719-723. [PMID: 36723047 DOI: 10.1039/d3an00008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, high-frequency quartz crystal microbalance biosensing platforms were constructed using an aptamer and antibody as bioreceptors for fast and label-free detection of the SARS-CoV-2 RBD.
Collapse
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Shuping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Shihui Si
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
28
|
Foroozandeh A, Abdouss M, SalarAmoli H, Pourmadadi M, Yazdian F. An electrochemical aptasensor based on g-C3N4/Fe3O4/PANI Nanocomposite applying cancer antigen_125 biomarkers detection. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
29
|
Kumar P, Birader K, Suman P. Development of an Impedimetric Aptasensor for Detection of Progesterone in Undiluted Biological Fluids. ACS Pharmacol Transl Sci 2023; 6:92-99. [PMID: 36654753 PMCID: PMC9841775 DOI: 10.1021/acsptsci.2c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 12/03/2022]
Abstract
A cost-effective, deployable, and quantitative progesterone biosensor is desirable for regular progesterone sensing in biological and environmental samples to safeguard public health. Aptasensors have been shown to be affordable as compared to antibody-based sensors, but so far, none of the progesterone aptamers could detect it in undiluted and unprocessed biological samples. Thus, to select an aptamer suitable for biosensing in unprocessed biological samples, a modified magnetic bead-based approach with counter-selection in milk and serum was performed. G-quadruplex forming progesterone aptamers were preferentially screened through in silico, gold nanoparticle-based adsorption-desorption assay and circular dichroism spectroscopy. GQ5 aptamer showed extended stability and a high progesterone binding affinity (K D 5.29 ± 2.9 nM) as compared to any other reported progesterone aptamers (P4G11 and P4G13). Under optimized conditions, GQ5 aptamer was coated on the gold electrode to develop an impedimetric aptasensor (limit of detection: 0.53, 0.91, and 1.9 ng/mL in spiked buffer, undiluted milk, and serum, respectively, with the dynamic range of detection from 0.1 to 50 ng/mL in buffer and 0.1 to 30 ng/mL in both milk and serum). The aptasensor exhibited a very high level of κ value (>0.9) with ELISA to detect progesterone in milk and serum. The aptasensor could be regenerated three times and can be stored for up to 10 days at 4 °C. Therefore, GQ5 may be used to develop a portable impedimetric aptasensor for clinical and on-site progesterone sensing in various biological and environmental samples.
Collapse
Affiliation(s)
- Pankaj Kumar
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
- Manipal
Academy of Higher Education, Manipal, Karnataka576104, India
| | - Komal Birader
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
| | - Pankaj Suman
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
- Manipal
Academy of Higher Education, Manipal, Karnataka576104, India
| |
Collapse
|
30
|
Sypabekova M, Hagemann A, Rho D, Kim S. Review: 3-Aminopropyltriethoxysilane (APTES) Deposition Methods on Oxide Surfaces in Solution and Vapor Phases for Biosensing Applications. BIOSENSORS 2022; 13:bios13010036. [PMID: 36671871 PMCID: PMC9856095 DOI: 10.3390/bios13010036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 05/31/2023]
Abstract
Surface functionalization and bioreceptor immobilization are critical processes in developing a highly sensitive and selective biosensor. The silanization process with 3-aminopropyltriethoxysilane (APTES) on oxide surfaces is frequently used for surface functionalization because of beneficial characteristics such as its bifunctional nature and low cost. Optimizing the deposition process of the APTES layer to obtain a monolayer is crucial to having a stable surface and effectively immobilizing the bioreceptors, which leads to the improved repeatability and sensitivity of the biosensor. This review provides an overview of APTES deposition methods, categorized into the solution-phase and vapor-phase, and a comprehensive summary and guide for creating stable APTES monolayers on oxide surfaces for biosensing applications. A brief explanation of APTES is introduced, and the APTES deposition methods with their pre/post-treatments and characterization results are discussed. Lastly, APTES deposition methods on nanoparticles used for biosensors are briefly described.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Aidan Hagemann
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Donggee Rho
- Center for Nano Bio Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Seunghyun Kim
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
31
|
Development of aptamers for rapid airborne bacteria detection. Anal Bioanal Chem 2022; 414:7763-7771. [PMID: 36071267 DOI: 10.1007/s00216-022-04308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 08/27/2022] [Indexed: 11/01/2022]
Abstract
Airborne microbes can rapidly spread and cause various infectious diseases worldwide. This necessitates the determination of a fast and highly sensitive detection method. There have been no studies on receptors targeting Citrobacter braakii (C. braakii), a pathogenic bacterium which can exist in the air. In this study, we rapidly isolate an aptamer, a nucleic acid molecule that can specifically bind to C. braakii by centrifugation-based partitioning method (CBPM) reported previously by our groups as omitting the repeated rounds of binding incubation, separation, and amplification that are indispensable for SELEX. The binding affinity and specificity of isolated aptamers are checked using bacteria in liquid culture and recollection solution from aerosolized bacteria. Recollection solutions of the recovered bacteria are obtained by nebulizing, drying, and recapturing with a biosampler. The CB-5 aptamer shows high affinity and specificity for C. braakii (Kd: 16.42 in liquid culture and 26.91 nM in recollection from aerosolized sample). Our results indicate the current protocol can be employed for the rapid development of reliable diagnostic receptors targeting airborne bacteria.
Collapse
|
32
|
Nnachi RC, Sui N, Ke B, Luo Z, Bhalla N, He D, Yang Z. Biosensors for rapid detection of bacterial pathogens in water, food and environment. ENVIRONMENT INTERNATIONAL 2022; 166:107357. [PMID: 35777116 DOI: 10.1016/j.envint.2022.107357] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Conventional techniques (e.g., culture-based method) for bacterial detection typically require a central laboratory and well-trained technicians, which may take several hours or days. However, recent developments within various disciplines of science and engineering have led to a major paradigm shift in how microorganisms can be detected. The analytical sensors which are widely used for medical applications in the literature are being extended for rapid and on-site monitoring of the bacterial pathogens in food, water and the environment. Especially, within the low-resource settings such as low and middle-income countries, due to the advantages of low cost, rapidness and potential for field-testing, their use is indispensable for sustainable development of the regions. Within this context, this paper discusses analytical methods and biosensors which can be used to ensure food safety, water quality and environmental monitoring. In brief, most of our discussion is focused on various rapid sensors including biosensors and microfluidic chips. The analytical performances such as the sensitivity, specificity and usability of these sensors, as well as a brief comparison with the conventional techniques for bacteria detection, form the core part of the discussion. Furthermore, we provide a holistic viewpoint on how future research should focus on exploring the synergy of different sensing technologies by developing an integrated multiplexed, sensitive and accurate sensors that will enable rapid detection for food safety, water and environmental monitoring.
Collapse
Affiliation(s)
- Raphael Chukwuka Nnachi
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, PR China
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern Ireland, United Kingdom; Healthcare Technology Hub, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom.
| |
Collapse
|
33
|
Zambry NS, Obande GA, Khalid MF, Bustami Y, Hamzah HH, Awang MS, Aziah I, Manaf AA. Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review. BIOSENSORS 2022; 12:473. [PMID: 35884276 PMCID: PMC9312918 DOI: 10.3390/bios12070473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/16/2023]
Abstract
The development of precise and efficient diagnostic tools enables early treatment and proper isolation of infected individuals, hence limiting the spread of coronavirus disease 2019 (COVID-19). The standard diagnostic tests used by healthcare workers to diagnose severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have some limitations, including longer detection time, the need for qualified individuals, and the use of sophisticated bench-top equipment, which limit their use for rapid SARS-CoV-2 assessment. Advances in sensor technology have renewed the interest in electrochemical biosensors miniaturization, which provide improved diagnostic qualities such as rapid response, simplicity of operation, portability, and readiness for on-site screening of infection. This review gives a condensed overview of the current electrochemical sensing platform strategies for SARS-CoV-2 detection in clinical samples. The fundamentals of fabricating electrochemical biosensors, such as the chosen electrode materials, electrochemical transducing techniques, and sensitive biorecognition molecules, are thoroughly discussed in this paper. Furthermore, we summarised electrochemical biosensors detection strategies and their analytical performance on diverse clinical samples, including saliva, blood, and nasopharyngeal swab. Finally, we address the employment of miniaturized electrochemical biosensors integrated with microfluidic technology in viral electrochemical biosensors, emphasizing its potential for on-site diagnostics applications.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Godwin Attah Obande
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia PMB 146, Nasarawa State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia;
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia;
| |
Collapse
|
34
|
Momeni M, Mashayekhi K, Navashenaq JG, Sankian M. Identification of G-quadruplex anti-Interleukin-2 aptamer with high specificity through SELEX stringency. Heliyon 2022; 8:e09721. [PMID: 35756119 PMCID: PMC9218155 DOI: 10.1016/j.heliyon.2022.e09721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
Aptamers are short single-stranded oligonucleotides capable of binding to various targets with high specificity and affinity. This study aimed to identify an aptamer against mouse interleukin-2 (mIL-2) as one of the most important cytokines in autoimmune diseases for diagnostic and therapeutic purposes. For this purpose, 14 SELEX rounds were performed on recombinant mIL-2 with high stringency. The dot blot and flow cytometry techniques were conducted to determine affinity, dissociation constant (Kd), specificity, and SELEX rounds screening. The stringency of rounds was considered based on aptamer/target incubation time, washing steps, and target proteins. Finally, the aptamer's structure was mapped and predicted by M-fold and QGRS Mapper web-based software. After 14 rounds, the flow cytometry analysis revealed that the 11th round was a proper round. The high-affinity aptamers M20 and M15 were chosen for their ability to bind mIL-2. According to DNA folding software, M20 and M15 aptamers had G-quadruplex and stem-loop structures, respectively. The M20 aptamer affinity was greater than M15, and its predicted Kd was 91 nM. A simple SELEX protocol with round stringency was explained to identify DNA aptamers against protein targets. The reported G-quadruplex aptamer might have potential diagnostic or therapeutic application in IL-2–related disorders.
Collapse
Affiliation(s)
- Mohsen Momeni
- Immuno-Biochemistry Lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mojtaba Sankian
- Immuno-Biochemistry Lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Aptamer versus antibody as probes for the impedimetric biosensor for human epidermal growth factor receptor. J Inorg Biochem 2022; 230:111764. [DOI: 10.1016/j.jinorgbio.2022.111764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
|
36
|
A Review of Apta-POF-Sensors: The Successful Coupling between Aptamers and Plastic Optical Fibers for Biosensing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aptamers represent the next frontier as biorecognition elements in biosensors thanks to a smaller size and lower molecular weight with respect to antibodies, more structural flexibility with the possibility to be regenerated, reduced batch-to-batch variation, and a potentially lower cost. Their high specificity and small size are particularly interesting for their application in optical biosensors since the perturbation of the evanescent field are low. Apart from the conventional plasmonic optical sensors, platforms based on silica and plastic optical fibers represent an interesting class of devices for point-of-care testing (POCT) in different applications. The first example of the coupling between aptamers and silica optical fibers was reported by Pollet in 2009 for the detection of IgE molecules. Six years later, the first example was published using a plastic optical fiber (POF) for the detection of Vascular Endothelial Growth Factor (VEGF). The excellent flexibility, great numerical aperture, and the large diameter make POFs extremely promising to be coupled to aptamers for the development of a sensitive platform easily integrable in portable, small-size, and simple devices. Starting from silica fiber-based surface plasmon resonance devices, here, a focus on significant biological applications based on aptamers, combined with plasmonic-POF probes, is reported.
Collapse
|
37
|
Guo K, Alba M, Chin GP, Tong Z, Guan B, Sailor MJ, Voelcker NH, Prieto-Simón B. Designing Electrochemical Biosensing Platforms Using Layered Carbon-Stabilized Porous Silicon Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15565-15575. [PMID: 35286082 PMCID: PMC9682479 DOI: 10.1021/acsami.2c02113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous silicon (pSi) is an established porous material that offers ample opportunities for biosensor design thanks to its tunable structure, versatile surface chemistry, and large surface area. Nonetheless, its potential for electrochemical sensing is relatively unexplored. This study investigates layered carbon-stabilized pSi nanostructures with site-specific functionalities as an electrochemical biosensor. A double-layer nanostructure combining a top hydrophilic layer of thermally carbonized pSi (TCpSi) and a bottom hydrophobic layer of thermally hydrocarbonized pSi (THCpSi) is prepared. The modified layers are formed in a stepwise process, involving first an electrochemical anodization step to generate a porous layer with precisely defined pore morphological features, followed by deposition of a thin thermally carbonized coating on the pore walls via temperature-controlled acetylene decomposition. The second layer is then generated beneath the first by following the same two-step process, but the acetylene decomposition conditions are adjusted to deposit a thermally hydrocarbonized coating. The double-layer platform features excellent electrochemical properties such as fast electron-transfer kinetics, which underpin the performance of a TCpSi-THCpSi voltammetric DNA sensor. The biosensor targets a 28-nucleotide single-stranded DNA sequence with a detection limit of 0.4 pM, two orders of magnitude lower than the values reported to date by any other pSi-based electrochemical DNA sensor.
Collapse
Affiliation(s)
- Keying Guo
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Maria Alba
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth
Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Grace Pei Chin
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Ziqiu Tong
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Bin Guan
- Future
Industries Institute, University of South
Australia, Mawson
Lakes, South Australia 5095, Australia
| | - Michael J. Sailor
- Department
of Chemistry and Biochemistry and Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Nicolas H. Voelcker
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth
Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Beatriz Prieto-Simón
- Department
of Electronic Engineering, Universitat Rovira
i Virgili, Tarragona 43007, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
38
|
Kumar DN, Baider Z, Elad D, Blum SE, Shtenberg G. Botulinum Neurotoxin C Dual Detection through Immunological Recognition and Endopeptidase Activity Using Porous Silicon Interferometers. Anal Chem 2022; 94:5927-5936. [PMID: 35385264 DOI: 10.1021/acs.analchem.2c00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known in nature produced by Clostridium botulinum strains, which can cause life-threatening diseases in both humans and animals. The latter is of serious environmental and economic concern, resulting in high mortality, production losses, and rejection of contaminated animal feed. The available in vivo mouse assay is inadequate for real-time and on-site assessment of outbreaks. Herein, we present a reflective-based approach for the detection of BoNT/C while estimating its activity. Two adjacent porous Si Fabry-Pérot interferometers are simultaneously utilized to quantify minute BoNT/C concentrations by a competitive immunoassay and to assess their endopeptidase activity. The reflectivity signals of each interferometer are amplified by biochemical reaction products infiltration into the scaffold or by peptide fragments detachment from the nanostructure. The optical assay is highly sensitive in compliance with the in vivo approach by presenting a detection limit of 4.24 pg mL-1. The specificity and selectivity of the designed platform are cross-validated against BoNT/B and BoNT/D, also relevant to animal health. Finally, the analytical performances of both interferometers for real-life scenarios are confirmed using actual toxins while depicting excellent compliance to complex media analysis. Overall, the presented sensing scheme offers an efficient, rapid, and label-free approach for potential biodiagnostic elucidation of botulism outbreaks.
Collapse
Affiliation(s)
- D Nanda Kumar
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Zina Baider
- Botulism National Reference Laboratory, Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan 50200, Israel
| | - Daniel Elad
- Botulism National Reference Laboratory, Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan 50200, Israel
| | - Shlomo E Blum
- Botulism National Reference Laboratory, Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan 50200, Israel
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
39
|
Arshavsky‐Graham S, Heuer C, Jiang X, Segal E. Aptasensors versus immunosensors-Which will prevail? Eng Life Sci 2022; 22:319-333. [PMID: 35382545 PMCID: PMC8961048 DOI: 10.1002/elsc.202100148] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Since the invention of the first biosensors 70 years ago, they have turned into valuable and versatile tools for various applications, ranging from disease diagnosis to environmental monitoring. Traditionally, antibodies have been employed as the capture probes in most biosensors, owing to their innate ability to bind their target with high affinity and specificity, and are still considered as the gold standard. Yet, the resulting immunosensors often suffer from considerable limitations, which are mainly ascribed to the antibody size, conjugation chemistry, stability, and costs. Over the past decade, aptamers have emerged as promising alternative capture probes presenting some advantages over existing constraints of immunosensors, as well as new biosensing concepts. Herein, we review the employment of antibodies and aptamers as capture probes in biosensing platforms, addressing the main aspects of biosensor design and mechanism. We also aim to compare both capture probe classes from theoretical and experimental perspectives. Yet, we highlight that such comparisons are not straightforward, and these two families of capture probes should not be necessarily perceived as competing but rather as complementary. We, thus, elaborate on their combined use in hybrid biosensing schemes benefiting from the advantages of each biorecognition element.
Collapse
Affiliation(s)
- Sofia Arshavsky‐Graham
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Christopher Heuer
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Xin Jiang
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Ester Segal
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
- Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
40
|
Güven E, Azizoglu RO. The Recent Original Perspectives on Nonculture-Based Bacteria Detection Methods: A Comprehensive Review. Foodborne Pathog Dis 2022; 19:425-440. [DOI: 10.1089/fpd.2021.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ece Güven
- Department of Gene and Cell Therapy and Mediterranean (Akdeniz) University, Antalya, Turkey
| | - Reha Onur Azizoglu
- Department of Gene and Cell Therapy and Mediterranean (Akdeniz) University, Antalya, Turkey
- Department of Food Engineering, Mediterranean (Akdeniz) University, Antalya, Turkey
| |
Collapse
|
41
|
Salama R, Arshavsky-Graham S, Sella-Tavor O, Massad-Ivanir N, Segal E. Design considerations of aptasensors for continuous monitoring of biomarkers in digestive tract fluids. Talanta 2021; 239:123124. [PMID: 34896821 DOI: 10.1016/j.talanta.2021.123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
We present a porous Si (PSi)-based label-free optical biosensor for sensitive and continuous detection of a model target protein biomarker in gastrointestinal (GI) tract fluids. The biosensing platform is designed to continuously monitor its target protein within the complex GI fluids without sample preparation and washing steps. An oxidized PSi Fabry-Pérot thin films are functionalized with aptamers, which are used as the capture probes. The optical response of the aptamer-conjugated PSi is studied upon exposure to unprocessed GI fluids, originated from domestic pigs, spiked with the target protein. We investigate biological and chemical surface passivation methods to stabilize the surface and reduce non-specific adsorption of interfering proteins and molecules within the GI fluids. For the passivated PSi aptasensor we simulate continuous in vivo biosensing conditions, demonstrating that the aptasensor could successfully detect the target in a continuous manner without any need for surface washing after the target protein binding events, at a clinically relevant range. Furthermore, we simulate biosensing conditions within a smart capsule, in which the aptasensor is occasionally exposed to GI fluids in flow or via repeated cycles of injection and static incubation events. Such biosensor can be implemented within ingestible capsule devices and used for in situ biomarker detection in the GI tract.
Collapse
Affiliation(s)
- Rachel Salama
- Faculty of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sofia Arshavsky-Graham
- Faculty of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | | | - Naama Massad-Ivanir
- Faculty of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ester Segal
- Faculty of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
42
|
Al Mamun M, Wahab YA, Hossain MM, Hashem A, Johan MR. Electrochemical biosensors with Aptamer recognition layer for the diagnosis of pathogenic bacteria: Barriers to commercialization and remediation. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Nirala NR, Asiku J, Dvir H, Shtenberg G. N-acetyl-β-d-glucosaminidase activity assay for monitoring insulin-dependent diabetes using Ag-porous Si SERS platform. Talanta 2021; 239:123087. [PMID: 34839927 DOI: 10.1016/j.talanta.2021.123087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 12/26/2022]
Abstract
Determination of urinary or serum N-acetyl-β-d-glucosaminidase (NAG) activity as a tissue damage indicator is widely used in diagnosis of various pathologies, including diabetic nephropathy. Early and rapid biomarker detection is an important element of medical diagnosis, facilitating prompt therapeutic decisions and prognosis evaluation. Herein, we present a modified sensing approach for a rapid and reliable NAG activity determination in complex media using surface-enhanced Raman spectroscopy (SERS). Porous silicon (PSi) Fabry-Pérot interferometers were redesigned as sensitive SERS platforms utilizing the vast inherent surface area for silver (Ag) nanoparticles embedment. Interaction of the porous nanostructures with specific NAG-enzymatic products produces an indicative spectral fingerprint proportional in magnitude to its concentration. The sensitivity of Ag-PSi SERS substrates was evaluated in complex matrices presenting sufficient limits of detection compared with other advanced assays and techniques (0.07, 0.47 and 0.50 mU mL-1 for urine, milk and plasma, respectively). The augmented optical performance revealed recovery values of 96-109%, indicating successful and selective NAG recognition in biological fluids. Finally, the potential applicability of the suggested prototype for real-life scenarios was evaluated in vivo, in a model of insulin-dependent diabetes induced in sheep. Overall, the robust data confirm the application of SERS analysis for early diagnosis of pathology and for evaluation of clinical responses to pharmacological treatments.
Collapse
Affiliation(s)
- Narsingh R Nirala
- Institute of Agricultural Engineering, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Jimmy Asiku
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel; Institute of Animal Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Hay Dvir
- Institute of Animal Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel.
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel; Agro-Nanotechnology Research Center, Agriculture Research Organization, Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
44
|
Vandghanooni S, Sanaat Z, Farahzadi R, Eskandani M, Omidian H, Omidi Y. Recent progress in the development of aptasensors for cancer diagnosis: Focusing on aptamers against cancer biomarkers. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Arshavsky-Graham S, Ward SJ, Massad-Ivanir N, Scheper T, Weiss SM, Segal E. Porous Silicon-Based Aptasensors: Toward Cancer Protein Biomarker Detection. ACS MEASUREMENT SCIENCE AU 2021; 1:82-94. [PMID: 34693403 PMCID: PMC8532149 DOI: 10.1021/acsmeasuresciau.1c00019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/09/2023]
Abstract
The anterior gradient homologue-2 (AGR2) protein is an attractive biomarker for various types of cancer. In pancreatic cancer, it is secreted to the pancreatic juice by premalignant lesions, which would be an ideal stage for diagnosis. Thus, designing assays for the sensitive detection of AGR2 would be highly valuable for the potential early diagnosis of pancreatic and other types of cancer. Herein, we present a biosensor for label-free AGR2 detection and investigate approaches for enhancing the aptasensor sensitivity by accelerating the target mass transfer rate and reducing the system noise. The biosensor is based on a nanostructured porous silicon thin film that is decorated with anti-AGR2 aptamers, where real-time monitoring of the reflectance changes enables the detection and quantification of AGR2, as well as the study of the diffusion and target-aptamer binding kinetics. The aptasensor is highly selective for AGR2 and can detect the protein in simulated pancreatic juice, where its concentration is outnumbered by orders of magnitude by numerous proteins. The aptasensor's analytical performance is characterized with a linear detection range of 0.05-2 mg mL-1, an apparent dissociation constant of 21 ± 1 μM, and a limit of detection of 9.2 μg mL-1 (0.2 μM), which is attributed to mass transfer limitations. To improve the latter, we applied different strategies to increase the diffusion flux to and within the nanostructure, such as the application of isotachophoresis for the preconcentration of AGR2 on the aptasensor, mixing, or integration with microchannels. By combining these approaches with a new signal processing technique that employs Morlet wavelet filtering and phase analysis, we achieve a limit of detection of 15 nM without compromising the biosensor's selectivity and specificity.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Department
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Institute
of Technical Chemistry, Leibniz Universität
Hannover, Callinstraße 5, 30167 Hanover, Germany
| | - Simon J. Ward
- Department
of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Naama Massad-Ivanir
- Department
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Thomas Scheper
- Institute
of Technical Chemistry, Leibniz Universität
Hannover, Callinstraße 5, 30167 Hanover, Germany
| | - Sharon M. Weiss
- Department
of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ester Segal
- Department
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- The
Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
46
|
Mutlaq S, Albiss B, Al-Nabulsi AA, Jaradat ZW, Olaimat AN, Khalifeh MS, Osaili T, Ayyash MM, Holley RA. Conductometric Immunosensor for Escherichia coli O157:H7 Detection Based on Polyaniline/Zinc Oxide (PANI/ZnO) Nanocomposite. Polymers (Basel) 2021; 13:polym13193288. [PMID: 34641104 PMCID: PMC8512834 DOI: 10.3390/polym13193288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
A conductometric immunosensor was developed for the detection of one of the most common foodborne pathogens, Escherichia coli O157:H7 (E. coli O157:H7), by conductometric sensing. The sensor was built based on a polyaniline/zinc oxide (PANI/ZnO) nanocomposite film spin-coated on a gold electrode. Then, it was modified with a monoclonal anti-E. coli O157:H7 antibody as a biorecognition element. The fabricated nanostructured sensor was able to quantify the pathogens under optimal detection conditions, within 30 min, and showed a good detection range from 101 to 104 CFU/mL for E. coli O157:H7 and a minimum detection limit of 4.8 CFU/mL in 0.1% peptone water. The sensor efficiency for detecting bacteria in food matrices was tested in ultra-heat-treated (UHT) skim milk. E. coli O157:H7 was detected at concentrations of 101 to 104 CFU/mL with a minimum detection limit of 13.9 CFU/mL. The novel sensor was simple, fast, highly sensitive with excellent specificity, and it had the potential for rapid sample processing. Moreover, this unique technique for bacterial detection could be applicable for food safety and quality control in the food sector as it offers highly reliable results and is able to quantify the target bacterium.
Collapse
Affiliation(s)
- Sawsan Mutlaq
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (S.M.); (A.A.A.-N.); (T.O.)
| | - Borhan Albiss
- Nanomaterials Laboratory, Department of Applied Physics, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- Correspondence:
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (S.M.); (A.A.A.-N.); (T.O.)
| | - Ziad W. Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad S. Khalifeh
- Department of Basic Medical Veterinary Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
| | - Tareq Osaili
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (S.M.); (A.A.A.-N.); (T.O.)
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates;
| | - Richard A. Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
47
|
Botulinum Neurotoxin-C Detection Using Nanostructured Porous Silicon Interferometer. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Botulinum neurotoxins (BoNT) are the most potent toxins, which are produced by Clostridium bacteria and cause the life-threatening disease of botulism in all vertebrates. Specifically, animal botulism represents a serious environmental and economic concern in animal production due to the high mortality rates observed during outbreaks. Despite the availability of vaccines against BoNT, there are still many outbreaks of botulism worldwide. Alternative assays capable of replacing the conventional in vivo assay in terms of rapid and sensitive quantification, and the applicability for on-site analysis, have long been perused. Herein, we present a simple, highly sensitive and label-free optical biosensor for real-time detection of BoNT serotype C using a porous silicon Fabry–Pérot interferometer. A competitive immunoassay coupled to a biochemical cascade reaction was adapted for optical signal amplification. The resulting insoluble precipitates accumulated within the nanostructure changed the reflectivity spectra by alternating the averaged refractive index. The augmented optical performance allowed for a linear response within the range of 10 to 10,000 pg mL−1 while presenting a detection limit of 4.8 pg mL−1. The practical aspect of the developed assay was verified using field BoNT holotoxins to exemplify the potential use of the developed optical approach for rapid bio-diagnosis of BoNT. The specificity and selectivity of the assay were successfully validated using an adjacent holotoxin relevant for farm animals (BoNT serotype D). Overall, this work sets the foundation for implementing a miniaturized interferometer for routine on-site botulism diagnosis, thus significantly reducing the need for animal experimentation and shortening analysis turnaround for early evidence-based therapy.
Collapse
|
48
|
Aptamer-Sensitized Nanoribbon Biosensor for Ovarian Cancer Marker Detection in Plasma. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The detection of CA 125 protein in buffer solution with a silicon-on-insulator (SOI)-based nanoribbon (NR) biosensor was experimentally demonstrated. In the biosensor, sensor chips, bearing an array of 12 nanoribbons (NRs) with n-type conductance, were employed. In the course of the analysis with the NR biosensor, the target protein was biospecifically captured onto the surface of the NRs, which was sensitized with covalently immobilized aptamers against CA 125. Atomic force microscopy (AFM) and mass spectrometry (MS) were employed in order to confirm the formation of the probe–target complexes on the NR surface. Via AFM and MS, the formation of aptamer–antigen complexes on the surface of SOI substrates with covalently immobilized aptamers against CA 125 was revealed, thus confirming the efficient immobilization of the aptamers onto the SOI surface. The biosensor signal, resulting from the biospecific interaction between CA 125 and the NR-immobilized aptamer probes, was shown to increase with an increase in the target protein concentration. The minimum detectable CA 125 concentration was as low as 1.5 × 10−17 M. Moreover, with the biosensor proposed herein, the detection of CA 125 in the plasma of ovarian cancer patients was demonstrated.
Collapse
|
49
|
Bismuth M, Zaltzer E, Muthukumar D, Suckeveriene R, Shtenberg G. Real-time detection of copper contaminants in environmental water using porous silicon Fabry-Pérot interferometers. Analyst 2021; 146:5160-5168. [PMID: 34286718 DOI: 10.1039/d1an00701g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Water sources are vulnerable to intentional and inadvertent human pollution with thousands of synthetic and geogenic trace contaminants, posing long-term effects on the aquatic ecosystem and human health. Thus, early and rapid detection of water pollutants followed by corrective and preventive actions can lead to the reduction of the overall polluting impact to safeguard public health. This study presents a generic sensing assay for the label-free detection of copper contaminants in environmental water samples using multilayered polyethylenimine (PEI) functionalized porous silicon Fabry-Pérot interferometers. The selective chelating activity of PEI thin-films was monitored in real-time by reflective interferometric Fourier transform spectroscopy (RIFTS) while assessing the improved optical responses. The optimized scaffold of two sequential PEI layers depicted a linear working range between 0.2 and 2 ppm while presenting a detection limit of 0.053 ppm (53 ppb). The specificity of the developed platform was cross-validated against various metallic pollutants and cations commonly found in water bodies (i.e., Cd2+, Pb2+, Cr3+, Fe3+, Mg2+, Ca2+, Zn2+, K+ and Al3+). Finally, as a proof of concept, the analytical performance of the porous interferometers for real-life scenarios was demonstrated in three water samples (tap, ground and irrigation), presenting sufficient adaptability to complex matrix analysis with recovery values of 85-106%. Overall, the developed sensing concept offers an efficient, rapid and label-free methodology that can be potentially adopted for routine on-site detection using a simple and portable device.
Collapse
Affiliation(s)
- Mike Bismuth
- Life Sciences and Nanotechnology, Bar Ilan University, Ramat-Gan, Israel
| | - Eytan Zaltzer
- Epidemiology and Preventive Medicine, School of Public Health - Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Divagar Muthukumar
- Institute of Agricultural Engineering, ARO, The Volcani Center, Bet Dagan, Israel.
| | - Ran Suckeveriene
- Department of Water Industry Engineering, Kinneret Academic College, Israel
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
50
|
Recent applications of quantum dots in optical and electrochemical aptasensing detection of Lysozyme. Anal Biochem 2021; 630:114334. [PMID: 34384745 DOI: 10.1016/j.ab.2021.114334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Lysozyme (Lyz) is a naturally occurring enzyme that operates against Gram-positive bacteria and leads to cell death. This antimicrobial enzyme forms the part of the innate defense system of nearly all animals and exists in their somatic discharges such as milk, tears, saliva and urine. Increased Lyz level in serum is an important indication of several severe diseases and so, precise diagnosis of Lyz is an urgent need in biosensing assays. Up to know, various traditional and modern techniques have been introduced for Lyz determination. Although the traditional methods suffer from some significant limitations such as time-consuming, arduous, biochemical screening, bacterial colony isolation, selective enrichment and requiring sophisticated instrumentation or isotope labeling, some new modern approaches like aptamer-based biosensors (aptasensors) and quantum dot (QD) nanomaterials are the main goal in Lyz detection. Electrochemical and optical sensors have been highlighted because of their adaptability and capability to decrease the drawbacks of common methods. Using an aptamer-based biosensor, sensor selectivity is enhanced due to the specific recognition of the analyte. Thereby, in this review article, the recent advances and achievements in electrochemical and optical aptasensing detection of Lyz based on different QD nanomaterials and detection methods have been discussed in detail.
Collapse
|