1
|
Sable AA, Nayak M, Kumar S, Kunwar A, Barik A. Structural studies on the interaction of CTAB with alginate: Possibility of surfactant therapy with chemo sensitization effect. J Pharm Sci 2025; 114:103701. [PMID: 39954808 DOI: 10.1016/j.xphs.2025.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The present study reports the preparation of sodium alginate-cetyltrimethylammonium bromide (CTAB) nanoparticles (SANPs) through the interaction of a fixed concentration of alginate (0.2% w/v in water) with two different concentrations of CTAB i.e., below (0.4 mM) and above (1.2 mM) critical micelle concentration (CMC) and the elucidation of its structure on the basis of dynamic light scattering, transmission electron microscopy, small angle neutron scattering and zeta potential measurements. The results indicated that the concentration of CTAB dictated the hydrodynamic shape and size of SANPs. While both the micellized (> CMC) and monomeric forms (< CMC) of CTAB resulted in the formation of negatively charged near spherical particles, the SANPs containing micellized form of CTAB exhibited smaller and more compact hydrodynamic structure compared to those containing monomeric form of CTAB. The cytotoxicity studies involving cancerous cell lines (A549 and L132) indicated that the anticancer activity of CTAB was retained in the SANPs. Subsequently, encapsulation of doxorubicin (DOX), a potent anticancer drug in to SANPs enhanced the efficacy of the overall nano-formulation for effectively killing A549 and L132 cells. Additionally, the DOX loaded SANPs also exhibited the sustained and pH dependent drug release under reservoir-sink model. Together, polyelectrolyte complexation between alginate and CTAB appears as a novel strategy to design nano formulation exhibiting anticancer activity perse as well as for sensitizing the efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Anand A Sable
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Minati Nayak
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Atanu Barik
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Hu HY, Sun YJ, Yuan XF, Han JF, Liao TT, Zhang FY, Mao JD, Zhang L, Ye WL. Ultrasound-controllable dexamethasone-loaded nanobubbles for highly effective rheumatoid arthritis therapy. J Mater Chem B 2025; 13:2052-2066. [PMID: 39757977 DOI: 10.1039/d4tb01120a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that seriously threatens human health and affects the quality of life of patients. At present, pharmacotherapy is still the mainstream treatment for RA, but most methods have shortcomings, such as poor drug targeting, a low effective drug dosage at the inflammatory site, and high systemic toxicity. The combined application of drug-loaded nanobubbles and ultrasound technology provides a new technique for the treatment of RA. Low-intensity focused ultrasound (LIFU) traces the transmission of drug-loaded nanobubbles in the body, and high-intensity focused ultrasound (HIFU) causes the nanobubbles to rupture to release drugs at the inflammatory site, thereby reducing their toxicity to normal tissues. In this study, a drug-loaded nanobubble delivery system (DEXsp@Liposomes/C3F8) with ultrasonic response characteristics was successfully constructed, and its therapeutic effect was evaluated for the treatment of RA in vitro and in vivo. DEXsp@Liposomes/C3F8 + LIFU had good biocompatibility and excellent ultrasound imaging ability. DEXsp@Liposomes/C3F8 +HIFU distinctly increased the cellular uptake of DEXsp and significantly reduced the secretion of related inflammatory factors in RAW264.7 cells. Moreover, DEXsp@Liposomes/C3F8 + HIFU effectively alleviated the symptoms of RA in model rats and significantly improved their exercise capacity. In conclusion, the prepared ultrasound-mediated DEXsp@Liposomes/C3F8 system exhibits good imaging, monitoring and therapeutic effects, and the results of this study provide a new direction for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Hang-Yi Hu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Ying-Jian Sun
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiao-Feng Yuan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Pharmacy, Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, China
| | - Jiang-Fan Han
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Tian-Tian Liao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Fei-Yue Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jin-Dong Mao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lin Zhang
- Department of Outpatient Service, 986th Hospital Affilliated to Air Force Medical University, Xi'an, China.
| | - Wei-Liang Ye
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Hu C, Wang J, Gao X, Xia J, Li W, Song P, Zhang W, Ge F, Zhu L. Pluronic-Based Nanoparticles for Delivery of Doxorubicin to the Tumor Microenvironment by Binding to Macrophages. ACS NANO 2024; 18:14441-14456. [PMID: 38758604 DOI: 10.1021/acsnano.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
The active targeting drug delivery system based on special types of endogenous cells such as macrophages has emerged as a promising strategy for tumor therapy, owing to its tumor homing property and biocompatibility. In this work, the active tumor-targeting drug delivery system carrying doxorubicin-loaded nanoparticles (DOX@MPF127-MCP-1, DMPM) on macrophage (RAW264.7) surfaces via the mediation of interaction with the CCR2/MCP-1 axis was exploited. Initially, the amphiphilic block copolymer Pluronic F127 (PF127) was carboxylated to MPF127 at the hydroxyl terminus. Subsequently, MPF127 was modified with MCP-1 peptide to prepare MPF127-MCP-1 (MPM). The DOX was wrapped in MPM to form DMPM nanomicelles (approximately 100 nm) during the self-assembly process of MPM. The DMPM spontaneously bound to macrophages (RAW264.7), which resulted in the construction of an actively targeting delivery system (macrophage-DMPM, MA-DMPM) in vitro and in vivo. The DOX in MA-DMPM was released in the acidic tumor microenvironment (TME) in a pH-responsive manner to increase DOX accumulation and enhance the tumor treatment effect. The ratio of MA-DMPM homing reached 220% in vitro compared with the control group, indicating that the MA-DMPM was excellently capable of tumor-targeting delivery. In in vivo experiments, nonsmall cell lung cancer cell (NCI-H1299) tumor models were established. The results of the fluorescence imaging system (IVIS) showed that MA-DMPM demonstrated tremendous tumor-targeting ability in vivo. The antitumor effects of MA-DMPM in vivo indicated that the proportion of tumor cell apoptosis in the DMPM-treated group was 63.33%. The findings of the tumor-bearing mouse experiment proved that MA-DMPM significantly suppressed tumor cell growth, which confirmed its immense potential and promising applications in tumor therapy.
Collapse
Affiliation(s)
- Chengrui Hu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Xinxing Gao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, Jiangsu 225300, Peoples Republic of China
| | - Jie Xia
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Longbao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| |
Collapse
|
4
|
Yu J, Zhang Y, Xu M, Jiang D, Liu W, Jin H, Chen P, Xu J, Zhang L. Innovative gelatin-based micelles with AS1411 aptamer targeting and reduction responsiveness for doxorubicin delivery in tumor therapy. Biomed Pharmacother 2024; 174:116446. [PMID: 38513599 DOI: 10.1016/j.biopha.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Herein, we constructed innovative reduction-sensitive and targeted gelatin-based micelles for doxorubicin (DOX) delivery in tumor therapy. AS1411 aptamer-modified gelatin-ss-tocopherol succinate (AGSST) and the control GSST without AS1411 modification were synthesized and characterized. Antitumor drug DOX-containing AGSST (AGSST-D) and GSST-D nanoparticles were prepared, and their shapes were almost spherical. Reduction-responsive characteristics of DOX release in vitro were revealed in AGSST-D and GSST-D. Compared with non-targeted GSST-D, AGSST-D demonstrated better intracellular uptake and stronger cytotoxicity against nucleolin-overexpressed A549 cells. Importantly, AGSST-D micelles showed more effective killing activity in A549-bearing mice than GSST-D and DOX⋅HCl. It was revealed that AGSST-D micelles had no obvious systemic toxicity. Overall, AGSST micelles would have the potential to be an effective drug carrier for targeted tumor therapy.
Collapse
Affiliation(s)
- Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada; School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Yifei Zhang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Meilin Xu
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Dengzhao Jiang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wenbo Liu
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Hongguang Jin
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Jing Xu
- Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
| |
Collapse
|
5
|
Wang J, Wu X, Chen J, Gao T, Zhang Y, Yu N. Traditional Chinese medicine polysaccharide in nano-drug delivery systems: Current progress and future perspectives. Biomed Pharmacother 2024; 173:116330. [PMID: 38422656 DOI: 10.1016/j.biopha.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Traditional Chinese medicine polysaccharides (TCMPs) have gained increasing attention in the field of nanomedicine due to their diverse biological activities and favorable characteristics as drug carriers, including biocompatibility, biodegradability, safety, and ease of modification. TCMPs-based nano-drug delivery systems (NDDSs) offer several advantages, such as evasion of reticuloendothelial system (RES) phagocytosis, protection against biomolecule degradation, enhanced drug bioavailability, and potent therapeutic effects. Therefore, a comprehensive review of the latest developments in TCMPs-based NDDSs and their applications in disease therapy is of great significance. This review provides an overview of the structural characteristics and biological activities of TCMPs relevant to carrier design, the strategies employed for constructing TCMPs-based NDDSs, and the versatile role of TCMPs in these systems. Additionally, current challenges and future prospects of TCMPs in NDDSs are discussed, aiming to provide valuable insights for future research and clinical translation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xia Wu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jing Chen
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yumei Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China; Department of Chemistry, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Department of Clinical Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
6
|
Lv Y, Li W, Liao W, Jiang H, Liu Y, Cao J, Lu W, Feng Y. Nano-Drug Delivery Systems Based on Natural Products. Int J Nanomedicine 2024; 19:541-569. [PMID: 38260243 PMCID: PMC10802180 DOI: 10.2147/ijn.s443692] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Natural products have proven to have significant curative effects and are increasingly considered as potential candidates for clinical prevention, diagnosis, and treatment. Compared with synthetic drugs, natural products not only have diverse structures but also exhibit a range of biological activities against different disease states and molecular targets, making them attractive for development in the field of medicine. Despite advancements in the use of natural products for clinical purposes, there remain obstacles that hinder their full potential. These challenges include issues such as limited solubility and stability when administered orally, as well as short durations of effectiveness. To address these concerns, nano-drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. These systems offer notable advantages, such as a large specific surface area, enhanced targeting capabilities, and the ability to achieve sustained and controlled release. Extensive in vitro and in vivo studies have provided further evidence supporting the efficacy and safety of nanoparticle-based systems in delivering natural products in preclinical disease models. This review describes the limitations of natural product applications and the current status of natural products combined with nanotechnology. The latest advances in nano-drug delivery systems for delivery of natural products are considered from three aspects: connecting targeting warheads, self-assembly, and co-delivery. Finally, the challenges faced in the clinical translation of nano-drugs are discussed.
Collapse
Affiliation(s)
- Ying Lv
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenqing Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wei Liao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Haibo Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yuwei Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Jiansheng Cao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenfei Lu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yufei Feng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| |
Collapse
|
7
|
Mdlovu NV, Juang RS, Weng MT, Lin KS. Green synthesis and characterization of silicate nanostructures coated with Pluronic F127/gelatin for triggered drug delivery in tumor microenvironments. Int J Biol Macromol 2023; 251:126337. [PMID: 37586620 DOI: 10.1016/j.ijbiomac.2023.126337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Thermo-/pH-sensitive nanocomposites based on mesoporous silicate MCM-41 (MSNCs) derived from rice husk ash were synthesized and characterized. MSNCs were coated with thermo-/pH-sensitive Pluronic® F127 and gelatin to form MSNCs@gp nanocomposites, serving as carriers for controlled release of the anticancer drug doxorubicin (Dox). The in vitro and in vivo antitumor efficacy of MSNCs@gp-Dox against liver cancer was evaluated. Fourier-transform infrared (FTIR) spectra confirmed the silica nature of MSNCs@gp by detecting the Si-O-Si group. Under acidic microenvironments (pH 5.4) and 42 °C, MSNCs@gp-Dox exhibited significantly higher Dox release (47.33 %) compared to physiological conditions. Thermo-/pH-sensitive drug release (47.33 %) was observed in simulated tumor environments. The Makoid-Banakar model provided the best fit at pH 7.4 and 37 °C with a mean squared error of 0.4352, an Akaike Information Criterion of 15.00, and a regression coefficient of 0.9972. Cytotoxicity tests have demonstrated no significant toxicity in HepG2 cells treated with various concentrations of MSNCs@gp, while MSNCs@gp-Dox induced considerable cell apoptosis. In vivo studies in nude mice revealed effective suppression of liver cancer growth by MSNCs@gp-Dox, indicating high pharmaceutical efficacy. The investigated MSNCs@gp-based drug delivery system shows promise for liver cancer therapy, offering enhanced treatment efficiency with minimal side effects.
Collapse
Affiliation(s)
- Ndumiso Vukile Mdlovu
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan 33305, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 32003, Taiwan
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan 33305, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan.
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100233, Taiwan; Department of Medical Research, National Taiwan University Hospital Hsinchu Branch, Hsinchu 302, Taiwan.
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 32003, Taiwan.
| |
Collapse
|
8
|
Shafiq A, Madni A, Khan S, Sultana H, Sumaira, Shah H, Khan S, Rehman S, Nawaz M. Core-shell Pluronic F127/chitosan based nanoparticles for effective delivery of methotrexate in the management of rheumatoid arthritis. Int J Biol Macromol 2022; 213:465-477. [PMID: 35661673 DOI: 10.1016/j.ijbiomac.2022.05.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022]
Abstract
This study was designed to improve oral bioavailability of the methotrexate (MTX) by sustaining its release profile and integration into core-shell polymeric nanoparticles. The self-micellization and ionotropic gelation technique was employed which resulted into spherical shaped nanoparticles (181-417 nm) with encapsulation efficiency of 80.14% to 85.54%. Furthermore, Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimetry analyses were carried out to investigate physicochemical and thermal stability of the produced engineered core shell nanoparticles of the methotrexate. . Entrapment of drug in polymeric core was confirmed by X-ray diffraction analysis. In-vitro sustained release behavior of nanoparticles was observed at pH 6.8 for 48 h while low drug release was observed at pH 1.2 due to pH-responsive nature of Pluronic F127. Acute toxicity study confirmed safety and biocompatible profile of nanoparticles. MTX loaded polymeric nanoparticles ameliorated the pharmacokinetic profile (8 folds greater half-life, 6.26 folds higher AUC0-t and 3.48 folds higher mean residence time). In vivo study conducted in rat model depicted the improved therapeutic efficacy and healing of arthritis through MTX loaded polymeric nanoparticles, preferentially attributable to high accretion of MTX in the inflamed site. In conclusion, MTX loaded polymeric nanoparticles is an attractive drug delivery strategy for an effective management and treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Afifa Shafiq
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
| | - Humaira Sultana
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sumaira
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sadia Rehman
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mehwish Nawaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
9
|
Das RP, Gandhi VV, Verma G, Ajish JK, Singh BG, Kunwar A. Gelatin-lecithin-F127 gel mediated self-assembly of curcumin vesicles for enhanced wound healing. Int J Biol Macromol 2022; 210:403-414. [PMID: 35526768 DOI: 10.1016/j.ijbiomac.2022.04.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/23/2022]
Abstract
Curcumin, a principal component of Curcuma longa, has a long history of being used topically for wound healing. However, poor aqueous solubility of curcumin leads to poor topical absorption. Recently, gelatin based gel has been reported to overcome this issue. However, the release of curcumin from gelatin gel in the bioavailable or easily absorbable form is still a challenge. The present study reports the development of a composite gel prepared from gelatin, F127 and lecithin using temperature dependant gelation and loading of curcumin within it. Notably, the composite gel facilitated the release of curcumin entrapped within vesicles of ~400 nm size. Further, the composite gel exhibited increase in the storage modulus or gel strength, stability, pore size and hydrophobicity as compared to only gelatin gel. Finally, wound healing assay in murine model indicated that curcumin delivered through composite gel showed a significantly faster healing as compared to that delivered through organic solvent. This was also validated by histopathological and biochemical analysis showing better epithelization and collagen synthesis in the group dressed with curcumin containing composite gel. In conclusion, composite gel facilitated the release of bioavailable or easily absorbable curcumin which in turn enhanced the wound healing.
Collapse
Affiliation(s)
- Ram Pada Das
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Vishwa V Gandhi
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Gunjan Verma
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Juby K Ajish
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Amit Kunwar
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
10
|
A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int J Biol Macromol 2022; 211:711-728. [PMID: 35588976 DOI: 10.1016/j.ijbiomac.2022.05.087] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/22/2022]
Abstract
Carbohydrate polymers with unique chemical composition, molecular weight and functional chemical groups show multiple potentials in drug delivery. Most carbohydrate polymers such as plant polysaccharides exhibit advantages of biodegradability, ease of modification, low immunogenicity and low toxicity. They can be conjugated, cross-linked or functionally modified, and then used as nanocarrier materials. Polysaccharide drug delivery system can avoid the phagocytosis of the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting effective therapeutic effects. Therefore, they have been fully explored. In this paper, we reviewed the construction methods of drug delivery systems based on carbohydrate polymers (astragalus polysaccharide, angelica polysaccharide, lycium barbarum polysaccharide, ganoderma lucidum polysaccharide, bletilla polysaccharide, glycyrrhiza polysaccharide, and epimedium polysaccharides, etc). The application of polysaccharide drug delivery systems to deliver small molecule chemotherapeutic drugs, gene drugs, and metal ion drugs was also briefly introduced. At the same time, the role of the polysaccharide drug delivery system in tumor treatment, targeted therapy, and wound healing was discussed. In addition, the research of polysaccharide delivery systems based on the therapeutic efficacy of traditional Chinese medicine was also summarized and prospected.
Collapse
|
11
|
Qiao L, Yang H, Gao S, Li L, Fu X, Wei Q. Research progress on self-assembled nanodrug delivery systems. J Mater Chem B 2022; 10:1908-1922. [DOI: 10.1039/d1tb02470a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, nanodrug delivery systems have attracted increasing attention due to their advantages, such as the high drug loading, low toxicity and side effects, improved bioavailability, long half-life, well...
Collapse
|
12
|
Das RP, Gandhi VV, Singh BG, Kunwar A. Balancing loading, cellular uptake, and toxicity of gelatin-pluronic nanocomposite for drug delivery: Influence of HLB of pluronic. J Biomed Mater Res A 2021; 110:304-315. [PMID: 34355509 DOI: 10.1002/jbm.a.37287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/22/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022]
Abstract
In this study, pluronic stabilized gelatin nanocomposite of varying hydrophilic-lipophilic balance (HLB) were synthesized to study the effect of surface hydrophobicity on their cellular uptake and in turn the delivery of a model hydrophobic bioactive compound, curcumin (CUR). Notably, the variation in HLB from 22 to 8 did not cause much change in morphology (~spherical) and surface charge (~ -6.5 mV) while marginally reducing the size of nanocomposite from 165 ± 097 nm to 134 ± 074 nm. On contrary, nanocomposites exhibited a very significant increase in their numbers, hydrophobicity as well as CUR loading with decreasing HLB values (22-8) of pluronic. Further, the cellular uptake of CUR through pluronic-gelatin nanocomposites was studied in human lung carcinoma (A549) cells. The results indicated that cellular uptake of CUR through nanocomposites followed the order HLB 22 > HLB 18 > HLB 15 > HLB 8. This was also reflected in terms of the decrease in cytotoxicity of CUR through nanocomposite of HLB 8 as compared to that of HLB 22. Interestingly, bare nanocomposite of HLB 8 showed significantly higher cytotoxicity as compared to that of HLB 22. Together these results suggested that although higher hydrophobicity of the gelatin-pluronic nanocomposite facilitated higher entrapment of CUR, the carrier per se became toxic due to its hydrophobic interaction with lipid bilayer of plasma membrane. Thus, HLB parameter is very important in designing hybrid nanocomposite systems involving protein and pluronic to ensure both bio-compatibility of the carrier and the optimum cellular delivery of the pay load.
Collapse
Affiliation(s)
- Ram Pada Das
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Vishwa V Gandhi
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Beena G Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
13
|
Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Aldhaher A, Makvandi P, Dinarvand R, Jouyandeh M, Saeb MR, Mozafari M, Shokouhimehr M, Hamblin MR, Varma RS. Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS APPLIED BIO MATERIALS 2021; 4:5336-5351. [PMID: 35007014 DOI: 10.1021/acsabm.1c00447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hybrid bioactive inorganic-organic carbon-based nanocomposites of reduced graphene oxide (rGO) nanosheets enlarged with multi-walled carbon nanotubes (MWCNTs) were decorated to provide a suitable space for in situ growth of CoNi2S4 and green-synthesized ZnO nanoparticles. The ensuing nanocarrier supplied π-π interactions between the DOX drug and a stabilizing agent derived from leaf extracts on the surface of ZnO nanoparticles and hydrogen bonds; gene delivery of (p)CRISPR was also facilitated by chitosan and alginate renewable macromolecules. Also, these polymers can inhibit the potential interactions between the inorganic parts and cellular membranes to reduce the potential cytotoxicity. Nanocomposite/nanocarrier analyses and sustained DOX delivery (cytotoxicity analyses on HEK-293, PC12, HepG2, and HeLa cell lines after 24, 48, and 72 h) were indicative of an acceptable cell viability of up to 91.4 and 78.8% after 48 at low and high concentrations of 0.1 and 10 μg/mL, respectively. The MTT results indicate that by addition of DOX to the nanostructures, the relative cell viability increased after 72 h of treatment; since the inorganic compartments, specifically CoNi2S4, are toxic, this is a promising route to increase the bioavailability of the nanocarrier before reaching the targeted cells. Nanosystems were tagged with (p)CRISPR for co-transfer of the drug/genes, where confocal laser scanning microscopy (CLSM) pictures of the 4',6-diamidino-2-phenylindole (DAPI) were indicative of appropriate localization of DOX into the nanostructure with effective cell and drug delivery at varied pH. Also, the intrinsic toxicity of CoNi2S4 does not affect the morphology of the cells, which is a breakthrough. Furthermore, the CLSM images of the HEK-293 and HeLa cell displayed effective transport of (p)CRISPR into the cells with an enhanced green fluorescent protein (EGFP) of up to 8.3% for the HEK-293 cell line and 21.4% for the HeLa cell line, a record. Additionally, the specific morphology of the nanosystems before and after the drug/gene transport events, via images by TEM and FESEM, revealed an intact morphology for these biopolymers and their complete degradation after long-time usage.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
- Universal Scientific Education and Research Network (USERN), Tehran 15875-4413, Iran
| | - Abdullah Aldhaher
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1417466191, Iran
| | | | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto ON M5S, Canada
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Johannesburg 2028, South Africa
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
14
|
Huguet-Casquero A, Gainza E, Pedraz JL. Towards Green Nanoscience: From extraction to nanoformulation. Biotechnol Adv 2020; 46:107657. [PMID: 33181241 DOI: 10.1016/j.biotechadv.2020.107657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
The use of nanotechnology has revolutionized many biotechnological sectors, from bioengineering to medicine, passing through food and cosmetic fields. However, their clinic and industrial application has been into the spotlight due to their safety risk and related side effects. As a result, Green Nanoscience/Nanotechnology emerged as a strategy to prevent any associated nanotoxicity, via implementation of sustainable processes across the whole lifecycle of nanoformulation. Notwithstanding its success across inorganic nanoparticles, the green concept for organic nanoparticle elaboration is still at its infancy. This, coupled with the organic nanoparticles being the most commonly used in biomedicine, highlights the need to implement specific green principles for their elaboration. In this review, we will discuss the possible green routes for the proper design of organic nanoparticles under the umbrella of Green Nanoscience: from the extraction of nanomaterials and active compounds to their final nanoformulation.
Collapse
Affiliation(s)
- Amaia Huguet-Casquero
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, Vitoria- Gasteiz 01006, Spain; Biosasun S.A, Iturralde 10, Etxabarri-Ibiña, Zigoitia 01006, Spain
| | - Eusebio Gainza
- Biosasun S.A, Iturralde 10, Etxabarri-Ibiña, Zigoitia 01006, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, Vitoria- Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|