1
|
Xia Y, Han B, Zhang F, Li Q, Feng Q, Zhang S, Liu D, Lin C, Wang D, Liu B. Pae/exo@PF-127 promote diabetic wound healing through miR-424-5p. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156688. [PMID: 40347888 DOI: 10.1016/j.phymed.2025.156688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Currently, chronic diabetic wound healing is one of the urgent clinical challenges. Choosing appropriate dressings loaded with stem cell-derived exosomes (exo) and traditional Chinese medicine extracts that promote healing is an effective method to accelerate skin healing in diabetes. Paeonol (Pae), possessing anti-inflammatory properties and vascular enhancement functions, can serve as a therapeutic herbal extract for treating diabetic wounds. METHODS Exo were extracted from mesenchymal stem cells and loaded them with Pae (Pae/exo). The effects of Pae/exo on human skin fibroblasts (HSF) and human umbilical vein endothelial cells (HUVEC) were evaluated using CCK-8, migration, and transwell assays. Western blotting, qPCR, and immunofluorescence experiments were conducted to analysis the regulation of associated genes and proteins. Mimics and inhibitors of miR-424-5p were synthesized to further investigate its role in HUVEC and HSF. Additionally, diabetic mice models were constructed with the knockout of miR-322 (a homologous miRNA of miR-424) to validate the impact of miR-424-5p knockout on diabetic skin healing in vivo. To better simulate clinical application, thermosensitive hydrogel Pluronic® F-127 (PF-127) was used as a carrier for Pae/exo, and the effect of Pae/exo@PF-127 on wound healing in diabetic mice was investigated. RESULTS This study confirmed that Pae/exo increased the proliferation and migration of HSF and HUVEC by promoting epithelial-mesenchymal transition (EMT) and angiogenesis. The expression of miR-424-5p was significantly upregulated upon treatment with Pae/exo, which correlated with the induction of EMT and angiogenesis. In vivo experiments demonstrated that the wound healing rate was significantly lower in miR-322-knockout diabetic mice compared to wild-type diabetic mice; vascular production and epithelialization rate were also reduced in the knockout mice. Pae/exo@PF-127 significantly improved wound healing efficiency in diabetic mice by enhancing EMT and promoting blood vessel formation. The integration of pae, MSC-exo, and PF-127 harnesses their synergistic effects to significantly enhance wound healing and prolong the interval between dressing changes, thereby alleviating patient discomfort. CONCLUSION Pae/exo@PF-127 promotes EMT and angiogenesis by upregulating miR-424-5p expression, thereby facilitating diabetic wound healing.
Collapse
Affiliation(s)
- Yidan Xia
- Department of hand and foot surgery, The First Hospital of Jilin University, Changchun, 130021, China; Tissue Engineering Biomaterial Engineering Laboratory of Jilin Province, Changchun, China
| | - Beibei Han
- Department of hand and foot surgery, The First Hospital of Jilin University, Changchun, 130021, China; Tissue Engineering Biomaterial Engineering Laboratory of Jilin Province, Changchun, China
| | - Fengyuan Zhang
- Department of hand and foot surgery, The First Hospital of Jilin University, Changchun, 130021, China; Tissue Engineering Biomaterial Engineering Laboratory of Jilin Province, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China; Intellectual Innovation Gene editing Animal Model Research Center, Wenzhou Institution of Technology, Wenzhou, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China; Intellectual Innovation Gene editing Animal Model Research Center, Wenzhou Institution of Technology, Wenzhou, China
| | - Shidong Zhang
- ZHONGKEJUYAN Stem Cell Company Ltd, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Chao Lin
- School of grain science and technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China; Intellectual Innovation Gene editing Animal Model Research Center, Wenzhou Institution of Technology, Wenzhou, China.
| | - Bin Liu
- Department of hand and foot surgery, The First Hospital of Jilin University, Changchun, 130021, China; Tissue Engineering Biomaterial Engineering Laboratory of Jilin Province, Changchun, China.
| |
Collapse
|
2
|
Weng J, Chen Y, Zeng Y, Jin W, Ji Y, Zhang W, Wang S, Li H, Yi M, Niu X, Deng X, Huang J, Su X, Chen L. A novel hydrogel loaded with plant exosomes and stem cell exosomes as a new strategy for treating diabetic wounds. Mater Today Bio 2025; 32:101810. [PMID: 40391025 PMCID: PMC12088786 DOI: 10.1016/j.mtbio.2025.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/08/2025] [Accepted: 04/26/2025] [Indexed: 05/21/2025] Open
Abstract
Diabetic wound healing is constrained by various factors, including chronic inflammation, sustained oxidative stress, impaired angiogenesis, and abnormal wound microenvironments. Exosomes derived from mesenchymal stem cells (MSC-exo) contain a wealth of bioactive substances that play a positive role in promoting diabetic wound healing. Plant-derived exosomes, as a novel therapeutic approach, are continuously being explored. Momordica charantia (MC) has been shown to possess blood glucose-lowering effects, and its exosomes are of significant relevance for treating diabetic wounds. However, direct application of exosomes to wounds faces challenges such as poor stability and short retention time, limiting their therapeutic effectiveness and clinical applicability. Encapsulating exosomes in hydrogels is an effective strategy to preserve their bioactivity. In this study, we fabricated a hydrogel loaded with MSC-exo and MC exosomes (MC-exo) by photopolymerization of methacrylated gelatin (GelMA) and dopamine (MEMC-Gel). The resulting MEMC-Gel exhibited favorable mechanical properties, adhesion, degradability, absorbency, and biocompatibility. In vitro, MEMC-Gel demonstrated the ability to resist inflammation, counter oxidative stress, promote fibroblast migration, support endothelial cell angiogenesis, and regulate macrophage polarization. In a diabetic mouse wound model, MEMC-Gel accelerated wound healing by inhibiting inflammation and oxidative stress, modulating macrophage immune responses and hyperglycemia within the microenvironment, promoting angiogenesis, and enhancing epithelialization. In conclusion, MEMC-Gel is an outstanding hydrogel dressing that synergistically promotes repair by loading MSC-exo and MC-exo, significantly accelerating diabetic wound healing through multiple mechanisms. This multifunctional hydrogel, based on exosomes from two different sources, provides an innovative therapeutic strategy for diabetic wound repair with broad clinical application potential.
Collapse
Affiliation(s)
- Jialu Weng
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yizhang Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yuhan Zeng
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Wenzhang Jin
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Ying Ji
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
| | - Wa Zhang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Shunfu Wang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Haobing Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Meilin Yi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xiaoying Niu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xuchen Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Jiancheng Huang
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
| | - Xiang Su
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Lulu Chen
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| |
Collapse
|
3
|
Luo L, Zheng W, Li J, Chen T, Xue W, Lin T, Liu M, Yan Z, Yang J, Li J, Pu J, Wu Y, Hu K, Li S, Huang W. 3D-Printed Titanium Trabecular Scaffolds with Sustained Release of Hypoxia-Induced Exosomes for Dual-Mimetic Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500599. [PMID: 40349160 DOI: 10.1002/advs.202500599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/23/2025] [Indexed: 05/14/2025]
Abstract
Current Ti-6Al-4V bone implants lack trabecular structure and pro‑angiogenic cues, both essential for regeneration. Herein, a dual biomimetic strategy is devised that integrates a 3D-printed biomimetic trabecular porous Ti-6Al-4V scaffold (BTPS) with exosome-loaded PEGDA/GelMA hydrogel microspheres (PGHExo) designed for sustained release. BTPS is designed using Voronoi algorithms and imaging data, and replicates the geometry and mechanical properties of natural bone. Hypoxia-induced human umbilical vein endothelial cell (HUVEC) derived exosomes (HExo) are encapsulated in PGHExo microspheres via microfluidic technology, enabling controlled release of HExo, and anchored onto BTPS using polydopamine (pDA) modification (BTPS&pDA@PGHExo). BTPS exhibited an elastic modulus of ≈3.2 GPa and a permeability of 11.52 × 10-8 mm2, mimicking natural bone. In vitro assays demonstrated that BTPS&pDA@PGHExo significantly enhanced osteogenesis and angiogenesis. mRNA-Seq analysis suggested that BTPS&pDA@PGHExo regulates osteogenic and angiogenic gene expression through the activation of pathways including MAPK, mTOR, HIF-1, and VEGF. In vivo, BTPS&pDA@PGHExo improved bone volume, density, and neovascularization in a rabbit model. This dual biomimetic strategy offers a promising clinical solution, addressing the limitations of conventional Ti-6Al-4V scaffolds and providing an innovative approach for personalized bone defect repair.
Collapse
Affiliation(s)
- Lincong Luo
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Weihan Zheng
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Jiaying Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Tingting Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Wanting Xue
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Tao Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mingrui Liu
- School of Basic Medicine, Dali University, Dali, Yunnan, 671003, China
| | - Zi Yan
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Jiaxin Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiamin Li
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Jiahao Pu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Konghe Hu
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shiyu Li
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenhua Huang
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
4
|
Jeong M, Lee H, Ko TH, Choi SJ, Oh W, Kim S. Umbilical Cord Blood Plasma Enhances Cellular Repair and Senescence Suppression in Human Dermal Fibroblasts Under Oxidative Stress. Rejuvenation Res 2025. [PMID: 40313215 DOI: 10.1089/rej.2024.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Aging is associated with a gradual decline in cellular function, largely driven by oxidative stress, which leads to cellular senescence. These processes contribute to tissue degeneration and age-related dysfunction. Human dermal fibroblasts (HDFs), critical for maintaining skin structure, are highly vulnerable to oxidative damage, making them key contributors to skin aging. Umbilical cord blood plasma (UCBP), rich in growth factors and regenerative molecules, has shown potential in preventing cellular senescence and addressing key mechanisms of tissue aging. Based on findings from heterochronic parabiosis experiments that demonstrated the rejuvenating effect of young blood, we investigated the effects of UCBP on hydrogen peroxide (H2O2) induced oxidative stress in HDFs and compared its efficacy with adult blood plasma (ABP). Our results indicate that although both UCBP and ABP reduce reactive oxygen species (ROS), UCBP is more effective in suppressing cellular senescence and maintaining fibroblast proliferation. These findings suggest that UCBP's protective effects extend beyond ROS reduction, potentially by modulating the senescence-associated secretory phenotype and the enhancement of tissue repair mechanisms.
Collapse
Affiliation(s)
- Miso Jeong
- Research Institute of Advanced Regenerative Medicine, MEDIPOST Co., Ltd., Seongnam, South Korea
| | - Hyangju Lee
- Research Institute of Advanced Regenerative Medicine, MEDIPOST Co., Ltd., Seongnam, South Korea
| | - Tae-Hyun Ko
- Research Institute of Advanced Regenerative Medicine, MEDIPOST Co., Ltd., Seongnam, South Korea
| | - Soo Jin Choi
- Research Institute of Advanced Regenerative Medicine, MEDIPOST Co., Ltd., Seongnam, South Korea
| | - Wonil Oh
- Research Institute of Advanced Regenerative Medicine, MEDIPOST Co., Ltd., Seongnam, South Korea
| | - Sangwoo Kim
- Research Institute of Advanced Regenerative Medicine, MEDIPOST Co., Ltd., Seongnam, South Korea
| |
Collapse
|
5
|
Dasgupta S, Barui A. Coculture to vascularization transition in bioengineered skin grafts through VEGF-associated pathways tracked by exosomal biomarkers. Biomater Sci 2025; 13:1464-1481. [PMID: 39902980 DOI: 10.1039/d4bm01544d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Inadequate vasculature poses a significant challenge in the clinical translation of tissue engineering constructs. Current strategies for vascularization typically recruit short-lived endothelial cells or induce mesenchymal stem cells (MSC) to differentiate into the endothelial lineage, often in combination with supporting pericytes or fibroblasts. However, endothelial-associated cocultures lack adaptive ability and form limited vasculature. In this study, we investigated the endothelial transdifferentiation of an MSC-fibroblast coculture loaded on a bioengineered graft and utilized the exosomes released by the coculture model as a biomarker to monitor the progress of vascularization inside the graft. To develop the pre-vascularized skin graft, dermal fibroblasts and MSC were seeded on a biocomposite chitosan/collagen/fibrinogen/D3 (CCF-D3) scaffold. The cocultured graft facilitated the differentiation of MSC to endothelial cells (MEnDoT). Additionally, it promoted vasculogenic sprouting through the VEGF-eNOS pathways, as evidenced by the expression of F-actin, VEGF-A, and downstream transcriptomic markers (CD31, CD34, eNOS, VEGF-A, VEGF-R2, PI3 K, and PLC-γ). Exosomes (∼130 nm diameter) were isolated from the coculture, and their spectral analysis revealed significant differences (p < 0.05) in the intensity ratio of nucleotides (952 cm-1), polysaccharides (1071 cm-1) and lipoproteins (1417 cm-1), corresponding to vasculogenesis. The activation of the VEGF-associated pathway in the coculture model was validated using an inhibitor (dexamethasone), which was used to treat the coculture graft as a control. Thus, this study elucidated the vascularization of coculture constructs via the VEGF-associated pathway. It demonstrated the potential of exosome spectral fingerprints as promising biomarkers to monitor the vascularization progression inside the graft, paving the way for the development of standardized grafts for full-thickness skin tissue regeneration.
Collapse
Affiliation(s)
- Shalini Dasgupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India.
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India.
| |
Collapse
|
6
|
Morabbi A, Karimian M. Therapeutic potential of exosomal lncRNAs derived from stem cells in wound healing: focusing on mesenchymal stem cells. Stem Cell Res Ther 2025; 16:62. [PMID: 39934913 PMCID: PMC11816792 DOI: 10.1186/s13287-025-04200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
The self-renewal ability and multipotency of stem cells give them great potential for use in wound healing. Stem cell-derived exosomes, owing to their close biological resemblance to their parent cells, offer a more efficient, safer, and economical approach for facilitating cellular communication and interactions within different environments. This potential makes them particularly valuable in the treatment of both acute and chronic wounds, such as lacerations, burns, and diabetic ulcers. Long non-coding RNAs (lncRNAs) enclosed in exosomes, as one of the leading actors of these extracellular microvesicles, through interaction with miRNAs and regulation of various signaling pathways involved in inflammation, angiogenesis, cell proliferation, and migration, could heal the wounds. Exosome-derived lncRNAs from stem cells facilitate extracellular matrix remodeling through interaction between macrophages and fibroblasts. Moreover, alongside regulating the expression of inflammatory cytokines, controlling reactive oxygen species levels, and enhancing autophagic activity, they also modulate immune responses to support wound healing. Regulating the expression of genes and signaling pathways related to angiogenesis, by increasing blood supply and accelerating the delivery of essential substances to the wound environment, is another effect exosomal lncRNAs derived from stem cells for wound healing. These lncRNAs can also enhance skin wound healing by regulating homeostasis, increasing the proliferation and differentiation of cells involved in the wound-healing process, and enhancing fibroblast viability and migration to the injury site. Ultimately, exosome-derived lncRNAs from stem cells offer valuable and novel insights into the molecular mechanisms underlying improved wound healing. They can pave the way for potential therapeutic strategies, fostering further research for a better future. Meanwhile, exosomes derived from mesenchymal stem cells, due to their exceptional regenerative properties, as well as the lncRNAs derived from these exosomes, have emerged as one of the innovative tools in wound healing. This review article aims to narrate the cellular and molecular roles of exosome-derived lncRNAs from stem cells in enhancing wound healing with a focus on mesenchymal stem cells.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
7
|
Ham YM, Kang Y, Kang SJ, Lee S, Lee J, Rhee WJ. Advanced Enrichment and Separation of Extracellular Vesicles through the Super Absorbent Polymer Nanosieves. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65863-65876. [PMID: 39560656 DOI: 10.1021/acsami.4c14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Extracellular vesicles (EVs) are promising therapeutic biomaterials capable of transferring their cargo molecules and external drugs to other cells in vivo and contain various biomarkers that can be used in liquid biopsies. The clinical application of EVs requires an efficient EV enrichment system for the large-scale production or high-throughput isolation of EVs from liquid samples, such as culture media, plant juices, and body fluids. However, current EV enrichment methods, such as ultrafiltration and ultracentrifugation, have limited applicability owing to their associated costs, inefficiency, scalability, and centrifugation time. Herein, we describe the development of a nanosieve based on a superabsorbent polymer for selective EV enrichment. The nanosieve absorbs small molecules while expelling large molecules, such as EVs, through the nanosized channels. We successfully concentrated EVs from clinical samples, such as serum and plasma, with superior cost and time efficiencies. The nanosieves did not interact with the EVs during enrichment, allowing the retention of their therapeutic functions. In addition, the nanosieve surface was specifically engineered to provide multifunctionality to effectively promote EV capture from bulk solutions. Overall, our nanosieve-based EV enrichment method is effective, time- and cost-saving, versatile, scalable, and modulable, and is an excellent option for EV production.
Collapse
Affiliation(s)
- Yoo Min Ham
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yubin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Su Jin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Soobin Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jiyoon Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
8
|
Li FXZ, Liu JJ, Lei LM, Li YH, Xu F, Lin X, Cui RR, Zheng MH, Guo B, Shan SK, Tang KX, Li CC, Wu YY, Duan JY, Cao YC, Wu YL, He SY, Chen X, Wu F, Yuan LQ. Mechanism of cold exposure delaying wound healing in mice. J Nanobiotechnology 2024; 22:723. [PMID: 39568002 PMCID: PMC11577949 DOI: 10.1186/s12951-024-03009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Cold temperatures have been shown to slow skin wound healing. However, the specific mechanisms underlying cold-induced impairment of wound healing remain unclear. Here, we demonstrate that small extracellular vesicles derived from cold-exposed mouse plasma (CT-sEVs) decelerate re-epithelialization, increase scar width, and weaken angiogenesis. CT-sEVs are enriched with miRNAs involved in the regulation of wound healing-related biological processes. Functional assays revealed that miR-423-3p, enriched in CT-sEVs, acts as a critical mediator in cold-induced impairment of angiogenic responses and poor wound healing by inhibiting phosphatase and poly(A) binding protein cytoplasmic 1 (PABPC1). These findings indicate that cold delays wound healing via miR-423-3p in plasma-derived sEVs through the inhibition of the ERK or AKT phosphorylation pathways. Our results enhance understanding of the molecular mechanisms by which cold exposure delays soft tissue wound healing.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jun-Jie Liu
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, Hunan, 410008, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ye-Hui Li
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Rong-Rong Cui
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ye-Chi Cao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yan-Lin Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Si-Yang He
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xi Chen
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Rahnama M, Ghasemzadeh N, Ebrahimi Y, Golchin A. A comprehensive evaluation of dermal fibroblast therapy in clinical trials for treating skin disorders and cosmetic applications: a scoping review. Stem Cell Res Ther 2024; 15:318. [PMID: 39304949 PMCID: PMC11416016 DOI: 10.1186/s13287-024-03892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Fibroblast cells have the ability to improve skin conditions through regenerative medicine and cell-based therapies. The purpose of this scoping review is to assess the contribution of fibroblast cells to skin homeostasis and extracellular matrix deposition in clinical trials involving skin disorders and cosmetic applications. METHODS Using targeted search terms, published publications from January 2000 to August 2023 that addressed fibroblast uses in clinical trials of skin conditions were obtained from bibliographic databases like PubMed, Scopus, and Web of Science (WoS). Precise inclusion and exclusion criteria were used during the screening process. The potential benefits of induction treatment with fibroblasts lead to the choosing of clinical trials for this kind of treatment. RESULTS Out of the 820 published ppapers initially identified, only 35 studies fulfilled our meticulous eligibility criteria after careful screening. To ensure clarity, we methodically eliminated any duplicate or irrelevant published papers, thereby offering a transparent account of our selection process. CONCLUSION This study highlights the advantages of fibroblast therapy in treating skin conditions such as diabetic foot, venous leg ulcers, and cosmetic reasons. Fibroblasts possess remarkable regenerating capabilities, making dermal fibroblast therapy crucial in cell-based and skin regenerative treatments. Nevertheless, additional research is required for more disorders and cosmetic applications.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Ghasemzadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Ebrahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Yu J, Huang D, Liu H, Cai H. Optimizing Conditions of Polyethylene Glycol Precipitation for Exosomes Isolation From MSCs Culture Media for Regenerative Treatment. Biotechnol J 2024; 19:e202400374. [PMID: 39295548 DOI: 10.1002/biot.202400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024]
Abstract
Mesenchymal stem cell (MSC)-derived exosomes, as a cell-free alternative to MSCs, offer enhanced safety and significant potential in regenerative medicine. However, isolating these exosomes poses a challenge, complicating their broader application. Commonly used methods like ultracentrifugation (UC) and tangential flow filtration are often impractical due to the requirement for costly instruments and ultrafiltration membranes. Additionally, the high cost of commercial kits limits their use in processing large sample volumes. Polyethylene glycol (PEG) precipitation offers a more convenient and cost-effective alternative, but there is a critical need for optimized and standardized isolation protocols using PEG precipitation across different cell types and fluids to ensure consistent quality and yield. In this work, we optimized the PEG precipitation method for exosomes isolation and compared its effectiveness to two commonly used methods: UC and commercial exosome isolation kits (ExoQuick). The recovery rate of the optimized PEG method (about 61.74%) was comparable to that of the commercial ExoQuick kit (about 62.19%), which was significantly higher than UC (about 45.80%). Exosome cargo analysis validated no significant differences in miRNA and protein profiles associated with the proliferation and migration of exosomes isolated by UC and PEG precipitation, which was confirmed by gap closure and CCK8 assays. These findings suggest that PEG-based exosomes isolation could be a highly efficient and high-quality method and may facilitate the development of exosome-based therapies for regenerative medicine.
Collapse
Affiliation(s)
- Junjun Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Daqiang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Hanwen Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
11
|
Zhang X, Jiao Y, Shen T, Yu Y, Yu Z, Dang J, Chen L, Zhang Y, Shen G. Sulfated Chitosan Nanofibrous Scaffolds Seeded With Adipose Stem Cells Promote Ischemic Wound Healing in a Proangiogenic Strategy. Cell Transplant 2024; 33:9636897241226847. [PMID: 38288604 PMCID: PMC10826405 DOI: 10.1177/09636897241226847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Ischemic wounds are chronic wounds with poor blood supply that delays wound reconstruction. To accelerate wound healing and promote angiogenesis, adipose-derived stem cells (ADSCs) are ideal seed cells for stem cell-based therapies. Nevertheless, providing a favorable environment for cell proliferation and metabolism poses a substantial challenge. A highly sulfated heparin-like polysaccharide 2-N, 6-O-sulfated chitosan (26SCS)-doped poly(lactic-co-glycolic acid) scaffold (S-PLGA) can be used due to their biocompatibility, mechanical properties, and coagent 26SCS high affinity for growth factors. In this study, a nano-scaffold system, constructed from ADSCs seeded on electrospun fibers of modified PLGA, was designed to promote ischemic wound healing. The S-PLGA nanofiber membrane loaded with adipose stem cells ADSCs@S-PLGA was prepared by a co-culture in vitro, and the adhesion and compatibility of cells on the nano-scaffolds were explored. Scanning electron microscopy was used to observe the growth state and morphological changes of ADSCs after co-culture with PLGA electrospun fibers. The proliferation and apoptosis after co-culture were detected using a Cell Counting Kit-8 kit and flow cytometry, respectively. An ischemic wound model was then established, and we further studied the ability of ADSCs@S-PLGA to promote wound healing and angiogenesis. We successfully established ischemic wounds on the backs of rats and demonstrated that electrospun fibers combined with the biological effects of adipose stem cells effectively promoted wound healing and the growth of microvessels around the ischemic wounds. Phased research results can provide a theoretical and experimental basis for a new method for promoting clinical ischemic wound healing.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Shanghai Ninth People’s Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yan Jiao
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Tong Shen
- State Key laboratory of bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanman Yu
- State Key laboratory of bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Juanli Dang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guofang Shen
- Department of Oral and Maxillofacial Surgery, Affiliated Shanghai Ninth People’s Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Ren J, Jing X, Liu Y, Liu J, Ning X, Zong M, Zhang R, Cheng H, Cui J, Li B, Wu X. Exosome-based engineering strategies for the diagnosis and treatment of oral and maxillofacial diseases. J Nanobiotechnology 2023; 21:501. [PMID: 38129853 PMCID: PMC10740249 DOI: 10.1186/s12951-023-02277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Oral and maxillofacial diseases are one of the most prevalent diseases in the world, which not only seriously affect the health of patients' oral and maxillofacial tissues, but also bring serious economic and psychological burdens to patients. Therefore, oral and maxillofacial diseases require effective treatment. Traditional treatments have limited effects. In recent years, nature exosomes have attracted increasing attention due to their ability to diagnose and treat diseases. However, the application of nature exosomes is limited due to low yield, high impurities, lack of targeting, and high cost. Engineered exosomes can be endowed with better comprehensive therapeutic properties by modifying exosomes of parent cells or directly modifying exosomes, and biomaterial loading exosomes. Compared with natural exosomes, these engineered exosomes can achieve more effective diagnosis and treatment of oral and maxillary system diseases, and provide reference and guidance for clinical application. This paper reviews the engineering modification methods of exosomes and the application of engineered exosomes in oral and maxillofacial diseases and looks forward to future research directions.
Collapse
Affiliation(s)
- Jianing Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Xuan Jing
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jinrong Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Xiao Ning
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jiayu Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China.
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
13
|
Feng J, Yao Y, Wang Q, Han X, Deng X, Cao Y, Chen X, Zhou M, Zhao C. Exosomes: Potential key players towards novel therapeutic options in diabetic wounds. Biomed Pharmacother 2023; 166:115297. [PMID: 37562235 DOI: 10.1016/j.biopha.2023.115297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023] Open
Abstract
Diabetic wounds are usually difficult to heal, and wounds in foot in particular are often aggravated by infection, trauma, diabetic neuropathy, peripheral vascular disease and other factors, resulting in serious foot ulcers. The pathogenesis and clinical manifestations of diabetic wounds are complicated, and there is still a lack of objective and in-depth laboratory diagnosis and classification standards. Exosomes are nanoscale vesicles containing DNA, mRNA, microRNA, cyclic RNA, metabolites, lipids, cytoplasm and cell surface proteins, etc., which are involved in intercellular communication and play a crucial role in vascular regeneration, tissue repair and inflammation regulation in the process of diabetic wound healing. Here, we discussed exosomes of different cellular origins, such as diabetic wound-related fibroblasts (DWAF), adipose stem cells (ASCs), mesenchymal stem cells (MSCs), immune cells, platelets, human amniotic epithelial cells (hAECs), epidermal stem cells (ESCs), and their various molecular components. They exhibit multiple therapeutic effects during diabetic wound healing, including promoting cell proliferation and migration associated with wound healing, regulating macrophage polarization to inhibit inflammatory responses, promoting nerve repair, and promoting vascular renewal and accelerating wound vascularization. In addition, exosomes can be designed to deliver different therapeutic loads and have the ability to deliver them to the desired target. Therefore, exosomes may become an innovative target for precision therapeutics in diabetic wounds. In this review, we summarize the latest research on the role of exosomes in the healing of diabetic wound by regulating the pathogenesis of diabetic wounds, and discuss their potential applications in the precision treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yichen Yao
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaozhou Han
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xinghua Chen
- Jinshan Hospital Afflicted to Fudan University, Shanghai, China.
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
14
|
Yu L, Qin J, Xing J, Dai Z, Zhang T, Wang F, Zhou J, Zhang X, Chen X, Gu Y. The mechanisms of exosomes in diabetic foot ulcers healing: a detailed review. J Mol Med (Berl) 2023; 101:1209-1228. [PMID: 37691076 DOI: 10.1007/s00109-023-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023]
Abstract
As time goes by, the morbidity of diabetes mellitus continues to rise, and the economic burden of diabetic foot ulcers as a common and serious complication of diabetes is increasing. However, currently there is no unified clinical treatment strategy for this complication, and the therapeutic efficacy is unsatisfactory. Recent studies have revealed that biological effects of exosomes involved in multiple stages of the process of wound closure are similar to source cells. Compared with source cells, exosomes possess lowly immunogenicity, highly stability and easily stored, etc. Accumulating evidence confirmed that exosomes promote diabetic wound healing through various pathways such as promoting angiogenesis, collagen fiber deposition, and inhibiting inflammation. The superior therapeutic efficacy of exosomes in accelerating diabetic cutaneous wound healing has attracted an increasing attention. Notably, the molecular mechanisms of exosomes vary among different sources in the chronic wound closure of diabetes. This review focuses on the specific roles and mechanisms of different cell- or tissue-derived exosomes relevant to wound healing. Additionally, the paper provides an overview of the current pre-clinical and clinical applications of exosomes, illustrates their special advantages in wound repair. Furthermore, we discuss the potential obstacles and various solutions for future research on exosomes in the management of diabetic foot ulcer. The aim is to offer novel insights and approaches for the treatment of diabetic foot ulcer.
Collapse
Affiliation(s)
- Lei Yu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Jianxin Qin
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jiajun Xing
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Zihao Dai
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Tingting Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Feng Wang
- Nantong Xingzhong Cell Engineering Co. LTD, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jin Zhou
- Nantong Xingzhong Cell Engineering Co. LTD, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xiaobai Zhang
- Department of Respiratory Medicine, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xia Chen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Yunjuan Gu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
15
|
Fu C, Sun W, Wang X, Zhu X. Human breast milk: A promising treatment for necrotizing enterocolitis. Early Hum Dev 2023; 184:105833. [PMID: 37523802 DOI: 10.1016/j.earlhumdev.2023.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disorder occurring in newborns, with a mortality rate ranging from 20 % to 30 %. The existing therapeutic approaches for NEC are limited in their effectiveness. Various factors contribute to the development of NEC, including disruption of barrier function, dysregulation of the intestinal immune system, and abnormal colonization of the intestinal microbiota. Researchers have shown considerable interest in exploring the therapeutic potential of the constituents present in human breast milk (HBM) for treating NEC. HBM contains numerous bioactive components, such as exosomes, growth factors, and oligosaccharides. However, the precise mechanisms by which HBM exerts its protective effects against NEC remain incompletely understood. In this study, our objective was to comprehensively review the bioactive substances present in HBM, aiming to facilitate the development of novel therapeutic strategies for NEC.
Collapse
Affiliation(s)
- Changchang Fu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Wenqiang Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xueping Zhu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Zhao W, Zhang H, Liu R, Cui R. Advances in Immunomodulatory Mechanisms of Mesenchymal Stem Cells-Derived Exosome on Immune Cells in Scar Formation. Int J Nanomedicine 2023; 18:3643-3662. [PMID: 37427367 PMCID: PMC10327916 DOI: 10.2147/ijn.s412717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Pathological scars are the result of over-repair and excessive tissue proliferation of the skin injury. It may cause serious dysfunction, resulting in psychological and physiological burdens on the patients. Currently, mesenchymal stem cells-derived exosomes (MSC-Exo) displayed a promising therapeutic effect on wound repair and scar attenuation. But the regulatory mechanisms are opinions vary. In view of inflammation has long been proven as the initial factor of wound healing and scarring, and the unique immunomodulation mechanism of MSC-Exo, the utilization of MSC-Exo may be promising therapeutic for pathological scars. However, different immune cells function differently during wound repair and scar formation. The immunoregulatory mechanism of MSC-Exo would differ among different immune cells and molecules. Herein, this review gave a comprehensive summary of MSC-Exo immunomodulating different immune cells in wound healing and scar formation to provide basic theoretical references and therapeutic exploration of inflammatory wound healing and pathological scars.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Huimin Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Rui Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Rongtao Cui
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
17
|
Kanta J, Zavadakova A, Sticova E, Dubsky M. Fibronectin in hyperglycaemia and its potential use in the treatment of diabetic foot ulcers: A review. Int Wound J 2022; 20:1750-1761. [PMID: 36537075 PMCID: PMC10088845 DOI: 10.1111/iwj.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolism of fibronectin, the protein that plays a key role in the healing of wounds, is changed in the patients with diabetes mellitus. Fibronectin can interact with other proteins and proteoglycans and organise them to form the extracellular matrix, the basis of the granulation tissue in healing wounds. However, diabetic foot ulcers (DFUs) suffer from inadequate deposition of this protein. Degradation prevails over fibronectin synthesis in the proteolytic inflammatory environment in the ulcers. Because of the lack of fibronectin in the wound bed, the assembly of the extracellular matrix and the deposition of the granulation tissue cannot be started. A number of methods have been designed that prevents fibronectin degradation, replace lacking fibronectin or support its formation in non-healing wounds in animal models of diabetes. The aim of this article is to review the metabolism of fibronectin in DFUs and to emphasise that it would be useful to pay more attention to fibronectin matrix assembly in the ulcers when laboratory methods are translated to clinical practice.
Collapse
Affiliation(s)
- Jiri Kanta
- Faculty of Medicine Charles University Hradec Kralove Czech Republic
| | - Anna Zavadakova
- Biomedical Center, Faculty of Medicine Charles University Pilsen Czech Republic
| | - Eva Sticova
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Michal Dubsky
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- First Faculty of Medicine Charles University Prague Czech Republic
| |
Collapse
|
18
|
The Upregulation of Regenerative Activity for Extracellular Vesicles with Melatonin Modulation in Chemically Defined Media. Int J Mol Sci 2022; 23:ijms232315089. [PMID: 36499413 PMCID: PMC9736868 DOI: 10.3390/ijms232315089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular vesicles (EVs) derived from human mesenchymal stem cells (hMSCs) have been widely known to have therapeutic effects by representing characteristics of the origin cells as an alternative for cell-based therapeutics. Major limitations of EVs for clinical applications include low production yields, unknown effects from serum impurities, and relatively low bioactivities against dose. In this study, we proposed a cell modulation method with melatonin for human umbilical cord MSCs (hUCMSCs) cultured in serum-free chemically defined media (CDM) to eliminate the effects of serum-derived impurities and promote regeneration-related activities. miRNAs highly associated with regeneration were selected and the expression levels of them were comparatively analyzed among various types of EVs depending on culture conditions. The EVs derived from melatonin-stimulated hUCMSCs in CDM (CDM mEVs) showed the highest expression levels of regeneration-related miRNAs, and 7 times more hsa-let-7b-5p, 5.6 times more hsa-miR-23a-3p, and 5.7 times more hsa-miR-100-5p than others, respectively. In addition, the upregulation of various functionalities, such as wound healing, angiogenesis, anti-inflammation, ROS scavenging, and anti-apoptosis, were proven using in vitro assays by simulating the characteristics of EVs with bioinformatics analysis. The present results suggest that the highly regenerative properties of hUCMSC-derived EVs were accomplished with melatonin stimulation in CDM and provided the potential for clinical uses of EVs.
Collapse
|
19
|
Hao M, Duan M, Yang Z, Zhou H, Li S, Xiang J, Wu H, Liu H, Chang L, Wang D, Liu W. Engineered stem cell exosomes for oral and maxillofacial wound healing. Front Bioeng Biotechnol 2022; 10:1038261. [PMID: 36353739 PMCID: PMC9637828 DOI: 10.3389/fbioe.2022.1038261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/13/2022] [Indexed: 09/12/2023] Open
Abstract
Wound healing of the oral and maxillofacial area affects the quality of life and mental health of the patient; therefore, effective therapies are required to promote wound healing. However, traditional treatment methods have limited efficacy. Exosomes secreted by stem cells used for oral and maxillofacial wound healing have shown outstanding results. Stem cell-derived exosomes possess the regenerative and repair ability of stem cells. Moreover, they are nontumorigenic and have good biosafety. However, the application of natural stem cell exosomes is limited owing to their low yield, impurity, lack of targeting, and low drug delivery rate. Many modification methods have been developed to engineered stem cell exosomes with beneficial properties, such as modifying parent cells and directly processing stem cell exosomes. These methods include coincubation, genetic engineering, electroporation, ultrasound, and artificial synthesis of engineered stem cell exosomes. These engineered stem cell exosomes can cargo nucleic acids, proteins, and small molecules. This gives them anti-inflammatory and cell proliferation regulatory abilities and enables the targeted promotion of efficient soft tissue repair after trauma. Engineered stem cell exosomes can decrease inflammation, promote fibroblast proliferation, and angiogenesis, and decrease scar formation to promote oral and maxillofacial wound healing, including diabetic and burn wounds. Thus, engineered stem cell exosomes are an effective treatment that has the potential for oral and maxillofacial wound healing.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - MengNa Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lu Chang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
20
|
Du Y, Wang H, Yang Y, Zhang J, Huang Y, Fan S, Gu C, Shangguan L, Lin X. Extracellular Vesicle Mimetics: Preparation from Top-Down Approaches and Biological Functions. Adv Healthc Mater 2022; 11:e2200142. [PMID: 35899756 DOI: 10.1002/adhm.202200142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/15/2022] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) have attracted attention as delivery vehicles due to their structure, composition, and unique properties in regeneration and immunomodulation. However, difficulties during production and isolation processes of EVs limit their large-scale clinical applications. EV mimetics (EVMs), prepared via top-down strategies that improve the yield of nanoparticles while retaining biological properties similar to those of EVs have been used to address these limitations. Herein, the preparation of EVMs is reviewed and their characteristics in terms of structure, composition, targeting ability, cellular uptake mechanism, and immunogenicity, as well as their strengths, limitations, and future clinical application prospects as EV alternatives are summarized.
Collapse
Affiliation(s)
- Yuan Du
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hongyi Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China
| | - Yue Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| | - Liqing Shangguan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| |
Collapse
|
21
|
Zhang K, Liu L, Shi K, Zhang K, Zheng C, Jin Y. Extracellular Vesicles for Immunomodulation in Tissue Regeneration. Tissue Eng Part C Methods 2022; 28:393-404. [PMID: 35856810 DOI: 10.1089/ten.tec.2022.0000059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A large number of people suffer from tissue injury and defect worldwide, which constitutes a critical challenge for regenerative medicine. During the complicated process of tissue repair and regeneration, immune response that involves many kinds of immune cells often concurrently exists and plays a significant role, thus providing a promising target for the development of therapeutic strategies. As a critical player in cell-cell communication, extracellular vesicles (EVs) are a cluster of nano-sized vesicles of different categories, which have been reported to possess favorable immunoregulatory potential, and participate in the process of tissue repair and regeneration. Furthermore, EVs can be engineered with genetic or chemical strategies for optimized performance as therapeutic mediators. Here, we provide an outline on the biology of EVs as well as the role of EVs in immune regulation, focusing on exosomes, microvesicles, and apoptotic vesicles. We further summarize the applications of EV-based therapies for tissue regeneration, with particular emphasis on the modulation of immune system. Also, we have discussed the construction strategies of engineered EVs and the immunomodulatory capability of engineered EVs as well as their therapeutic potential in tissue repair. This review will highlight the outstanding potential of EV-based therapeutic strategies for tissue repair and regeneration.
Collapse
Affiliation(s)
- Kaichao Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Lu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ke Shi
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Kai Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Chenxi Zheng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| |
Collapse
|
22
|
Ebrahimi L, Samadikuchaksaraei A, Joghataei MT, Safa M, Abtahi Froushani SM, Ghasemian M, Zolfaghari S, Mozafari M, Brouki Milan P. Transplantation of decellularised human amniotic membranes seeded with mesenchymal stem cell-educated macrophages into animal models. J Biomed Mater Res B Appl Biomater 2022; 110:1637-1650. [PMID: 35113492 DOI: 10.1002/jbm.b.35024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Abstract
The reconstruction of chronic skin wounds remains a public health challenge in dermatology. Precisely controlling and monitoring the wound-healing process should result in enhanced outcomes for the patient. Cell-based therapies have shown great potential in medicine due to their immunomodulatory and healing properties. Herein, we produced activated macrophages by treating circulating monocytes with mesenchymal stem cell (MSC) supernatant. We also demonstrated the critical role of activated macrophages transplantation using amniotic membranes in accelerating wound healing in an animal wound model. The activated macrophages not only exhibited immunomodulatory cytokines like transforming growth factorβ (TGFβ) and interleukin 10 (and IL10) secretion but also showed attachment and proliferation ability on the amniotic membrane scaffold. Moreover, MSCs supernatant-treated cells also displayed significant ARG1, CD206, and IL 10 genes expression. Inspired by the in vitro results, we examined the in vivo therapeutic efficacy of the activated macrophage transplantation using an acellular amniotic membrane carrier in a full-thickness cutaneous wound model. The wound healing rate was significant in the group treated with macrophages generated via mesenchymal cell therapy seeded human amniotic membrane. There was less scarring in the wound sites after placing cell-scaffold constructs in the wound sites in the animal models. Overall, macrophages stimulated with mesenchymal cells' supernatant exhibited improved healing processes in incisional wounds by decreasing the inflammatory phase, increasing angiogenesis, and reducing scar tissue development.
Collapse
Affiliation(s)
- Loghman Ebrahimi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Melina Ghasemian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Zolfaghari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Tang D, Cao F, Yan C, Fang K, Ma J, Gao L, Sun B, Wang G. Extracellular Vesicle/Macrophage Axis: Potential Targets for Inflammatory Disease Intervention. Front Immunol 2022; 13:705472. [PMID: 35769456 PMCID: PMC9234271 DOI: 10.3389/fimmu.2022.705472] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) can regulate the polarization of macrophages in a variety of inflammatory diseases by mediating intercellular signal transduction and affecting the occurrence and development of diseases. After macrophages are regulated by EVs, they mainly show two phenotypes: the proinflammatory M1 type and the anti-inflammatory M2 type. A large number of studies have shown that in diseases such as mastitis, inflammatory bowel disease, Acute lung injury, and idiopathic pulmonary fibrosis, EVs promote the progression of the disease by inducing the M1-like polarization of macrophages. In diseases such as liver injury, asthma, and myocardial infarction, EVs can induce M2-like polarization of macrophages, inhibit the inflammatory response, and reduce the severity of the disease, thus indicating new pathways for treating inflammatory diseases. The EV/macrophage axis has become a potential target for inflammatory disease pathogenesis and comprehensive treatment. This article reviews the structure and function of the EV/macrophage axis and summarizes its biological functions in inflammatory diseases to provide insights for the diagnosis and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Desheng Tang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Changsheng Yan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kun Fang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamin Ma
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Gang Wang,
| |
Collapse
|
24
|
Yang L, Huang S, Zhang Z, Liu Z, Zhang L. Roles and Applications of Red Blood Cell-Derived Extracellular Vesicles in Health and Diseases. Int J Mol Sci 2022; 23:ijms23115927. [PMID: 35682606 PMCID: PMC9180222 DOI: 10.3390/ijms23115927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Red blood cell-derived extracellular vesicles (RBCEVs) are vesicles naturally produced by red blood cells and play multiple roles such as acting as cell-to-cell communication messengers in both normal physiological and diseased states. RBCEVs are highly promising delivery vehicles for therapeutic agents such as biomolecules and nucleic acids as they are easy to source, safe, and versatile. RBCEVs autonomously target the liver and pass the blood-brain barrier into the brain, which is highly valuable for the treatment of liver and brain diseases. RBCEVs can be modified by various functional units, including various functional molecules and nanoparticles, to improve their active targeting capabilities for tumors or other sites. Moreover, the RBCEV level is significantly shifted in many diseased states; hence, they can also serve as important biomarkers for disease diagnoses. It is clear that RBCEVs have considerable potential in multiple medical applications. In this review, we briefly introduce the biological roles of RBCEVs, presented interesting advances in RBCEV applications, and discuss several challenges that need to be addressed for their clinical translation.
Collapse
Affiliation(s)
- Lan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (L.Y.); (S.H.); (Z.Z.)
| | - Shiqi Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (L.Y.); (S.H.); (Z.Z.)
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (L.Y.); (S.H.); (Z.Z.)
| | - Zhenmi Liu
- Med-X Center for Materials, West China School of Public Health, Sichuan University, Chengdu 610041, China;
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- Correspondence:
| |
Collapse
|