1
|
Vikal A, Maurya R, Patel BB, Sharma R, Patel P, Patil UK, Das Kurmi B. Protacs in cancer therapy: mechanisms, design, clinical trials, and future directions. Drug Deliv Transl Res 2025; 15:1801-1827. [PMID: 39614036 DOI: 10.1007/s13346-024-01754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Cancer develops as a result of changes in both genetic and epigenetic mechanisms, which lead to the activation of oncogenes and the suppression of tumor suppressor genes. Despite advancements in cancer treatments, the primary approach still involves a combination of chemotherapy, radiotherapy, and surgery, typically providing a median survival of approximately five years for patients. Unfortunately, these therapeutic interventions often bring about substantial side effects and toxicities, significantly impacting the overall quality of life for individuals undergoing treatment. Therefore, urgent need of research required which comes up with effective treatment of cancer. This review explores the transformative role of Proteolysis-Targeting Chimeras (PROTACs) in cancer therapy. PROTACs, an innovative drug development strategy, utilize the cell's protein degradation machinery to selectively eliminate disease-causing proteins. The review covers the historical background, mechanism of action, design, and structure of PROTACs, emphasizing their precision in targeting oncogenic proteins. The discussion extends to the challenges, nanotechnology applications, and ongoing clinical trials, showcasing promising results and clinical progress. The review concludes with insights into patents, future directions, and the potential impact of PROTACs in addressing dysregulated protein expression across various diseases. Overall, it provides a concise yet comprehensive overview for researchers, clinicians, and industry professionals involved in developing targeted therapies.
Collapse
Affiliation(s)
- Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Brij Bihari Patel
- Department of Respiratory Medicine, School of Excellence in Pulmonary Medicines, Netaji Subhash Chandra Bose Medical College, Jabalpur, 482003, Madhya Pradesh, India
| | - Rajeev Sharma
- Department of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, 470003, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Liu Y, Wang T, Wang W. Photopharmacology and photoresponsive drug delivery. Chem Soc Rev 2025. [PMID: 40309857 DOI: 10.1039/d5cs00125k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Light serves as an excellent external stimulus due to its high spatial and temporal resolution. The use of light to regulate biological processes has evolved into a vibrant field over the past decade. Employing light on chemical substances such as bioactive molecules and drug delivery systems offers a promising therapeutic approach to achieve precise control over biological processes. In this review, we provide an overview of the advancements in optochemical technologies for controlling bioactive molecules (photopharmacology) and drug delivery systems (photoresponsive drug delivery), with an emphasis on their relationship and biomedical applications. Gaining a deeper understanding of the underlying mechanisms and emerging research will facilitate the development of optochemically controlled bioactive molecules and photoresponsive drug delivery systems, further enhancing light technologies in biomedical applications.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Tianyi Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Huang C, Harris KS, Siddiqui G, Jörg M. Recommended Tool Compounds: Thienotriazolodiazepines-Derivatized Chemical Probes to Target BET Bromodomains. ACS Pharmacol Transl Sci 2025; 8:978-1012. [PMID: 40242580 PMCID: PMC11997894 DOI: 10.1021/acsptsci.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 04/18/2025]
Abstract
Thienotriazolodiazepines, including (+)-JQ1 (4), are well-known inhibitors of the bromodomain (BD) and extra-terminal domain (BET) family of proteins. Despite the suboptimal physicochemical properties as a drug candidate, such as poor solubility and half-life, (+)-JQ1 (4) has proven as an effective chemical probe with high target potency and selectivity. (+)-JQ1 (4) and (+)-JQ1-derived chemical probes have played a vital role in chemical biology and drug discovery over the past decade, which is demonstrated by the high number of impactful research studies published since the disclosure of (+)-JQ1 (4) in 2010. In this review, we discuss the development of (+)-JQ1-derivatized chemical probes over the past decade and their significant contribution to scientific research. Specifically, we will summarize the development of innovative label-free and labeled (+)-JQ1-derivatized chemical probes, such as bivalent, covalent, and photoaffinity probes as well as protein degraders, with a focus on the design of these chemical probes.
Collapse
Affiliation(s)
- Chuhui Huang
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Drug
Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical
Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kate S. Harris
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
Upon Tyne NE1 7RU, United Kingdom
| | - Ghizal Siddiqui
- Drug
Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical
Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Manuela Jörg
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
Upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
4
|
Chen Y, Wang S, Zhang L, Peng D, Huang K, Ji B, Fu J, Xu Y. POT, an optogenetics-based endogenous protein degradation system. Commun Biol 2025; 8:455. [PMID: 40102608 PMCID: PMC11920400 DOI: 10.1038/s42003-025-07919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Precise regulation of protein abundance is critical for cellular homeostasis, whose dysfunction may directly lead to human diseases. Optogenetics allows rapid and reversible control of precisely defined cellular processes, which has the potential to be utilized for regulation of protein dynamics at various scales. Here, we developed a novel optogenetics-based protein degradation system, namely Peptide-mediated OptoTrim-Away (POT) which employs expressed small peptides to effectively target endogenous and unmodified proteins. By engineering the light-induced oligomerization of the E3 ligase TRIM21, POT can rapidly trigger protein degradation via the proteasomal pathway. Our results showed that the developed POT-PI3K and POT-GPX4 modules, which used the iSH2 and FUNDC1 domains to specifically target phosphoinositide 3-kinase (PI3K) and glutathione peroxidase 4 (GPX4) respectively, were able to potently induce the degradation of these endogenous proteins by light. Both live-cell imaging and biochemical experiments validated the potency of these tools in downregulating cancer cell migration, proliferation, and even promotion of cell apoptosis. Therefore, we believe the POT offers an alternative and practical solution for rapid manipulation of endogenous protein levels, and it could potentially be employed to dissect complex signaling pathways in cell and for targeted cellular therapies.
Collapse
Affiliation(s)
- Yunyue Chen
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siyifei Wang
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luhao Zhang
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Dandan Peng
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China
| | - Ke Huang
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China
| | - Baohua Ji
- Department of Engineering Mechanics, Biomechanics and Biomaterials Laboratory, Zhejiang University, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China
| | - Yingke Xu
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Li Y, Wu Y, Gao S, Sun T, Jiang C. PROTAC delivery in tumor immunotherapy: Where are we and where are we going? J Control Release 2025; 378:116-144. [PMID: 39637991 DOI: 10.1016/j.jconrel.2024.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Immunotherapy has emerged as a pioneering therapeutic modality, particularly within the realm of oncology, where Chimeric Antigen Receptor T-cell (CAR-T) therapy has manifested significant efficacy in the treatment of hematological malignancies. Nonetheless, the extension of immunotherapy to solid tumors poses a considerable challenge. This challenge is largely attributed to the intrinsic "cold" characteristics of certain tumors, which are defined by scant T-cell infiltration and a diminished immune response. Additionally, the impediment is exacerbated by the elusive nature of numerous targets within the tumor microenvironment, notably those deemed "undruggable" by small molecule inhibitors. This scenario underscores an acute necessity for the inception of innovative therapeutic strategies aimed at countering the resistance mechanisms underlying immune evasion in cold tumors, thereby amplifying the efficacy of cancer immunotherapy. Among the promising strategies is the deployment of Proteolysis Targeting Chimeras (PROTACs), which facilitate the targeted degradation of proteins. PROTACs present unique advantages and have become indispensable in oncology. However, they concurrently grapple with challenges such as solubility issues, permeability barriers, and the classical Hook effect. Notably, advanced delivery systems have been instrumental in surmounting these obstacles. This review commences with an analysis of the factors contributing to the suboptimal responses to immunotherapy in cold tumors. Subsequently, it delivers a thorough synthesis of immunotherapeutic concepts tailored for these tumors, clarifying the integral role of PROTACs in their management and delineating the trajectory of PROTAC technology from bench-side investigation to clinical utilization, facilitated by drug delivery systems. Ultimately, the review extrapolates the prospective future of this approach, aspiring to present novel insights that could catalyze progress in immunotherapy for the treatment of cold tumors.
Collapse
Affiliation(s)
- Yiyang Li
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yike Wu
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Sihan Gao
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; Quzhou Fudan Institute, Quzhou 324003, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
6
|
Lv MY, Hou DY, Liu SW, Cheng DB, Wang H. Strategy and Design of In Situ Activated Protein Hydrolysis Targeted Chimeras. ACS NANO 2025; 19:101-119. [PMID: 39731609 DOI: 10.1021/acsnano.4c11903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway. This process is cyclical, allowing for broad applicability, potent protein degradation, and selective targeting. Despite their effectiveness, PROTACs can inadvertently target and degrade nonspecific proteins, potentially resulting in significant side effects and off-target toxicity. To address this concern, researchers have created stimuli-activated PROTACs that enhance targeted protein degradation while minimizing potential harm to healthy cells. These advanced PROTACs aim to improve the precision of degradation in both time and space. This article reviews the strategies for in situ activated PROTACs, highlighting key compounds and research advancements associated with various mechanisms of action. The insights presented here aim to guide further exploration in the field of activated PROTACs.
Collapse
Affiliation(s)
- Mei-Yu Lv
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin 150001, China
| | - Da-Yong Hou
- Department of PET-CT/MRI, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin 150001, China
| | - Shao-Wei Liu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Haoran Wang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518100, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| |
Collapse
|
7
|
Cheng J, Dong G, Wang W, Sheng C. Precise Modulation of Protein Degradation by Smart PROTACs. Chembiochem 2025; 26:e202400682. [PMID: 39367518 DOI: 10.1002/cbic.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Proteolysis-targeting chimera (PROTAC) has emerged as an attractive therapeutic modality in drug discovery. PROTACs are bifunctional molecules that effectively bridge proteins of interest (POIs) with E3 ubiquitin ligases, such that, the target proteins are tagged with ubiquitin and subsequently degraded via the proteasome. Despite significant progress in the field of targeted protein degradation (TPD), the application of conventional PROTAC degraders still faces significant challenges, including systemic toxicity induced by non-tissue-specific targeting. To address this issue, a variety of smart PROTACs that can be activated by specific stimuli, have been developed for achieving conditional and spatiotemporal modulation of protein levels. Here, on the basis of our contributions, we overview recent advances of smart PROTACs, including tumor microenvironment-, photo-, and X-ray radiation-responsive PROTACs, that enable controllable TPD. The design strategy, case studies, potential applications and challenges will be focused on.
Collapse
Affiliation(s)
- Junfei Cheng
- Nautical Medicine Experimental Teaching Demonstration Center of Educational Institutions, Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, People's Republic of China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, People's Republic of China
| | - Wei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, People's Republic of China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, People's Republic of China
| |
Collapse
|
8
|
Pravin N, Jóźwiak K. PROTAC unleashed: Unveiling the synthetic approaches and potential therapeutic applications. Eur J Med Chem 2024; 279:116837. [PMID: 39305635 DOI: 10.1016/j.ejmech.2024.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/28/2024]
Abstract
Proteolysis-Targeting Chimeras (PROTACs) are a novel class of bifunctional small molecules that alter protein levels by targeted degradation. This innovative approach uses the ubiquitin-proteasome system to selectively eradicate disease-associated proteins, providing a novel therapeutic strategy for a wide spectrum of diseases. This review delineates detailed synthetic approaches involved in PROTAC building blocks, including the ligand and protein binding parts, linker attached structural components of PROTACs and the actual PROTAC molecules. Furthermore, the recent advancements in PROTAC-mediated degradation of specific oncogenic and other disease-associated proteins, such as those involved in neurodegenerative, antiviral, and autoimmune diseases, were also discussed. Additionally, we described the current landscape of PROTAC clinical trials and highlighted key studies that underscore the translational potential of this emerging therapeutic modality. These findings demonstrate the versatility of PROTACs in modulating the levels of key proteins involved in various severe diseases.
Collapse
Affiliation(s)
- Narayanaperumal Pravin
- Department of Biopharmacy, Medical University of Lublin, Ul.W.Chodzki 4a, 20-093 Lublin, Poland.
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Ul.W.Chodzki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
9
|
Kumar S, Basu M, Ghosh MK. E3 ubiquitin ligases and deubiquitinases in colorectal cancer: Emerging molecular insights and therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119827. [PMID: 39187067 DOI: 10.1016/j.bbamcr.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/β-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
10
|
Yim J, Park J, Kim G, Lee HH, Chung JS, Jo A, Koh M, Park J. Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation. ChemMedChem 2024; 19:e202400326. [PMID: 38993102 PMCID: PMC11581424 DOI: 10.1002/cmdc.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising technology for inducing targeted protein degradation by leveraging the intrinsic ubiquitin-proteasome system (UPS). While the potential druggability of PROTACs toward undruggable proteins has accelerated their rapid development and the wide-range of applications across diverse disease contexts, off-tissue effects and side-effects of PROTACs have recently received attentions to improve their efficacy. To address these issues, spatial or temporal target protein degradation by PROTACs has been spotlighted. In this review, we explore chemical strategies for modulating protein degradation in a cell type-specific (spatio-) and time-specific (temporal-) manner, thereby offering insights for expanding PROTAC applications to overcome the current limitations of target protein degradation strategy.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
| | - Junyoung Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| | - Gabin Kim
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Hyung Ho Lee
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Jin Soo Chung
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Ala Jo
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| | - Minseob Koh
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Jongmin Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| |
Collapse
|
11
|
Zhang SH, Zeng N, Xu JZ, Liu CQ, Xu MY, Sun JX, An Y, Zhong XY, Miao LT, Wang SG, Xia QD. Recent breakthroughs in innovative elements, multidimensional enhancements, derived technologies, and novel applications of PROTACs. Biomed Pharmacother 2024; 180:117584. [PMID: 39427546 DOI: 10.1016/j.biopha.2024.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Proteolysis Targeting Chimera (PROTAC) is an emerging and evolving technology based on targeted protein degradation (TPD). Small molecule PROTACs have shown great efficacy in degrading disease-specific proteins in preclinical and clinical studies, but also showed various limitations. In recent years, new technologies and advances in TPD have provided additional optimized strategies based on conventional PROTACs that can overcome the shortcomings of conventional PROTACs in terms of undruggable targets, bioavailability, tissue-specificity, spatiotemporal control, and degradation scope. In addition, some designs of special targeting chimeras and applications based on multidisciplinary science have shed light on novel therapeutic modalities and drug design. However, each improvement has its own advantages, disadvantages and application conditions. In this review, we summarize the exploration of PROTAC elements, depict a landscape of improvements and derived concepts of PROTACs, and expect to provide perspectives for technological innovations, combinations and applications in future targeting chimera design.
Collapse
Affiliation(s)
- Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Lin-Tao Miao
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
12
|
De S, Sahu R, Palei S, Narayan Nanda L. Synthesis, SAR, and application of JQ1 analogs as PROTACs for cancer therapy. Bioorg Med Chem 2024; 112:117875. [PMID: 39178586 DOI: 10.1016/j.bmc.2024.117875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
JQ1 is a wonder therapeutic molecule that selectively inhibits the BRD4 signaling pathway and is thus widely used in the anticancer drug discovery program. Due to its unique selective BRD4 binding property, its applications are further extended in the design and synthesis of bi-functional PROTAC molecules. This BRD4 targeting PROTAC molecule selectively degrades the protein by proteolysis. There are several modifications of JQ1 known to date and extensively explored for their applications in PROTAC technology by several research groups in academia as well as industry for targeting oncogenic genes. In this review, we have covered the discovery and synthesis of the JQ1 molecule. The SAR of the JQ1 analogs will help researchers develop potent JQ1 compounds with improved inhibitory properties against malignant cells. Furthermore, we explored the potential application of JQ1 analogs in PROTAC technology. The brief history of the bromodomain family of proteins, as well as the obstacles connected with PROTAC technology, can help comprehend the context of the current research, which has the potential to improve the drug development process. Overall, this review comprehensively appraises JQ1 molecules and their prior implementation in PROTAC technology and cancer therapy.
Collapse
Affiliation(s)
- Soumik De
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India
| | - Raghaba Sahu
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Shubhendu Palei
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Laxmi Narayan Nanda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Harvard Medical School, Cambridge 02142, United States; P.G. Department of Chemistry, Government Autonomous College, Utkal University, Angul 759143, Odisha, India.
| |
Collapse
|
13
|
Castagna D, Gourdet B, Hjerpe R, MacFaul P, Novak A, Revol G, Rochette E, Jordan A. To homeostasis and beyond! Recent advances in the medicinal chemistry of heterobifunctional derivatives. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:61-160. [PMID: 39370242 DOI: 10.1016/bs.pmch.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The field of induced proximity therapeutics has expanded dramatically over the past 3 years, and heterobifunctional derivatives continue to form a significant component of the activities in this field. Here, we review recent advances in the field from the perspective of the medicinal chemist, with a particular focus upon informative case studies, alongside a review of emerging topics such as Direct-To-Biology (D2B) methodology and utilities for heterobifunctional compounds beyond E3 ligase mediated degradation. We also include a critical evaluation of the latest thinking around the optimisation of physicochemical and pharmacokinetic attributes of these beyond Role of Five molecules, to deliver appropriate therapeutic exposure in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allan Jordan
- Sygnature Discovery, Nottingham, United Kingdom; Sygnature Discovery, Macclesfield, United Kingdom.
| |
Collapse
|
14
|
Xiao Y, Yuan Y, Liu Y, Lin Z, Zheng G, Zhou D, Lv D. Targeted Protein Degradation: Current and Emerging Approaches for E3 Ligase Deconvolution. J Med Chem 2024; 67:11580-11596. [PMID: 38981094 DOI: 10.1021/acs.jmedchem.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Targeted protein degradation (TPD), including the use of proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs) to degrade proteins, is an emerging strategy to develop novel therapies for cancer and beyond. PROTACs or MGDs function by inducing the proximity between an E3 ligase and a protein of interest (POI), leading to ubiquitination and consequent proteasomal degradation of the POI. Notably, one major issue in TPD is the lack of ligandable E3 ligases, as current studies predominantly use CUL4CRBN and CUL2VHL. The TPD community is seeking to expand the landscape of ligandable E3 ligases, but most discoveries rely on phenotypic screens or serendipity, necessitating systematic target deconvolution. Here, we examine and discuss both current and emerging E3 ligase deconvolution approaches for degraders discovered from phenotypic screens or monovalent glue chemistry campaigns, highlighting future prospects for identifying more ligandable E3 ligases.
Collapse
Affiliation(s)
- Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, Florida 32610, United States
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Yi Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, Florida 32610, United States
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, Florida 32610, United States
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Dongwen Lv
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| |
Collapse
|
15
|
Chen Y, Zhang L, Fang L, Chen C, Zhang D, Peng T. Modular Development of Enzyme-Activatable Proteolysis Targeting Chimeras for Selective Protein Degradation and Cancer Targeting. JACS AU 2024; 4:2564-2577. [PMID: 39055140 PMCID: PMC11267540 DOI: 10.1021/jacsau.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 07/27/2024]
Abstract
As an emerging therapeutic modality, proteolysis targeting chimeras (PROTACs) indiscriminately degrade proteins in both healthy and diseased cells, posing a risk of on-target off-site toxicity in normal tissues. Herein, we present the modular development of enzyme-activatable PROTACs, which utilize enzyme-recognition moieties to block protein degradation activities and can be specifically activated by elevated enzymes in cancer cells to enable cell-selective protein degradation and cancer targeting. We identified the methylene alkoxy carbamate (MAC) unit as an optimal self-immolative linker, possessing high stability and release efficiency for conjugating enzyme-recognition moieties with PROTACs. Leveraging the MAC linker, we developed a series of enzyme-activatable PROTACs, harnessing distinct enzymes for cancer-cell-selective protein degradation. Significantly, we introduced the first dual-enzyme-activatable PROTAC that requires the presence of two cancer-associated enzymes for activation, demonstrating highly selective protein degradation in cancer cells over nonmalignant cells, potent in vivo antitumor efficacy, and no off-tumor toxicity to normal tissues. The broad applicability of enzyme-activatable PROTACs was further demonstrated by caging other PROTACs via the MAC linker to target different proteins and E3 ligases. Our work underscores the substantial potential of enzyme-activatable PROTACs in overcoming the off-site toxicity associated with conventional PROTACs and offers new opportunities for targeted cancer treatment.
Collapse
Affiliation(s)
- Yanchi Chen
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- National
Key Laboratory of Non-Food Biomass Energy Technology, National Engineering
Research Center for Non-Food Biorefinery, Institute of Grand Health, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Lina Zhang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Lincheng Fang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Chengjie Chen
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Dong Zhang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Tao Peng
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Institute
of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
16
|
Xu H, Ohoka N, Inoue T, Yokoo H, Demizu Y. Photo-regulated PROTACs: A novel tool for temporal control of targeted protein degradation. Bioorg Med Chem Lett 2024; 107:129778. [PMID: 38702019 DOI: 10.1016/j.bmcl.2024.129778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
PROTACs (Proteolysis targeting chimeras) are chimeric molecules designed to induce targeted protein degradation via the ubiquitin-proteasome system. These molecules catalytically degrade target proteins and sustainably inhibit their function. Therefore, PROTAC's unique mechanism of action is not only beneficial in medicine but also serves as a valuable tool for molecular biological analysis in fields like chemical biology, biochemistry, and drug discovery. This study presents a novel turn-off (ON-OFF) type PROTAC development strategy utilizing a photocleavable linker. The inclusion of this linker enables temporal control of the degradation activity targeting BRD4 protein upon UV light exposure. PROTAC-2 demonstrated the most potent degradation activity against BRD4 among the other synthesized PROTACs with varying linker lengths. The UV light-induced cleavage of PROTAC-2 was confirmed, leading to a reduction in its BRD4 degradation activity. Notably, this study introduces a novel linker capable of nullifying degradation activity of PROTACs which is activated by light irradiation. These findings offer a promising strategy for the development of turn-off type PROTACs, providing enhanced temporal control over protein degradation. The approach holds significant potential for applications in molecular function studies and drug discovery.
Collapse
Affiliation(s)
- Hanqiao Xu
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan; Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
| | - Yosuke Demizu
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan; Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1 Tsushimanaka, Kita, Okayama 700-8530, Japan.
| |
Collapse
|
17
|
Wang C, Zhang Y, Chen W, Wu Y, Xing D. New-generation advanced PROTACs as potential therapeutic agents in cancer therapy. Mol Cancer 2024; 23:110. [PMID: 38773495 PMCID: PMC11107062 DOI: 10.1186/s12943-024-02024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) technology has garnered significant attention over the last 10 years, representing a burgeoning therapeutic approach with the potential to address pathogenic proteins that have historically posed challenges for traditional small-molecule inhibitors. PROTACs exploit the endogenous E3 ubiquitin ligases to facilitate degradation of the proteins of interest (POIs) through the ubiquitin-proteasome system (UPS) in a cyclic catalytic manner. Despite recent endeavors to advance the utilization of PROTACs in clinical settings, the majority of PROTACs fail to progress beyond the preclinical phase of drug development. There are multiple factors impeding the market entry of PROTACs, with the insufficiently precise degradation of favorable POIs standing out as one of the most formidable obstacles. Recently, there has been exploration of new-generation advanced PROTACs, including small-molecule PROTAC prodrugs, biomacromolecule-PROTAC conjugates, and nano-PROTACs, to improve the in vivo efficacy of PROTACs. These improved PROTACs possess the capability to mitigate undesirable physicochemical characteristics inherent in traditional PROTACs, thereby enhancing their targetability and reducing off-target side effects. The new-generation of advanced PROTACs will mark a pivotal turning point in the realm of targeted protein degradation. In this comprehensive review, we have meticulously summarized the state-of-the-art advancements achieved by these cutting-edge PROTACs, elucidated their underlying design principles, deliberated upon the prevailing challenges encountered, and provided an insightful outlook on future prospects within this burgeoning field.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Gu L, Kong X, Li M, Chen R, Xu K, Li G, Qin Y, Wu L. Molecule engineering strategy of toll-like receptor 7/8 agonists designed for potentiating immune stimuli activation. Chem Commun (Camb) 2024; 60:5474-5485. [PMID: 38712400 DOI: 10.1039/d4cc00792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Toll-like receptor 7/8 (TLR-7/8) agonists serve as a promising class of pattern recognition receptors that effectively evoke the innate immune response, making them promising immunomodulatory agents for tumor immunotherapy. However, the uncontrollable administration of TLR-7/8 agonists frequently leads to the occurrence of severe immune-related adverse events (irAEs). Thus, it is imperative to strategically design tumor-microenvironment-associated biomarkers or exogenous stimuli responsive TLR-7/8 agonists in order to accurately evaluate and activate innate immune responses. No comprehensive elucidation has been documented thus far regarding TLR-7/8 immune agonists that are specifically engineered to enhance immune activation. In this feature article, we provide an overview of the advancements in TLR-7/8 agonists, aiming to enhance the comprehension of their mechanisms and promote the clinical progression through nanomedicine strategies. The current challenges and future directions of cancer immunotherapy are also discussed, with the hope that this work will inspire researchers to explore innovative applications for triggering immune responses through TLR-7/8 agonists.
Collapse
Affiliation(s)
- Liuwei Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Xiaojie Kong
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Mengyan Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Rui Chen
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Ke Xu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Guo Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Yulin Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| |
Collapse
|
19
|
Cheng J, Zhang J, He S, Li M, Dong G, Sheng C. Photoswitchable PROTACs for Reversible and Spatiotemporal Regulation of NAMPT and NAD . Angew Chem Int Ed Engl 2024; 63:e202315997. [PMID: 38282119 DOI: 10.1002/anie.202315997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme with diverse biological functions in DNA synthesis. Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme involved in NAD+ biosynthesis in mammals. We developed the first chemical tool for optical control of NAMPT and NAD+ in biological systems using photoswitchable proteolysis-targeting chimeras (PS-PROTACs). An NAMPT activator and dimethylpyrazolazobenzene photoswitch were used to design highly efficient PS-PROTACs, enabling up- and down-reversible regulation of NAMPT and NAD+ in a light-dependent manner and reducing the toxicity associated with inhibitor-based PS-PROTACs. PS-PROTAC was activated under 620 nm irradiation, realizing in vivo optical manipulation of antitumor activity, NAMPT, and NAD+ .
Collapse
Affiliation(s)
- Junfei Cheng
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
- Nautical Medicine Experimental Teaching Demonstration Center of Educational Institutions, Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Jing Zhang
- Department of Pathology, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guoqiang Dong
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Chunquan Sheng
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| |
Collapse
|
20
|
He X, Weng Z, Zou Y. Progress in the controllability technology of PROTAC. Eur J Med Chem 2024; 265:116096. [PMID: 38160619 DOI: 10.1016/j.ejmech.2023.116096] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Proteolysis-targeting chimaera (PROTAC) technology functions by directly targeting proteins and catalysing their degradation through an event-driven mode of action, a novel mechanism with significant clinical application prospects for various diseases. Currently, the most advanced PROTAC drug is undergoing phase III clinical trials (NCT05654623). Although PROTACs exhibit significant advantages over traditional small-molecule inhibitors, their catalytic degradation of normal cellular proteins can potentially cause toxic side effects. Therefore, to achieve targeted release of PROTACs and minimize adverse reactions, researchers are actively exploring diverse controllable PROTACs. In this review, we comprehensively summarize the control strategies to provide a theoretical basis for the innovative application of PROTAC technology.
Collapse
Affiliation(s)
- Xin He
- School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, 213164, PR China.
| | - Zhibing Weng
- School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, 213164, PR China
| | - Yi Zou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
21
|
Setia N, Almuqdadi HTA, Abid M. Journey of Von Hippel-Lindau (VHL) E3 ligase in PROTACs design: From VHL ligands to VHL-based degraders. Eur J Med Chem 2024; 265:116041. [PMID: 38199162 DOI: 10.1016/j.ejmech.2023.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
The scientific community has shown considerable interest in proteolysis-targeting chimeras (PROTACs) in the last decade, indicating their remarkable potential as a means of achieving targeted protein degradation (TPD). Not only are PROTACs seen as valuable tools in molecular biology but their emergence as a modality for drug discovery has also garnered significant attention. PROTACs bind to E3 ligases and target proteins through respective ligands connected via a linker to induce proteasome-mediated protein degradation. The discovery of small molecule ligands for E3 ligases has led to the prevalent use of various E3 ligases in PROTAC design. Furthermore, the incorporation of different types of linkers has proven beneficial in enhancing the efficacy of PROTACs. By far more than 3300 PROTACs have been reported in the literature. Notably, Von Hippel-Lindau (VHL)-based PROTACs have surfaced as a propitious strategy for targeting proteins, even encompassing those that were previously considered non-druggable. VHL is extensively utilized as an E3 ligase in the advancement of PROTACs owing to its widespread expression in various tissues and well-documented binders. Here, we review the discovery of VHL ligands, the types of linkers employed to develop VHL-based PROTACs, and their subsequent modulation to design advanced non-conventional degraders to target various disease-causing proteins. Furthermore, we provide an overview of other E3 ligases recruited in the field of PROTAC technology.
Collapse
Affiliation(s)
- Nisha Setia
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | | | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
22
|
Weng W, Xue G, Pan Z. Development of visible-light-activatable photocaged PROTACs. Eur J Med Chem 2024; 265:116062. [PMID: 38128235 DOI: 10.1016/j.ejmech.2023.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Photocaged proteolysis-targeting chimeras (PROTACs), which employ light as a stimulus to control protein degradation, have recently garnered considerable attention as both powerful chemical tools and a promising therapeutic strategy. However, the poor penetration depth of traditionally used ultraviolet light and the deficiency of alternative caging positions have restricted their applications in biological systems. By installing a diverse array of photocaged groups, with excitation wavelengths ranging from 365 nm to 405 nm, onto different positions of cereblon (CRBN) and Von Hippel-Lindau (VHL)-recruiting Brd4 degraders, we conducted the first comprehensive study on visible-light-activatable photocaged PROTACs to the best of our knowledge. We found the A2, A4 and B3 positions to be most effective at regulating the activity of the degraders, and to provide the resulting molecules (9-12 and 17) as potent visible-light-controlled degraders in live cells.
Collapse
Affiliation(s)
- Weizhi Weng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Gang Xue
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
23
|
Hasan M, Panda D, Mann G, Brik A. De novo Semi-Synthetic Platform for Monitoring Protein degradation in Live Cells. Chembiochem 2024; 25:e202300731. [PMID: 38031893 DOI: 10.1002/cbic.202300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
We designed a platform for monitoring the degradation of exogenous proteins in live cells. We engineered a semi-synthetic platform, which consists of Enhanced Green Fluorescent Protein tagged with SpyCatcher to enable its conjugation to a SpyTag peptide bearing a Von Hippel-Lindau E3 ligand, which was delivered to live cells to promote its degradation. This platform lays the ground for studying the degradation of endogenous proteins equipped with SpyTag and for tracking the degradation of post-translationally modified proteins in live cells.
Collapse
Affiliation(s)
- Mahdi Hasan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Deepanjan Panda
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Guy Mann
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
24
|
Leon RG, Bassham DC. PROTAC for agriculture: learning from human medicine to generate new biotechnological weed control solutions. PEST MANAGEMENT SCIENCE 2024; 80:262-266. [PMID: 37612249 DOI: 10.1002/ps.7741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Weed control has relied on the use of organic and inorganic molecules that interfere with druggable targets, especially enzymes, for almost a century. This approach, although effective, has resulted in multiple cases of herbicide resistance. Furthermore, the rate of discovery of new druggable targets that are selective and with favorable environmental profiles has slowed down, highlighting the need for innovative control tools. The arrival of the biotechnology and genomics era gave hope to many that all sorts of new control tools would be developed. However, the reality is that most efforts have been limited to the development of transgenic crops with resistance to a few existing herbicides, which in fact is just another form of selectivity. Proteolysis-targeting chimera (PROTAC) is a new technology developed to treat human diseases but that has potential for multiple applications in agriculture. This technology uses a small bait molecule linked to an E3 ligand. The 3-dimensional structure of the bait favors physical interaction with a binding site in the target protein in a manner that allows E3 recruitment, ubiquitination and then proteasome-mediated degradation. This system makes it possible to circumvent the need to find druggable targets because it can degrade structural proteins, transporters, transcription factors, and enzymes without the need to interact with the active site. PROTAC can help control herbicide-resistant weeds as well as expand the number of biochemical targets that can be used for weed control. In the present article, we provide an overview of how PROTAC works and describe the possible applications for weed control as well as the challenges that this technology might face during development and implementation for field uses. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ramon G Leon
- Professor and University Faculty Scholar, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Diane C Bassham
- Distinguished Professor and Walter E. and Helen Parke Loomis Professor of Plant Physiology, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
25
|
Chen S, Cui J, Chen H, Yu B, Long S. Recent progress in degradation of membrane proteins by PROTACs and alternative targeted protein degradation techniques. Eur J Med Chem 2023; 262:115911. [PMID: 37924709 DOI: 10.1016/j.ejmech.2023.115911] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Targeted protein degradation (TPD) is one of the key strategies of current targeted cancer therapy, and it can eliminate some of the root causes of cancer, and effectively avoid drug resistance caused by traditional drugs. Proteolysis targeting chimera (PROTAC) is a hot branch of the TPD strategy, and it has been shown to induce the degradation of target proteins by activating the inherent ubiquitin-proteasome system (UPS) in tumor cells. PROTACs have been developed for more than two decades, and some of them have been clinically evaluated. Although most of the proteins degraded by PROTACs are intracellular, degradation of some typical membrane proteins has also been reported, such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), programmed death ligand 1 (PD-L1), and G-protein-coupled receptor (GPCR). In addition, some other effective membrane protein-degrading strategies have also emerged, such as antibody-based PROTAC (AbTAC), lysosome targeting chimera (LYTAC), molecular glue, and nanoparticle-based PROTAC (Nano-PROTAC). Herein, we discussed the advantages, disadvantages and potential applications of several important membrane protein degradation techniques. These techniques that we have summarized are insightful in paving the way for future development of more general strategies for membrane protein degradation.
Collapse
Affiliation(s)
- Siyu Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Jingliang Cui
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Haiyan Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Bo Yu
- Tongji Hospital, Department of Nuclear Medicine, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
26
|
Ouyang M, Feng Y, Chen H, Liu Y, Tan C, Tan Y. Recent Advances in Optically Controlled PROTAC. Bioengineering (Basel) 2023; 10:1368. [PMID: 38135959 PMCID: PMC10740939 DOI: 10.3390/bioengineering10121368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Proteolysis-targeting chimera (PROTAC) technology is a groundbreaking therapeutic approach with significant clinical potential for degrading disease-inducing proteins within targeted cells. However, challenges related to insufficient target selectivity raise concerns about PROTAC toxicity toward normal cells. To address this issue, researchers are modifying PROTACs using various approaches to enhance their target specificity. This review highlights innovative optically controlled PROTACs as anti-cancer therapies currently used in clinical practice and explores the challenges associated with their efficacy and safety. The development of optically controlled PROTACs holds the potential to significantly expand the clinical applicability of PROTAC-based technology within the realm of drug discovery.
Collapse
Affiliation(s)
- Muzi Ouyang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ying Feng
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yanping Liu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (M.O.); (Y.F.); (H.C.); (Y.L.); (C.T.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Hu L, Li H, Qin J, Yang D, Liu J, Luo X, Ma J, Luo C, Ye F, Zhou Y, Li J, Wang M. Discovery of PVD-06 as a Subtype-Selective and Efficient PTPN2 Degrader. J Med Chem 2023; 66:15269-15287. [PMID: 37966047 DOI: 10.1021/acs.jmedchem.3c01348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Protein tyrosine phosphatase nonreceptor Type 2 (PTPN2) is an attractive target for cancer immunotherapy. PTPN2 and another subtype of PTP1B are highly similar in structure, but their biological functions are distinct. Therefore, subtype-selective targeting of PTPN2 remains a challenge for researchers. Herein, the development of small molecular PTPN2 degraders based on a thiadiazolidinone dioxide-naphthalene scaffold and a VHL E3 ligase ligand is described, and the PTPN2/PTP1B subtype-selective degradation is achieved for the first time. The linker structure modifications led to the discovery of the subtype-selective PTPN2 degrader PVD-06 (PTPN2/PTP1B selective index > 60-fold), which also exhibits excellent proteome-wide degradation selectivity. PVD-06 induces PTPN2 degradation in a ubiquitination- and proteasome-dependent manner. It efficiently promotes T cell activation and amplifies IFN-γ-mediated B16F10 cell growth inhibition. This study provides a convenient chemical knockdown tool for PTPN2-related research and a paradigm for subtype-selective PTP degradation through nonspecific substrate-mimicking ligands, demonstrating the therapeutic potential of PTPN2 subtype-selective degradation.
Collapse
Affiliation(s)
- Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Huiyun Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou China
| | - Junlin Qin
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Dan Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
| | - Jieming Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Xiaomin Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | | | - Cheng Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Jia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
| |
Collapse
|
28
|
Fan H, Zhou Z, Yu D, Sun J, Wang L, Jia Y, Tian J, Mi W, Sun H. Selective degradation of BRD4 suppresses lung cancer cell proliferation using GSH-responsive PROTAC precursors. Bioorg Chem 2023; 140:106793. [PMID: 37683536 DOI: 10.1016/j.bioorg.2023.106793] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
BRD4,as a transcriptional and epigenetic regulator to mediate cellular functions, plays an important role in cancer development.Targeting BRD4 with conventional inhibitors in cancer therapy requires high doses, which often leads to off-target and adverse effects. BRD4-targeted proteolysis-targeting chimeras (PROTACs) can catalytically degrade BRD4 utilizing the endogenous proteasome system, and exhibit promising anti-tumor activity. However, most of the developed PROTACs are non-cancer specific and relatively toxic towards normal cells, limiting their practical applications in cancer treatment. By taking advantage of higher glutathione (GSH) levels in cancer cells than that in normal cells, we developed several GSH-responsive PROTAC precursors 1a-c via the attachment of a GSH-trigger unit on the hydroxyl group of the VHL (von Hippel-Lindau) ligand for the recruitment of E3 ligase. Among the precursors, 1a can be efficiently activated by the innately higher concentrations of GSH in lung cancer cells (A549 and H1299) to release active PROTAC 1, degrading intracellular BRD4 and resulting in cytotoxicity, which is confirmed by mechanistic investigation. On the other hand, 1a cannot be efficiently triggered in normal lung cells (WI38 and HULEC-5a) containing lower levels of GSH, therefore reducing the adverse effects on normal cells. This work provides an alternative proof of concept approach for developing stimuli-responsive PROTAC precursors, and affords a novel insight to improve the selectivity and minimize the adverse effects of current PROTACs, hence enhancing their clinical potential.
Collapse
Affiliation(s)
- Heli Fan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, PR China
| | - Zhili Zhou
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Dehao Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, PR China
| | - Jing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, PR China
| | - Luo Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, PR China
| | - Yuanyuan Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, PR China
| | - Junyu Tian
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, PR China
| | - Wenyi Mi
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China.
| | - Huabing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, PR China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China.
| |
Collapse
|
29
|
Yao R, Luo T, Wang M. Delivering on Cell-Selective Protein Degradation Using Chemically Tailored PROTACs. Chembiochem 2023; 24:e202300413. [PMID: 37496112 DOI: 10.1002/cbic.202300413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
PROTACs (Proteolysis-Targeting Chimeras) have emerged as a groundbreaking class of chemical tools that facilitate the degradation of target proteins by leveraging the ubiquitin-proteasome system (UPS). However, the effective utilization of PROTACs in chemical biology studies and therapeutics encounters significant challenges when it comes to achieving cell-selective protein degradation and in vivo applications. This review article aims to shed light on recent advancements in the development of Pro-PROTACs, which exhibit controlled protein degradation capabilities in response to external stimuli or disease-related endogenous biochemical signals. The article delves into the specific chemical strategies employed to regulate the interaction between PROTACs and E3 ubiquitin ligases or target proteins. These strategies enable spatial and temporal control over the protein degradation potential of Pro-PROTACs. Furthermore, the review summarizes recent investigations regarding the delivery of PROTACs using biodegradable nanoparticles for in vivo applications and targeted protein degradation. Such delivery systems hold great promise for enabling efficient and selective protein degradation in vivo. Lastly, the article provides a perspective on the future design of multifunctional PROTACs and their intracellular delivery mechanisms, with a particular focus on achieving cell-selective protein degradation.
Collapse
Affiliation(s)
- Rui Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100490, China
| | - Tianli Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100490, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100490, China
| |
Collapse
|
30
|
Yu D, Fan H, Zhou Z, Zhang Y, Sun J, Wang L, Jia Y, Tian J, Campbell A, Mi W, Sun H. Hydrogen Peroxide-Inducible PROTACs for Targeted Protein Degradation in Cancer Cells. Chembiochem 2023; 24:e202300422. [PMID: 37462478 DOI: 10.1002/cbic.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) provide a powerful technique to degrade targeted proteins utilizing the cellular ubiquitin-proteasome system. The major concern is the host toxicity resulting from their poor selectivity. Inducible PROTACs responding to exogenous stimulus, such as light, improve their specificity, but it is difficult for photo-activation in deep tissues. Herein, we develop H2 O2 -inducible PROTAC precursors 2/5, which can be activated by endogenous H2 O2 in cancer cells to release the active PROTACs 1/4 to effectively degrade targeted proteins. This results in the intended cytotoxicity towards cancer cells while targeted protein in normal cells remains almost unaffected. The higher Bromodomain-containing protein 4 (BRD4) degradation activity and cytotoxicity of 2 towards cancer cells is mainly due to the higher endogenous concentration of H2 O2 in cancer cells (A549 and H1299), characterized by H2 O2 -responsive fluorescence probe 3. Western blot assays and cytotoxicity experiments demonstrate that 2 degrades BRD4 more effectively and is more cytotoxic in H2 O2 -rich cancer cells than in H2 O2 -deficient normal cells. This method is also extended to estrogen receptor (ER)-PROTAC precursor 5, showing H2 O2 -dependent ER degradation ability. Thus, we establish a novel strategy to induce targeted protein degradation in a H2 O2 -dependent way, which has the potential to improve the selectivity of PROTACs.
Collapse
Affiliation(s)
- Dehao Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Heli Fan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Zhili Zhou
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ying Zhang
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Luo Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanyuan Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Junyu Tian
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Anahit Campbell
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211, USA
| | - Wenyi Mi
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Huabing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, The Province and Ministry Co-sponsored Collaborative Innovation Center, for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
31
|
Zhao C, Wang H, Zhan W, Lv X, Ma X. Exploitation of Proximity-Mediated Effects in Drug Discovery: An Update of Recent Research Highlights in Perturbing Pathogenic Proteins and Correlated Issues. J Med Chem 2023; 66:10122-10149. [PMID: 37489834 DOI: 10.1021/acs.jmedchem.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The utilization of proximity-mediated effects to perturb pathogenic proteins of interest (POIs) has emerged as a powerful strategic alternative to conventional drug design approaches based on target occupancy. Over the past three years, the burgeoning field of targeted protein degradation (TPD) has witnessed the expansion of degradable POIs to membrane-associated, extracellular, proteasome-resistant, and even microbial proteins. Beyond TPD, researchers have achieved the proximity-mediated targeted protein stabilization, the recruitment of intracellular immunophilins to disturb undruggable targets, and the nonphysiological post-translational modifications of POIs. All of these strides provide new avenues for innovative drug discovery aimed at battling human malignancies and other major diseases. This perspective presents recent research highlights and discusses correlated issues in developing therapeutic modalities that exploit proximity-mediated effects to modulate pathogenic proteins, thereby guiding future academic and industrial efforts in this field.
Collapse
Affiliation(s)
- Can Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Henian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenhu Zhan
- iCarbonX (Shenzhen) Co., Ltd., Shenzhen, 518000, China
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Xiaodong Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
32
|
Wang W, Zhu C, Zhang B, Feng Y, Zhang Y, Li J. Self-Assembled Nano-PROTAC Enables Near-Infrared Photodynamic Proteolysis for Cancer Therapy. J Am Chem Soc 2023; 145:16642-16649. [PMID: 37477624 DOI: 10.1021/jacs.3c04109] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Confining the protein degradation activity of proteolysis-targeting chimera (PROTAC) to cancer lesions ensures precision treatment. However, it still remains challenging to precisely control PROTAC function in tumor regions in vivo. We herein describe a near-infrared (NIR) photoactivatable nano-PROTAC (NAP) for remote-controllable proteolysis in tumor-bearing mice. NAP is formed by molecular self-assembly from an amphiphilic conjugate of PROTAC linked with an NIR photosensitizer through a singlet oxygen (1O2)-cleavable linker. The activity of PROTAC is initially silenced but can be remotely switched on upon NIR photoirradiation to generate 1O2 by the photosensitizer. We demonstrated that NAP enabled tumor-specific degradation of bromodomain-containing protein 4 (BRD4) in an NIR light-instructed manner. This in combination with photodynamic therapy (PDT) elicited an effective suppression of tumor growth. This work thus presents a novel approach for spatiotemporal control over targeted protein degradation by PROTAC.
Collapse
Affiliation(s)
- Weishan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Bin Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yi Feng
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
33
|
Gao J, Yang L, Lei S, Zhou F, Nie H, Peng B, Xu T, Chen X, Yang X, Sheng C, Rao Y, Pu K, Jin J, Xu Z, Yu H. Stimuli-activatable PROTACs for precise protein degradation and cancer therapy. Sci Bull (Beijing) 2023; 68:1069-1085. [PMID: 37169612 DOI: 10.1016/j.scib.2023.04.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
The proteolysis targeting chimeras (PROTACs) approach has attracted extensive attention in the past decade, which represents an emerging therapeutic modality with the potential to tackle disease-causing proteins that are historically challengeable for conventional small molecular inhibitors. PROTAC harnesses the endogenic E3 ubiquitin ligase to degrade protein of interest (POI) via ubiquitin-proteasome system in a cycle-catalytic manner. The event-driven pharmacology of PROTAC is poised to pursue those targets that are conventionally undruggable, which enormously extends the space of drug development. Furthermore, PROTAC has the potential to address drug resistance of small molecular inhibitors by degrading the whole POI. Nevertheless, PROTACs display high-efficiency and always-on properties to degrade POI, they may cause severe side effects due to an "on-target but off-tissue" protein degradation profile at the undesirable tissues and cells. Given that, the stimuli-activatable PROTAC prodrugs have been recently exploited to confine precise protein degradation of the favorable targets, which may conquer the adverse effects of PROTAC due to uncontrollable protein degradation. Herein, we summarized the cutting-edge advances of the stimuli-activatable PROTAC prodrugs. We also overviewed the progress of PROTAC prodrug-based nanomedicine to improve PROTAC delivery to the tumors and precise POI degradation in the targeted cells.
Collapse
Affiliation(s)
- Jing Gao
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lei Yang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shumin Lei
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Zhou
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huijun Nie
- Center of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bo Peng
- Information Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianfeng Xu
- Center of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Chen
- Center of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd. Shanghai 201306, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yu Rao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York NY 10029, USA
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
34
|
Li Q, Zhou L, Qin S, Huang Z, Li B, Liu R, Yang M, Nice EC, Zhu H, Huang C. Proteolysis-targeting chimeras in biotherapeutics: Current trends and future applications. Eur J Med Chem 2023; 257:115447. [PMID: 37229829 DOI: 10.1016/j.ejmech.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The success of inhibitor-based therapeutics is largely constrained by the acquisition of therapeutic resistance, which is partially driven by the undruggable proteome. The emergence of proteolysis targeting chimera (PROTAC) technology, designed for degrading proteins involved in specific biological processes, might provide a novel framework for solving the above constraint. A heterobifunctional PROTAC molecule could structurally connect an E3 ubiquitin ligase ligand with a protein of interest (POI)-binding ligand by chemical linkers. Such technology would result in the degradation of the targeted protein via the ubiquitin-proteasome system (UPS), opening up a novel way of selectively inhibiting undruggable proteins. Herein, we will highlight the advantages of PROTAC technology and summarize the current understanding of the potential mechanisms involved in biotherapeutics, with a particular focus on its application and development where therapeutic benefits over classical small-molecule inhibitors have been achieved. Finally, we discuss how this technology can contribute to developing biotherapeutic drugs, such as antivirals against infectious diseases, for use in clinical practices.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
35
|
Sincere NI, Anand K, Ashique S, Yang J, You C. PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies. Molecules 2023; 28:molecules28104014. [PMID: 37241755 DOI: 10.3390/molecules28104014] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A potential therapeutic strategy to treat conditions brought on by the aberrant production of a disease-causing protein is emerging for targeted protein breakdown using the PROTACs technology. Few medications now in use are tiny, component-based and utilize occupancy-driven pharmacology (MOA), which inhibits protein function for a short period of time to temporarily alter it. By utilizing an event-driven MOA, the proteolysis-targeting chimeras (PROTACs) technology introduces a revolutionary tactic. Small-molecule-based heterobifunctional PROTACs hijack the ubiquitin-proteasome system to trigger the degradation of the target protein. The main challenge PROTAC's development facing now is to find potent, tissue- and cell-specific PROTAC compounds with favorable drug-likeness and standard safety measures. The ways to increase the efficacy and selectivity of PROTACs are the main focus of this review. In this review, we have highlighted the most important discoveries related to the degradation of proteins by PROTACs, new targeted approaches to boost proteolysis' effectiveness and development, and promising future directions in medicine.
Collapse
Affiliation(s)
- Nuwayo Ishimwe Sincere
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, India
| | - Jing Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
36
|
Xie B, Xu B, Xin L, Wei Y, Guo X, Dong C. Discovery of estrogen receptor α targeting caged hypoxia-responsive PROTACs with an inherent bicyclic skeleton for breast cancer treatment. Bioorg Chem 2023; 137:106590. [PMID: 37163809 DOI: 10.1016/j.bioorg.2023.106590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
In view of the potential off-target effects of antitumor drugs, including proteolysis targeting chimera (PROTAC), certain toxic effects may be caused in normal tissues. Herein, based on the characteristics of the tumor microenvironment, we reported the first estrogen receptor α (ERα) targeting hypoxia-responsive PROTACs in order to improve their safety in breast cancer treatment by introducing two hypoxia-activated groups, nitroimidazole and nitrobenzene, into the ER ligand or E3 ligand of an active PROTAC, which has certain cytotoxicity in normal cells. Bioactivity studies showed that these hypoxia-responsive PROTACs exhibited excellent hypoxic responsiveness and ERα degradation activity under hypoxic conditions, and thus improved the toxic effects of the active PROTAC in normal cells. It is expected that our caged compounds provide a new strategy for precise functional control of PROTAC drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Baohua Xie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Bin Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lilan Xin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yizhou Wei
- Wuhan Britain-China School, Wuhan 430030, China
| | - Xinyi Guo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Chune Dong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
37
|
Sarabando SN, Palmeira A, Sousa ME, Faustino MAF, Monteiro CJP. Photomodulation Approaches to Overcome Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:682. [PMID: 37242465 PMCID: PMC10221556 DOI: 10.3390/ph16050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Photopharmacology is an approach that aims to be an alternative to classical chemotherapy. Herein, the different classes of photoswitches and photocleavage compounds and their biological applications are described. Proteolysis targeting chimeras (PROTACs) containing azobenzene moieties (PHOTACs) and photocleavable protecting groups (photocaged PROTACs) are also mentioned. Furthermore, porphyrins are referenced as successful photoactive compounds in a clinical context, such as in the photodynamic therapy of tumours as well as preventing antimicrobial resistance, namely in bacteria. Porphyrins combining photoswitches and photocleavage systems are highlighted, taking advantage of both photopharmacology and photodynamic action. Finally, porphyrins with antibacterial activity are described, taking advantage of the synergistic effect of photodynamic treatment and antibiotic therapy to overcome bacterial resistance.
Collapse
Affiliation(s)
- Sofia N. Sarabando
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | | | - Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| |
Collapse
|
38
|
Sobhia ME, Kumar H, Kumari S. Bifunctional robots inducing targeted protein degradation. Eur J Med Chem 2023; 255:115384. [PMID: 37119667 DOI: 10.1016/j.ejmech.2023.115384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
The gaining importance of Targeted Protein Degradation (TPD) and PROTACs (PROteolysis-TArgeting Chimeras) have drawn the scientific community's attention. PROTACs are considered bifunctional robots owing to their avidity for the protein of interest (POI) and E3-ligase, which induce the ubiquitination of POI. These molecules are based on event-driven pharmacology and are applicable in different conditions such as oncology, antiviral, neurodegenerative disease, acne etc., offering tremendous scope to researchers. In this review, primarily, we attempted to compile the recent works available in the literature on PROTACs for various targeted proteins. We summarized the design and development strategies with a focus on molecular information of protein residues and linker design. Rationalization of the ternary complex formation using Artificial Intelligence including machine & deep learning models and traditionally followed computational tools are also included in this study. Moreover, details describing the optimization of PROTACs chemistry and pharmacokinetic properties are added. Advanced PROTAC designs and targeting complex proteins, is summed up to cover the wide spectrum.
Collapse
Affiliation(s)
- M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector - 67, S. A. S. Nagar, Mohali, Punjab, 160062, India.
| | - Harish Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector - 67, S. A. S. Nagar, Mohali, Punjab, 160062, India
| | - Sonia Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector - 67, S. A. S. Nagar, Mohali, Punjab, 160062, India
| |
Collapse
|
39
|
Jin Y, Fan J, Wang R, Wang X, Li N, You Q, Jiang Z. Ligation to Scavenging Strategy Enables On-Demand Termination of Targeted Protein Degradation. J Am Chem Soc 2023; 145:7218-7229. [PMID: 36971523 DOI: 10.1021/jacs.2c12809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Event-driven bifunctional molecules, typified by proteolysis targeting chimera (PROTAC) technology, have been successfully applied in degrading many proteins of interest (POI). Due to the unique catalytic mechanism, PROTACs will induce multiple cycles of degradation until the elimination of the target protein. Here, we propose a versatile "Ligation to scavenging" approach to terminate event-driven degradation for the first time. Ligation to the scavenging system consists of a TCO-modified dendrimer (PAMAM-G5-TCO) and tetrazine-modified PROTACs (Tz-PROTACs). PAMAM-G5-TCO can rapidly scavenge intracellular free PROTACs via an inverse electron demand Diels-Alder reaction and terminate the degradation of certain proteins in living cells. Thus, this work proposes a flexible chemical knockdown approach to adjust the levels of POI on-demand in living cells, which paves the way for controlled target protein degradation.
Collapse
|
40
|
Cheng W, Li S, Han S, Miao R, Wang S, Liu C, Wei H, Tian X, Zhang X. Design, synthesis and biological evaluation of the tumor hypoxia-activated PROTACs bearing caged CRBN E3 ligase ligands. Bioorg Med Chem 2023; 82:117237. [PMID: 36906965 DOI: 10.1016/j.bmc.2023.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Tumor hypoxia-activated proteolysis targeting chimeras (ha-PROTACs) 9 and 10 were designed and synthesized by incorporating the hypoxia-activated leaving group (1-methyl-2-nitro-1H-imidazol-5-yl)methyl or 4‑nitrobenzyl into the structure of the cereblon (CRBN) E3 ligand of an epidermal growth factor receptor 19 deletions (EGFRDel19-based PROTAC 8. The in vitro protein degradation assay demonstrated that 9 and 10 could effectively and selectively degrade EGFRDel19 in tumor hypoxia. Meanwhile, these two compounds showed higher potency in inhibiting cell viability and migration, as well as in promoting cells apoptosis in tumor hypoxia. Moreover, nitroreductase reductive activation assay indicated that prodrugs 9 and 10 could successfully release the active compound 8. This study confirmed the feasibility to develop ha-PROTACs to enhance the selectivity of PROTACs by caging CRBN E3 ligase ligand.
Collapse
Affiliation(s)
- Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Siyuan Han
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ruoyang Miao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Han Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
41
|
Photocaged Histone Deacetylase Inhibitors as Prodrugs in Targeted Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:ph16030356. [PMID: 36986455 PMCID: PMC10056348 DOI: 10.3390/ph16030356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Histone deacetylases (HDACs) play a key role in the control of transcription, cell proliferation, and migration. FDA-approved histone deacetylase inhibitors (HDACi) demonstrate clinical efficacy in the treatment of different T-cell lymphomas and multiple myeloma. However, due to unselective inhibition, they display a wide range of adverse effects. One approach to avoiding off-target effects is the use of prodrugs enabling a controlled release of the inhibitor in the target tissue. Herein, we describe the synthesis and biological evaluation of HDACi prodrugs with photo-cleavable protecting groups masking the zinc-binding group of the established HDACi DDK137 (I) and VK1 (II). Initial decaging experiments confirmed that the photocaged HDACi pc-I could be deprotected to its parent inhibitor I. In HDAC inhibition assays, pc-I displayed only low inhibitory activity against HDAC1 and HDAC6. After irradiation with light, the inhibitory activity of pc-I strongly increased. Subsequent MTT viability assays, whole-cell HDAC inhibition assays, and immunoblot analysis confirmed the inactivity of pc-I at the cellular level. Upon irradiation, pc-I demonstrated pronounced HDAC inhibitory and antiproliferative activities which were comparable to the parent inhibitor I. Additionally, only phototreated pc-I was able to induce apoptosis in Annexin V/PI and caspase-Glo 3/7 assays, making pc-I a valuable tool for the development of light-activatable HDACi.
Collapse
|
42
|
Zhao HY, Xin M, Zhang SQ. Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Dev Res 2023; 84:337-394. [PMID: 36606428 DOI: 10.1002/ddr.22026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023]
Abstract
Recent years have witnessed the rapid development of targeted protein degradation (TPD), especially proteolysis targeting chimeras. These degraders have manifested many advantages over small molecule inhibitors. To date, a huge number of degraders have been excavated against over 70 disease-related targets. In particular, degraders against estrogen receptor and androgen receptor have crowded into phase II clinical trial. TPD technologies largely expand the scope of druggable targets, and provide powerful tools for addressing intractable problems that can not be tackled by traditional small molecule inhibitors. In this review, we mainly focus on the structures and biological activities of small molecule degraders as well as the elucidation of mechanisms of emerging TPD technologies. We also propose the challenges that exist in the TPD field at present.
Collapse
Affiliation(s)
- Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
43
|
Shaheer M, Singh R, Sobhia ME. Protein degradation: a novel computational approach to design protein degrader probes for main protease of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:10905-10917. [PMID: 34328382 DOI: 10.1080/07391102.2021.1953601] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has afflicted many lives and led to approvals of drugs and vaccines for emergency use. Even though vaccines have emerged, the high mortality of COVID-19 and its insurgent proliferation throughout the masses commands an innovative therapeutic proposition for the treatment. Targeted protein degradation has been applied to various disease domains and we propose that it could be incredibly beneficial to tackle the current pandemic. In this study, we have attempted to furnish insights on the design of suitable PROTACs for the main protease (Mpro) of SARS-CoV-2, a protein that is considered to be an essential target for viral replication. We have employed protein-protein docking to predict the possible complementarity between a cereblon E3 ligase and Mpro of SARS-CoV-2, and estimate possible linker length. Molecular Dynamic simulation and analysis on generated ternary complexes demonstrated stable interactions that suggested that designed PROTAC has a potential to cause degradation. The superior characteristics rendered by PROTACS led us to propose them as possibly the next-generation antiviral drugs for SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammed Shaheer
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Ravi Singh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
44
|
Salama AKAA, Trkulja MV, Casanova E, Uras IZ. Targeted Protein Degradation: Clinical Advances in the Field of Oncology. Int J Mol Sci 2022; 23:15440. [PMID: 36499765 PMCID: PMC9741350 DOI: 10.3390/ijms232315440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The field of targeted protein degradation (TPD) is a rapidly developing therapeutic modality with the promise to tame disease-relevant proteins in ways that are difficult or impossible to tackle with other strategies. While we move into the third decade of TPD, multiple degrader drugs have entered the stage of the clinic and many more are expected to follow. In this review, we provide an update on the most recent advances in the field of targeted degradation with insights into possible clinical implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
45
|
Wang C, Zhang Y, Yang S, Chen W, Xing D. PROTACs for BRDs proteins in cancer therapy: a review. J Enzyme Inhib Med Chem 2022; 37:1694-1703. [PMID: 35702740 PMCID: PMC9225710 DOI: 10.1080/14756366.2022.2081164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/11/2022] Open
Abstract
BRDs proteins that recognise chromatin acetylation regulate gene expression, are epigenetic readers and master transcription coactivators. BRDs proteins are now emerging as targets for new therapeutic development. Blocking the function of any of BRDs proteins can be a control agent for diseases, such as cancer. Traditional drugs like enzyme inhibitors and protein-protein inhibitors have many limitations. The therapeutic efficacy of them remains to be proven. Recently, Proteolysis-Targeting Chimaeras (PROTACs) have become an advanced tool in therapeutic intervention as they remove disease-causing proteins. Extremely potent and efficacious small-molecule PROTACs of the BRDs proteins, based on available, potent, and selective BRDs inhibitors, have been reported. This review presents a comprehensive overview of the development of PROTACs for BRDs proteins regulation in cancer, and the chances and challenges associated with this area are also highlighted.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, PR China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, PR China
- School of Pharmacy, Qingdao University, Qingdao, PR China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, PR China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, PR China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, PR China
- School of Life Sciences, Tsinghua University, Beijing, PR China
| |
Collapse
|
46
|
Xiong H, Xu Y, Kim B, Rha H, Zhang B, Li M, Yang GF, Kim JS. Photo-controllable biochemistry: Exploiting the photocages in phototherapeutic window. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
47
|
Diehl CJ, Ciulli A. Discovery of small molecule ligands for the von Hippel-Lindau (VHL) E3 ligase and their use as inhibitors and PROTAC degraders. Chem Soc Rev 2022; 51:8216-8257. [PMID: 35983982 PMCID: PMC9528729 DOI: 10.1039/d2cs00387b] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The von Hippel-Lindau (VHL) Cullin RING E3 ligase is an essential enzyme in the ubiquitin-proteasome system that recruits substrates such as the hypoxia inducible factor for ubiquitination and subsequent proteasomal degradation. The ubiquitin-proteasome pathway can be hijacked toward non-native neo-substrate proteins using proteolysis targeting chimeras (PROTACs), bifunctional molecules designed to simultaneously bind to an E3 ligase and a target protein to induce target ubiquitination and degradation. The availability of high-quality small-molecule ligands with good binding affinity for E3 ligases is fundamental for PROTAC development. Lack of good E3 ligase ligands as starting points to develop PROTAC degraders was initially a stumbling block to the development of the field. Herein, the journey towards the design of small-molecule ligands binding to VHL is presented. We cover the structure-based design of VHL ligands, their application as inhibitors in their own right, and their implementation into rationally designed, potent PROTAC degraders of various target proteins. We highlight the key findings and learnings that have provided strong foundations for the remarkable development of targeted protein degradation, and that offer a blueprint for designing new ligands for E3 ligases beyond VHL.
Collapse
Affiliation(s)
- Claudia J Diehl
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
48
|
Pu C, Wang S, Liu L, Feng Z, Zhang H, Gong Q, Sun Y, Guo Y, Li R. Current strategies for improving limitations of proteolysis targeting chimeras. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Zhang Q, Kounde CS, Mondal M, Greenfield JL, Baker JR, Kotelnikov S, Ignatov M, Tinworth CP, Zhang L, Conole D, De Vita E, Kozakov D, McCluskey A, Harling JD, Fuchter MJ, Tate EW. Light-mediated multi-target protein degradation using arylazopyrazole photoswitchable PROTACs (AP-PROTACs). Chem Commun (Camb) 2022; 58:10933-10936. [PMID: 36065962 PMCID: PMC9521323 DOI: 10.1039/d2cc03092f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Light-activable spatiotemporal control of PROTAC-induced protein degradation was achieved with novel arylazopyrazole photoswitchable PROTACs (AP-PROTACs). The use of a promiscuous kinase inhibitor in the design enables this unique photoswitchable PROTAC to selectively degrade four protein kinases together with on/off optical control using different wavelengths of light. A new class of arylazopyrazole photoswitchable PROTACs (AP-PROTACs) enables light-triggered degradation of a specific ensemble of protein kinases.![]()
Collapse
Affiliation(s)
- Qisi Zhang
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
| | - Cyrille S Kounde
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
| | - Milon Mondal
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
| | - Jake L Greenfield
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
| | - Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Mikhail Ignatov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Christopher P Tinworth
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Leran Zhang
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
| | - Daniel Conole
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
| | - Elena De Vita
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - John D Harling
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Matthew J Fuchter
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
| |
Collapse
|
50
|
Zhao C, Dekker FJ. Novel Design Strategies to Enhance the Efficiency of Proteolysis Targeting Chimeras. ACS Pharmacol Transl Sci 2022; 5:710-723. [PMID: 36110375 PMCID: PMC9469497 DOI: 10.1021/acsptsci.2c00089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/30/2022]
Abstract
Despite the success of drug discovery over the past decades, many potential drug targets still remain intractable for small molecule modulation. The development of proteolysis targeting chimeras (PROTACs) that trigger degradation of the target proteins provides a conceptually novel approach to address drug targets that remained previously elusive. Currently, the main challenge of PROTAC development is the identification of efficient, tissue- and cell-selective PROTAC molecules with good drug-likeness and favorable safety profiles. This review focuses on strategies to enhance the effectiveness and selectivity of PROTACs. We provide a comprehensive summary of recently reported PROTAC design strategies and discuss the advantages and disadvantages of these strategies. Future perspectives for PROTAC design will also be discussed.
Collapse
Affiliation(s)
- Chunlong Zhao
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Frank J. Dekker
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|