1
|
Tao S, Yang Y, Wu C, Yang J, Wang Z, Zhou F, Liang K, Deng Y, Li J, Li J. Nanocapsuled Neutrophil Extracellular Trap Scavenger Combating Chronic Infectious Bone Destruction Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411274. [PMID: 39823437 PMCID: PMC11904938 DOI: 10.1002/advs.202411274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/29/2024] [Indexed: 01/19/2025]
Abstract
Chronic infectious bone destruction diseases, such as periodontitis, pose a significant global health challenge. Repairing the bone loss caused by these chronic infections remains challenging. In addition to pathogen removal, regulating host immunity is imperative. The retention of neutrophil extracellular traps (NETs) in chronic infectious niches is found to be a barrier to inflammation resolution. However, whether ruining the existing NETs within the local infectious bone lesions can contribute to inflammation resolve and bone repair remains understudied. Herein, a nanocapsuled delivery system that scavenges NETs dual-responsively to near-infrared light as a switch and to NETs themselves as a microenvironment sensor is designed. Besides, the photothermal and photodynamic effects endow the nanocapsules with antibacterial properties. Together with the ability to clear NETs, these features facilitate the restoration of the normal host response. The immunocorrective properties and inherent pro-osteogenic effects finally promote local bone repair. Together, the NET scavenging nanocapsules address the challenge of impaired bone repair in chronic infections due to biased host response caused by excessive NETs. This study provides new concepts and strategies for repairing bone destruction attributable to chronic infections via correcting biased host responses in chronic infectious diseases.
Collapse
Affiliation(s)
- Siying Tao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ziyou Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Liu Q, Jia W, Zhang Y, Lu J, Luo Q, Yang L, Wan D. Causal effects of blood cells on breast cancer: Evidence from bidirectional Mendelian randomization combined with meta-analysis. Medicine (Baltimore) 2025; 104:e41545. [PMID: 39960903 PMCID: PMC11835135 DOI: 10.1097/md.0000000000041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Recent studies suggest blood cells influence breast cancer, but no Mendelian randomization (MR) studies have confirmed a causal relationship between specific blood cell phenotypes and breast cancer. MR analysis of blood cell phenotypes used breast cancer data from Finngen R11, UKB, and open genome-wide association study databases. Meta-analyzed inverse variance weighted results were adjusted for multiple comparisons. The reverse relationship was also explored. MR and meta-analysis identified significant associations between specific blood cell phenotypes and breast cancer: neutrophil perturbation response (side fluorescence standard deviation of neutrophil 4 in response to alhydrogel perturbation): odds ratio (OR) = 0.967, P = .0009; neutrophil perturbation response (forward scatter median of neutrophil 4 in response to Pam3CSK4 perturbation): OR = 0.972, P = .031; white blood cell perturbation response (side scatter coefficient of variation of WBC 2 in response to nigericin perturbation): OR = 0.972, P = .031; white blood cell perturbation response (forward scatter coefficient of variation of WBC in response to Pam3CSK4 perturbation): OR = 1.042, P = 8.15 × 10-5. And there was no reverse result. Neutrophil perturbation response (side fluorescence standard deviation of neutrophil 4 in response to alhydrogel perturbation) and white blood cell perturbation response (side scatter coefficient of variation of WBC 2 in response to nigericin perturbation) are protective factors for breast cancer. Conversely, neutrophil perturbation response (forward scatter median of neutrophil 4 in response to Pam3CSK4 perturbation) and white blood cell perturbation response (forward scatter coefficient of variation of WBC in response to Pam3CSK4 perturbation) are risk factors for breast cancer.
Collapse
Affiliation(s)
- Qi Liu
- Department of Oncology, Anhui Zhongke Gengjiu Hospital, Hefei, Anhui Province, China
| | - Wei Jia
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Hefei, Anhui Province, China
| | - Yi Zhang
- Department of Oncology, Anhui Zhongke Gengjiu Hospital, Hefei, Anhui Province, China
| | - Jun Lu
- Department of Oncology, Anhui Zhongke Gengjiu Hospital, Hefei, Anhui Province, China
| | - Qingbin Luo
- Department of Oncology, Anhui Zhongke Gengjiu Hospital, Hefei, Anhui Province, China
| | - Lin Yang
- Department of Oncology, Anhui Zhongke Gengjiu Hospital, Hefei, Anhui Province, China
| | - Dongdong Wan
- Department of Medical Oncology, Nantong Haimen District People’s Hospital, Nantong, Jiangsu Province, China
| |
Collapse
|
3
|
Alghamdi ZS, Sharma R, Kiruthiga N, Üçüncü M, Klausen M, Santra M, Devi U, Venkateswaran S, Lilienkampf A, Bradley M. Lighting up Mycobacteria with membrane-targeting peptides. Org Biomol Chem 2024; 22:8781-8786. [PMID: 39397698 DOI: 10.1039/d4ob01333f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We report a series of fluorescent probes based on mycobacteria membrane-associated disruption peptide, containing either L- or D-amino acids which were originally designed to kill Mycobacterium tuberculosis via membrane disruption. These peptides were decorated with "always on" and environmentally sensitive fluorophores and showed the rapid and efficient labelling of Mycobacterium smegmatis, with labelling of Mycobacterium tuberculosis demonstrated by two of the probes.
Collapse
Affiliation(s)
- Zainab S Alghamdi
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Richa Sharma
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - Nancy Kiruthiga
- Indian Council of Medical Research (ICMR) - National Institute for Research in Tuberculosis, No. 1, Mayor Sathiyamoorthy Road, Chetpet, Chennai - 600 031, India
| | - Muhammed Üçüncü
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
- Department of Analytical Chemistry, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey
| | - Maxime Klausen
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - Mithun Santra
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - Uma Devi
- Indian Council of Medical Research (ICMR) - National Institute for Research in Tuberculosis, No. 1, Mayor Sathiyamoorthy Road, Chetpet, Chennai - 600 031, India
| | - Seshasailam Venkateswaran
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, Whitechapel, London, E1 1HH, UK.
| | - Annamaria Lilienkampf
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, Whitechapel, London, E1 1HH, UK.
| |
Collapse
|
4
|
Du L, Gong Y, Zhang X, Sun J, Gao F, Shen M, Bai H, Yang T, Cheng X, Li S, Peng J, Liu Z, Ding S, Chen J, Cheng W. PD-L1 siRNA hitched polyethyleneimine-elastase constituting nanovesicle induces tumor immunogenicity and PD-L1 silencing for synergistic antitumor immunotherapy. J Nanobiotechnology 2024; 22:442. [PMID: 39068444 PMCID: PMC11282766 DOI: 10.1186/s12951-024-02700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND PD-1/PD-L1 blockade has become a powerful method to treat malignant tumors. However, a large proportion of patients still do not benefit from this treatment, due to low tumor immunogenicity and low tumor penetration of the agents. Recently, neutrophil elastase has been shown to induce robust tumor immunogenicity, while the insufficient enzyme activity at the tumor site restricted its anti-tumor application. Here, we designed polyethyleneimine-modified neutrophil elastase (PEI-elastase) loaded with PD-L1small interfering RNA (PD-L1 siRNA) for improving enzymatic activity and delivering siRNA to tumor, which was expected to solve the above-mentioned problems. RESULTS We first demonstrated that PEI-elastase possessed high enzymatic activity, which was also identified as an excellent gene-delivery material. Then, we synthesized anti-tumor lipopolymer (P-E/S Lip) by encapsulating PEI-elastase and PD-L1siRNA with pH-responsive anionic liposomes. The P-E/S Lip could be rapidly cleaved in tumor acidic environment, leading to exposure of the PEI-elastase/PD-L1 siRNA. Consequently, PEI-elastase induced powerful tumor immunogenicity upon direct tumor killing with minimal toxicity to normal cells. In parallel, PEI-elastase delivered PD-L1siRNA into the tumor and reduced PD-L1 expression. Orthotopic tumor administration of P-E/S Lip not only attenuated primary tumor growth, but also produced systemic anti-tumor immune response to inhibit growth of distant tumors and metastasis. Moreover, intravenous administration of P-E/S Lip into mice bearing subcutaneous tumors leaded to an effective inhibition of established B16-F10 tumor and 4T1 tumor, with histological analyses indicating an absence of detectable toxicity. CONCLUSIONS In our study, a protease-based nanoplatform was used to cooperatively provoke robust tumor immunogenicity and down-regulate PD-L1 expression, which exhibited great potential as a combination therapy for precisely treating solid tumors.
Collapse
Affiliation(s)
- Li Du
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Biobank, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yao Gong
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoying Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jide Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fengxia Gao
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Meiying Shen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huili Bai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoxue Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Siqiao Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jian Peng
- Biobank, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhangling Liu
- Biobank, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Biobank, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Kahler JP, Ji S, Speelman-Rooms F, Vanhoutte R, Verhelst SHL. Phosphinate Esters as Novel Warheads for Quenched Activity-Based Probes Targeting Serine Proteases. ACS Chem Biol 2024; 19:1409-1415. [PMID: 38913607 DOI: 10.1021/acschembio.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Quenched activity-based probes (qABP) are invaluable tools to visualize aberrant protease activity. Unfortunately, most studies so far have only focused on cysteine proteases, and only a few studies describe the synthesis and use of serine protease qABPs. We recently used phosphinate ester electrophiles as a novel type of reactive group to construct ABPs for serine proteases. Here, we report on the construction of qABPs based on the phosphinate warhead, exemplified by probes for the neutrophil serine proteases. The most successful probes show sub-stoichiometric reaction with human neutrophil elastase, efficient fluorescence quenching, and rapid unquenching of fluorescence upon reaction with target proteases.
Collapse
Affiliation(s)
- Jan Pascal Kahler
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Shanping Ji
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Femke Speelman-Rooms
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
- Laboratory of Molecular & Cellular Signaling, Department of Cellular and Molecular Medicine, Herestraat 49 box 802, 3000 Leuven, Belgium
| | - Roeland Vanhoutte
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences - ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Kazim M, Yoo E. Recent Advances in the Development of Non-Invasive Imaging Probes for Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202310694. [PMID: 37843426 DOI: 10.1002/anie.202310694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
The last two decades have witnessed a major revolution in the field of tumor immunology including clinical progress using various immunotherapy strategies. These advances have highlighted the potential for approaches that harness the power of the immune system to fight against cancer. While cancer immunotherapies have shown significant clinical successes, patient responses vary widely due to the complex and heterogeneous nature of tumors and immune responses, calling for reliable biomarkers and therapeutic strategies to maximize the benefits of immunotherapy. Especially, stratifying responding individuals from non-responders during the early stages of treatment could help avoid long-term damage and tailor personalized treatments. In efforts to develop non-invasive means for accurately evaluating and predicting tumor response to immunotherapy, multiple affinity-based agents targeting immune cell markers and checkpoint molecules have been developed and advanced to clinical trials. In addition, researchers have recently turned their attention to substrate and activity-based imaging probes that can provide real-time, functional assessment of immune response to treatment. Here, we highlight some of those recently designed probes that image functional proteases as biomarkers of cancer immunotherapy with a focus on their chemical design and detection modalities and discuss challenges and opportunities for the development of imaging tools utilized in cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Kazim
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
7
|
Rodriguez-Rios M, McHugh BJ, Liang Z, Megia-Fernandez A, Lilienkampf A, Dockrell D, Bradley M. A fluorogenic, peptide-based probe for the detection of Cathepsin D in macrophages. Commun Chem 2023; 6:237. [PMID: 37919467 PMCID: PMC10622513 DOI: 10.1038/s42004-023-01035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
Cathepsin D is a protease that is an effector in the immune response of macrophages, yet to date, only a limited number of probes have been developed for its detection. Herein, we report a water soluble, highly sensitive, pH insensitive fluorescent probe for the detection of Cathepsin D activity that provides a strong OFF/ON signal upon activation and with bright emission at 515 nm. The probe was synthesised using a combination of solid and solution-phase chemistries, with probe optimisation to increase its water solubility and activation kinetics by addition of a long PEG chain (5 kDa) at the C-terminus. A BODIPY fluorophore allowed detection of Cathepsin D across a wide pH range, important as the protease is active both at the low pH found in lysosomes and also in higher pH phagolysosomes, and in the cytosol. The probe was successfully used to detect Cathepsin D activity in macrophages challenged by exposure to bacteria.
Collapse
Affiliation(s)
- Maria Rodriguez-Rios
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Brian J McHugh
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
| | - Zhengqi Liang
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Alicia Megia-Fernandez
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
- Organic Chemistry Department, Faculty of Sciences, University of Granada, Avda. Fuente Nueva S/N, Granada, 18071, Spain
| | - Annamaria Lilienkampf
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - David Dockrell
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, 67-75 New Road, London, E1 1HH, UK.
| |
Collapse
|
8
|
Rodriguez-Rios M, Rinaldi G, Megia-Fernandez A, Lilienkampf A, Robb CT, Rossi AG, Bradley M. Moving into the red - a near infra-red optical probe for analysis of human neutrophil elastase in activated neutrophils and neutrophil extracellular traps. Chem Commun (Camb) 2023; 59:11660-11663. [PMID: 37695093 DOI: 10.1039/d3cc03634k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Neutrophils are the first immune cells recruited for defence against invading pathogens; however, their dysregulated activation and subsequent release of the enzyme human neutrophil elastase is associated with several, inflammation-based, diseases. Herein, we describe a FRET-based, tri-branched (one quencher, three fluorophores) near infrared probe that provides an intense OFF/ON amplified fluorescence signal for specific detection of human neutrophil elastase. The probe allowed selective detection of activated neutrophils and labelling of neutrophil extracellular traps.
Collapse
Affiliation(s)
- M Rodriguez-Rios
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - G Rinaldi
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
| | - A Megia-Fernandez
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
- Organic Chemistry Department, Faculty of Sciences, University of Granada, Avda. Fuente Nueva S/N, 18071, Spain
| | - A Lilienkampf
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - C T Robb
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
| | - A G Rossi
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
| | - M Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, 67-75 New Road, London E1 1HH, UK.
| |
Collapse
|
9
|
Cheng P, He S, Zhang C, Liu J, Pu K. A Tandem-Locked Fluorescent NETosis Reporter for the Prognosis Assessment of Cancer Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202301625. [PMID: 37099322 DOI: 10.1002/anie.202301625] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 04/27/2023]
Abstract
NETosis, the peculiar type of neutrophil death, plays important roles in pro-tumorigenic functions and inhibits cancer immunotherapy. Non-invasive real-time imaging is thus imperative for prognosis of cancer immunotherapy yet remains challenging. Herein, we report a Tandem-locked NETosis Reporter 1 (TNR1 ) that activates fluorescence signals only in the presence of both neutrophil elastase (NE) and cathepsin G (CTSG) for the specific imaging of NETosis. In the aspect of molecular design, the sequence of biomarker-specific tandem peptide blocks can largely affect the detection specificity towards NETosis. In live cell imaging, the tandem-locked design allows TNR1 to differentiate NETosis from neutrophil activation, while single-locked reporters fail to do so. The near-infrared signals from activated TNR1 in tumor from living mice were consistent with the intratumoral NETosis levels from histological results. Moreover, the near-infrared signals from activated TNR1 negatively correlated with tumor inhibition effect after immunotherapy, thereby providing prognosis for cancer immunotherapy. Thus, our study not only demonstrates the first sensitive optical reporter for noninvasive monitoring of NETosis levels and evaluation of cancer immunotherapeutic efficacy in tumor-bearing living mice, but also proposes a generic approach for tandem-locked probe design.
Collapse
Affiliation(s)
- Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
| | - Shasha He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore, Singapore
| |
Collapse
|
10
|
Singh J, Boettcher M, Dölling M, Heuer A, Hohberger B, Leppkes M, Naschberger E, Schapher M, Schauer C, Schoen J, Stürzl M, Vitkov L, Wang H, Zlatar L, Schett GA, Pisetsky DS, Liu ML, Herrmann M, Knopf J. Moonlighting chromatin: when DNA escapes nuclear control. Cell Death Differ 2023; 30:861-875. [PMID: 36755071 PMCID: PMC9907214 DOI: 10.1038/s41418-023-01124-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 02/10/2023] Open
Abstract
Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders. Here, we discuss (I) the cellular events involved in the extracellular release of chromatin and NET formation, (II) the devastating consequence of a dysregulated NET formation, and (III) the imbalance between NET formation and clearance. We include the role of NET formation in the occlusion of vessels and ducts, in lung disease, in autoimmune diseases, in chronic oral disorders, in cancer, in the formation of adhesions, and in traumatic spinal cord injury. To develop effective therapies, it is of utmost importance to target pathways that cause decondensation of chromatin during exaggerated NET formation and aggregation. Alternatively, therapies that support the clearance of extracellular chromatin are conceivable.
Collapse
Affiliation(s)
- Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Dölling
- Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Annika Heuer
- Division of Spine Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Mildred-Scheel Cancer Career Center Hamburg HaTriCS4, University Cancer Center Hamburg, Hamburg, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Gastroenterology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mirco Schapher
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus University, Nürnberg, Germany
| | - Christine Schauer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, 5020, Austria
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg A Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David S Pisetsky
- Department of Medicine and Immunology and Medical Research Service, Duke University Medical Center and Veterans Administration Medical Center, Durham, NC, USA
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
11
|
Cheng Z, Thompson EJ, Mendive‐Tapia L, Scott JI, Benson S, Kitamura T, Senan‐Salinas A, Samarakoon Y, Roberts EW, Arias MA, Pardo J, Galvez EM, Vendrell M. Fluorogenic Granzyme A Substrates Enable Real-Time Imaging of Adaptive Immune Cell Activity. Angew Chem Int Ed Engl 2023; 62:e202216142. [PMID: 36562327 PMCID: PMC10108010 DOI: 10.1002/anie.202216142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Cytotoxic immune cells, including T lymphocytes (CTLs) and natural killer (NK) cells, are essential components of the host response against tumors. CTLs and NK cells secrete granzyme A (GzmA) upon recognition of cancer cells; however, there are very few tools that can detect physiological levels of active GzmA with high spatiotemporal resolution. Herein, we report the rational design of the near-infrared fluorogenic substrates for human GzmA and mouse GzmA. These activity-based probes display very high catalytic efficiency and selectivity over other granzymes, as shown in tissue lysates from wild-type and GzmA knock-out mice. Furthermore, we demonstrate that the probes can image how adaptive immune cells respond to antigen-driven recognition of cancer cells in real time.
Collapse
Affiliation(s)
- Zhiming Cheng
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Emily J Thompson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | | | - Jamie I Scott
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Takanori Kitamura
- MRC Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | | | | | | | - Maykel A Arias
- CIBERINFECInstituto de Salud Carlos IIIZaragozaSpain
- Aragón Health Research InstituteBiomedical Research Centre of Aragón and Dpt of MicrobiologyPreventive Medicine and Public HealthZaragozaSpain
| | - Julian Pardo
- CIBERINFECInstituto de Salud Carlos IIIZaragozaSpain
- Aragón Health Research InstituteBiomedical Research Centre of Aragón and Dpt of MicrobiologyPreventive Medicine and Public HealthZaragozaSpain
| | - Eva M Galvez
- Instituto de CarboquimicaCSICZaragozaSpain
- CIBERINFECInstituto de Salud Carlos IIIZaragozaSpain
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| |
Collapse
|
12
|
Cheng Z, Thompson EJ, Mendive-Tapia L, Scott JI, Benson S, Kitamura T, Senan-Salinas A, Samarakoon Y, Roberts EW, Arias MA, Pardo J, Galvez EM, Vendrell M. Fluorogenic Granzyme A Substrates Enable Real-Time Imaging of Adaptive Immune Cell Activity. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202216142. [PMID: 38515764 PMCID: PMC10953043 DOI: 10.1002/ange.202216142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 12/24/2022]
Abstract
Cytotoxic immune cells, including T lymphocytes (CTLs) and natural killer (NK) cells, are essential components of the host response against tumors. CTLs and NK cells secrete granzyme A (GzmA) upon recognition of cancer cells; however, there are very few tools that can detect physiological levels of active GzmA with high spatiotemporal resolution. Herein, we report the rational design of the near-infrared fluorogenic substrates for human GzmA and mouse GzmA. These activity-based probes display very high catalytic efficiency and selectivity over other granzymes, as shown in tissue lysates from wild-type and GzmA knock-out mice. Furthermore, we demonstrate that the probes can image how adaptive immune cells respond to antigen-driven recognition of cancer cells in real time.
Collapse
Affiliation(s)
- Zhiming Cheng
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Emily J Thompson
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | | | - Jamie I Scott
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Sam Benson
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Takanori Kitamura
- MRC Centre for Reproductive Health The University of Edinburgh Edinburgh UK
| | | | | | | | - Maykel A Arias
- CIBERINFEC Instituto de Salud Carlos III Zaragoza Spain
- Aragón Health Research Institute Biomedical Research Centre of Aragón and Dpt of Microbiology Preventive Medicine and Public Health Zaragoza Spain
| | - Julian Pardo
- CIBERINFEC Instituto de Salud Carlos III Zaragoza Spain
- Aragón Health Research Institute Biomedical Research Centre of Aragón and Dpt of Microbiology Preventive Medicine and Public Health Zaragoza Spain
| | - Eva M Galvez
- Instituto de Carboquimica CSIC Zaragoza Spain
- CIBERINFEC Instituto de Salud Carlos III Zaragoza Spain
| | - Marc Vendrell
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| |
Collapse
|
13
|
Sun Q, Li X, Guo Y, Qiu Y, Luo X, Liu G, Han Y. Coumarin-based turn-on fluorescence probe with a large Stokes shift for detection of endogenous neutrophil elastase in live cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121563. [PMID: 35810672 DOI: 10.1016/j.saa.2022.121563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Neutrophil elastase (NE), a serine proteinase, is a significant biomarker which is closely related to the progress of diseases. However, only few probes have been reported for detection of NE activity and cell imaging. And these probes have exhibited small Stokes shift, which leads to high fluorescence interferences. Furthermore, only one probe among them is able to image NE in vivo successfully. To overcome the above problems, we designed a novel coumarin-based fluorescent probe HNCOU-NE with large Stokes shift to visualize NE activity in living cells and zebrafish. The new probe HNCOU-NE for NE contains fluorophore HNCOU as the reporter and pentafluoroethyl as the enzyme-active trigger moiety. As expected, HNCOU-NE displays perfect detecting performance for sensing of NE, including good water solubility, large Stokes shift, high affinity and wide linear response concentration. In addition, HNCOU-NE has been successfully utilized for NE real-time detection and imaging in different living cells, exhibiting low cytotoxicity and excellent biocompatibility. Most importantly, endogenous NE fluorescence imaging experiments reveals that HNCOU-NE can distinguish liver cancer cells (HepG2) and other cells (293T, HeLa and SKOV3), illustrating its specific ability to diagnose liver cancer cells. Besides, probe HNCOU-NE also has the ability to specifically detect endogenous NE activity in living zebrafish. All the results indicate that HNCOU-NE is a valuable probe for qualitative and quantitative sensing of NE activity in vitro and in vivo.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xiang Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yun Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yuan Qiu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China.
| | - Yunfeng Han
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Li X, Guo Y, Qiu Y, Luo X, Liu G, Han Y, Sun Q, Dong Q. A novel strategy of designing neutrophil elastase fluorescent probe based on self-immolative group and its application in bioimaging. Anal Chim Acta 2022; 1237:340617. [DOI: 10.1016/j.aca.2022.340617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
|
15
|
Sotiropoulou G, Zingkou E, Bisyris E, Pampalakis G. Activity-Based Probes for Proteases Pave the Way to Theranostic Applications. Pharmaceutics 2022; 14:pharmaceutics14050977. [PMID: 35631563 PMCID: PMC9145445 DOI: 10.3390/pharmaceutics14050977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Proteases are important enzymes in health and disease. Their activities are regulated at multiple levels. In fact, proteases are synthesized as inactive proenzymes (zymogens) that are activated by proteolytic removal of their pro-peptide sequence and can remain active or their activity can be attenuated by complex formation with specific endogenous inhibitors or by limited proteolysis or degradation. Consequently, quite often, only a fraction of the protease molecules is in the active/functional form, thus, the abundance of a protease is not always linearly proportional to the (patho)physiological function(s). Therefore, assays to determine the active forms of proteases are needed, not only in research but also in molecular diagnosis and therapy. Activity-based probes (ABPs) are chemical entities that bind covalently to the active enzyme/protease. ABPs carry a detection tag to enable localization and quantification of specific enzymatic/proteolytic activities with applications in molecular imaging and diagnosis. Moreover, ABPs act as suicide inhibitors of proteases, which can be exploited for delineation of the functional role(s) of a given protease in (patho) biological context and as potential therapeutics. In this sense, ABPs represent new theranostic agents. We outline recent developments pertaining to ABPs for proteases with potential therapeutic applications, with the aim to highlight their importance in theranostics.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
- Correspondence: (G.S.); (G.P.)
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
| | - Evangelos Bisyris
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
| | - Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.S.); (G.P.)
| |
Collapse
|
16
|
Abstract
![]()
Optical
imaging has become an essential tool to study biomolecular
processes in live systems with unprecedented spatial resolution. New
fluorescent technologies and advances in optical microscopy have revolutionized
the ways in which we can study immune cells in real time. For example,
activatable fluorophores that emit signals after target recognition
have enabled direct imaging of immune cell function with enhanced
readouts and minimal background. In this Account, we summarize recent
advances in the chemical synthesis and implementation of activatable
fluorescent probes to monitor the activity and the role of immune
cells in different pathological processes, from infection to inflammatory
diseases or cancer. In addition to the contributions that our group
has made to this field, we review the most relevant literature disclosed
over the past decade, providing examples of different activatable
architectures and their application in diagnostics and drug discovery.
This Account covers the imaging of the three major cell types in the
immune system, that is, neutrophils, macrophages, and lymphocytes.
Attracted by the tunability and target specificity of peptides, many
groups have designed strategies based on fluorogenic peptides whose
fluorescence emission is regulated by the reaction with enzymes (e.g.,
MMPs, cathepsins, granzymes), or through Förster resonance
energy transfer (FRET) mechanisms. Selective imaging of immune cells
has been also achieved by targeting different intracellular metabolic
routes, such as lipid biogenesis. Other approaches involve the implementation
of diversity-oriented fluorescence libraries or the use of environmentally
sensitive fluorescent scaffolds (e.g., molecular rotors). Our group
has made important progress by constructing probes to image metastasis-associated
macrophages in tumors, apoptotic neutrophils, or cytotoxic natural
killer (NK) cells against cancer cells, among other examples. The
chemical probes covered in this Account have been successfully validated
in vitro in cell culture systems, and in vivo in relevant models of
inflammation and cancer. Overall, the range of chemical structures
and activation mechanisms reported to sense immune cell function is
remarkable. However, the emergence of new strategies based on new
molecular targets or activatable mechanisms that are yet to be discovered
will open the door to track unexplored roles of immune cells in different
biological systems. We anticipate that upcoming generations of activatable
probes will find applications in the clinic to help assessing immunotherapies
and advance precision medicine. We hope that this Account will evoke
new ideas and innovative work in the design of fluorescent probes
for imaging cell function.
Collapse
Affiliation(s)
- Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4TJ Edinburgh, U.K
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4TJ Edinburgh, U.K
| |
Collapse
|
17
|
Rodriguez-Rios M, Megia-Fernandez A, Norman DJ, Bradley M. Peptide probes for proteases - innovations and applications for monitoring proteolytic activity. Chem Soc Rev 2022; 51:2081-2120. [PMID: 35188510 DOI: 10.1039/d1cs00798j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteases are excellent biomarkers for a variety of diseases, offer multiple opportunities for diagnostic applications and are valuable targets for therapy. From a chemistry-based perspective this review discusses and critiques the most recent advances in the field of substrate-based probes for the detection and analysis of proteolytic activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Maria Rodriguez-Rios
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Alicia Megia-Fernandez
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Daniel J Norman
- Technical University of Munich, Trogerstrasse, 30, 81675, Munich, Germany
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| |
Collapse
|
18
|
Wang M, Li L, Zhang L, Zhao J, Jiang Z, Wang W. Peptide-Derived Biosensors and Their Applications in Tumor Immunology-Related Detection. Anal Chem 2021; 94:431-441. [PMID: 34846861 DOI: 10.1021/acs.analchem.1c04461] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small-molecular targeting peptides possess features of biocompatibility, affinity, and specificity, which is widely applied in molecular recognition and detection. Moreover, peptides can be developed into highly ordered supramolecular assemblies with boosting binding affinities, diverse functions, and enhanced stabilities suitable for biosensors construction. In this Review, we summarize recent progress of peptide-based biosensors for precise detection, especially on tumor-related analysis, as well as further provide a brief overview of the progress in tumor immune-related detection. Also, we are looking forward to the prospective future of peptide-based biosensors.
Collapse
Affiliation(s)
- Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhenqi Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
19
|
Pesce M, Agostoni P, Bøtker HE, Brundel B, Davidson SM, Caterina RD, Ferdinandy P, Girao H, Gyöngyösi M, Hulot JS, Lecour S, Perrino C, Schulz R, Sluijter JP, Steffens S, Tancevski I, Gollmann-Tepeköylü C, Tschöpe C, Linthout SV, Madonna R. COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2021; 117:2148-2160. [PMID: 34117887 DOI: 10.1093/cvr/cvab201] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The pandemic of coronavirus disease (COVID)-19 is a global threat, causing high mortality, especially in the elderly. The main symptoms and the primary cause of death are related to interstitial pneumonia. Viral entry also into myocardial cells mainly via the angiotensin converting enzyme type 2 (ACE2) receptor and excessive production of pro-inflammatory cytokines, however, also make the heart susceptible to injury. In addition to the immediate damage caused by the acute inflammatory response, the heart may also suffer from long-term consequences of COVID-19, potentially causing a post-pandemic increase in cardiac complications. Although the main cause of cardiac damage in COVID-19 remains coagulopathy with micro- (and to a lesser extent macro-) vascular occlusion, open questions remain about other possible modalities of cardiac dysfunction, such as direct infection of myocardial cells, effects of cytokines storm, and mechanisms related to enhanced coagulopathy. In this opinion paper, we focus on these lesser appreciated possibilities and propose experimental approaches that could provide a more comprehensive understanding of the cellular and molecular bases of cardiac injury in COVID-19 patients. We first discuss approaches to characterize cardiac damage caused by possible direct viral infection of cardiac cells, followed by formulating hypotheses on how to reproduce and investigate the hyperinflammatory and pro-thrombotic conditions observed in the heart of COVID-19 patients using experimental in vitro systems. Finally, we elaborate on strategies to discover novel pathology biomarkers using omics platforms.
Collapse
Affiliation(s)
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Dipartimento di Scienze Cliniche e di Comunità, University of Milan, Milan, Italy
| | - Hans-Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Bianca Brundel
- Department of Physiology, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | | | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Henrique Girao
- Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Faculty of Medicine, Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Jean-Sebastien Hulot
- Université de Paris, PARCC, INSERM, Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Sandrine Lecour
- Faculty of Health Sciences, Hatter Institute for Cardiovascular Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Joost Pg Sluijter
- Laboratory for Experimental Cardiology, Department of Cardiology, Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, German Centre for Cardiovascular Research (DZHK), Ludwig-Maximilians-University (LMU) Munich, Partner Site Munich Heart Alliance, Munich, Germany
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Carsten Tschöpe
- Department of Cardiology, Charité, Campus Virchow Klinikum, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sophie van Linthout
- Department of Cardiology, Charité, Campus Virchow Klinikum, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätmedizin Berlin, Berlin, Germany
| | - Rosalinda Madonna
- Cardiology Chair, University of Pisa, Pisa University Hospital, Pisa, Italy
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| |
Collapse
|