1
|
Zhou B, Cai L, Jin Z, Hu Y. Formal Transesterification Reaction of But-3-enyl Esters Enabled by a Synergistic Nickel/Zinc Relay. Org Lett 2025; 27:1118-1123. [PMID: 39868494 DOI: 10.1021/acs.orglett.4c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The transition metal-catalyzed coupling reaction has renewed the role of ester as an electrophilic partner. In this context, we describe a synergistic Ni/Zn-catalyzed formal transesterification reaction of but-3-enyl esters with tetrahydrofuran and alkyl iodides to give 4-alkoxylbutyl esters. The aromatic and aliphatic esters are both competent electrophiles and thus broaden the substrate scope of esters in coupling reactions, because the electrophiles in previously reported work were strictly limited to aromatic ones. Mechanistic studies reveal that the C(acyl)-O bond or even more inert C(alkyl)-O bond of esters could be cleaved under nickel catalysis. Two catalytic cycles are proposed, which represent a new reaction pathway versus the traditional transesterification.
Collapse
Affiliation(s)
- Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Long Cai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhou Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Xu H, Jing JW, Chen YB, Xu YQ, Chu XQ, Zhou X, Rao W, Shen ZL. Direct Cross-Couplings of Aryl Nonaflates with Aryl Bromides under Nickel Catalysis. J Org Chem 2025. [PMID: 39883119 DOI: 10.1021/acs.joc.4c02777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The direct cross-couplings of aryl nonaflates with aryl bromides could be successfully accomplished by utilizing nickel as the catalyst, magnesium as the metal mediator, and lithium chloride as the additive. The reactions proceeded efficiently in THF at room temperature to produce the desired biaryls in moderate to good yields, showing both a reasonable substrate scope and functional group tolerance. Additionally, an equally good performance could be realized when the reaction was subjected to scale-up synthesis. Preliminary study suggested that the reaction presumably proceeds through the in situ formation of an arylmagnesium reagent as the key reaction intermediate.
Collapse
Affiliation(s)
- Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jia-Wen Jing
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu-Bing Chen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yong-Qing Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Perney J, Humblot-Negri A, Vaca-Garcia C, Lemouzy S, Urrutigoïty M. Weakly-Activated Phenol Derivatives as New Green Electrophilic Partners in Suzuki-Miyaura and Related C-C Couplings. Molecules 2024; 30:51. [PMID: 39795108 PMCID: PMC11721199 DOI: 10.3390/molecules30010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
In recent years, there has been growing interest in the development of greener alternatives to traditional reagents used in carbon-carbon coupling reactions, particularly in response to environmental concerns. The commonly used aryl halides, despite being highly reactive in the Suzuki-Miyaura coupling (SMC), pose significant environmental risks. As a result, research has shifted towards exploring the use of phenols, which are widely accessible and environmentally benign. However, phenols are considerably less reactive due to the poor leaving group properties of the hydroxyl group, necessitating prior activation to facilitate their use in coupling reactions. This work aims to review the recent investigations on the activation strategies for phenols, focusing on their application in the Suzuki-Miyaura and related C-C couplings. In addition, the exploration of the potential of conducting the activation step "in situ" will also be discussed. We hope that this article will pave the way for the development of more sustainable and efficient coupling methodologies, addressing both ecological and practical challenges in organic synthesis.
Collapse
Affiliation(s)
- Jules Perney
- Laboratoire de Chimie Agro-Industrielle, INRAE, Toulouse-INP, Université de Toulouse, 31030 Toulouse, France; (J.P.); (A.H.-N.); (C.V.-G.)
| | - Alexandre Humblot-Negri
- Laboratoire de Chimie Agro-Industrielle, INRAE, Toulouse-INP, Université de Toulouse, 31030 Toulouse, France; (J.P.); (A.H.-N.); (C.V.-G.)
- Laboratoire de Chimie de Coordination, CNRS, Toulouse-INP, Université de Toulouse, 31000 Toulouse, France
| | - Carlos Vaca-Garcia
- Laboratoire de Chimie Agro-Industrielle, INRAE, Toulouse-INP, Université de Toulouse, 31030 Toulouse, France; (J.P.); (A.H.-N.); (C.V.-G.)
| | - Sébastien Lemouzy
- Laboratoire de Chimie Agro-Industrielle, INRAE, Toulouse-INP, Université de Toulouse, 31030 Toulouse, France; (J.P.); (A.H.-N.); (C.V.-G.)
| | - Martine Urrutigoïty
- Laboratoire de Chimie de Coordination, CNRS, Toulouse-INP, Université de Toulouse, 31000 Toulouse, France
| |
Collapse
|
4
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
5
|
Yang S, Zhou T, Yu X, Nolan SP, Szostak M. [Pd(NHC)(μ-Cl)Cl] 2: The Highly Reactive Air- and Moisture-Stable, Well-Defined Pd(II)-N-Heterocyclic Carbene (NHC) Complexes for Cross-Coupling Reactions. Acc Chem Res 2024; 57:3343-3355. [PMID: 39504265 PMCID: PMC12005053 DOI: 10.1021/acs.accounts.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
ConspectusPalladium-catalyzed cross-coupling reactions owing to their high specificity and superb chemoselectivity represent a powerful tool for the rapid construction of C-C and C-X bonds across various areas of chemical research, including pharmaceutical development, polymer and agrochemical industries, bioactive natural products, and advanced functional materials, rendering them indispensable for modern synthetic chemists. The major driving force for the advances in this critical field is the design of increasingly more reactive and more selective ligands and precatalysts that aim not only to address challenging cross-coupling processes but also to achieve optimal reactivity, selectivity, and functional group compatibility under mild, user-friendly, operationally simple, and broadly applicable conditions. In this context, Pd(II)-N-heterocyclic carbene complexes (NHC = N-heterocyclic carbene) have garnered prevalent attention among practitioners of organic synthesis due to their unique electronic and steric characteristics that are unmatched among other ligands. In particular, the superior σ-donating ability of NHC ligands in conjunction with conformational flexibility as well as the ease of steric and electronic modification and high stability to air and moisture enable highly effective fundamental elementary steps in catalytic cycles and facile formation of well-defined complexes.The key factor in the design of well-defined, air- and moisture-stable Pd(II) precatalysts involves the incorporation of supporting ligands, which are essential for ensuring the stability of Pd(II)-NHC complexes and facile activation of Pd(II)-NHC precatalysts to catalytically active monoligated Pd(0)-NHC species under the reaction conditions. Notably, [Pd(NHC)(μ-Cl)Cl]2 chloro dimers, which can be readily synthesized via a one-pot, atom-economic process, are the most reactive Pd(II)-NHC complexes synthesized to date. These well-defined, air- and moisture-stable dimers readily dissociate to monomers and are activated to Pd(0)-NHC catalysts under both mild and strong base conditions, showcasing enhanced reactivity and selectivity among their Pd(II)-NHC counterparts. This balance between high, operationally simple stability, which is characteristic of Pd(II) complexes together with the ease of activation to the strongly nucleophilic Pd(0)-NHC catalysts, renders [Pd(NHC)(μ-Cl)Cl]2 the most reactive Pd(II)-NHC precatalysts developed to date for a broad range of general cross-coupling processes, including C-X, C-O, C-N, and C-S activation and enabling the direct late-stage functionalization of complex compounds decorated with a wide range of sensitive functional groups.In this Account, we outline [Pd(NHC)(μ-Cl)Cl]2 as a highly reactive Pd(II)-NHC precatalyst that should be routinely used as the first choice Pd complexes for a wide range of challenging cross-coupling reactions. The advancements in this field over the past 20 years emphasize the critical role of catalyst design to achieve optimal reactivity. Consequently, [Pd(NHC)(μ-Cl)Cl]2 chloro dimers should be recommended as the go-to complexes in the powerful toolbox of Pd-catalyzed cross-coupling reactions. These now commercially available Pd(II)-NHC complexes see widespread use across the synthetic chemistry community and enable the accelerated application of challenging cross-couplings in the synthesis of new molecules.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Yu H, Nie JJ, Wang ZX. Palladium-catalyzed cross-coupling of arylcarboxylic acid 2-pyridyl esters with terminal alkynes. Org Biomol Chem 2024; 22:8764-8772. [PMID: 39387614 DOI: 10.1039/d4ob01398k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In the presence of Na2CO3, the combination of PdCl2(dppf), dppp and CuI catalyzes the decarbonylative coupling of arylcarboxylic acid 2-pyridyl esters with terminal alkynes to afford 1,2-disubstituted acetylenes. (Hetero)aryl, alkyl, and silylacetylenes and various electron-donating and -withdrawing group-substituted arylcarboxylic acid 2-pyridyl esters can be used in this transformation, with a range of functional groups showing compatibility.
Collapse
Affiliation(s)
- Hang Yu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jing-Jing Nie
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
7
|
Iyer KS, Dismuke Rodriguez KB, Lammert RM, Yirak JR, Saunders JM, Kavthe RD, Aue DH, Lipshutz BH. Rapid Aminations of Functionalized Aryl Fluorosulfates in Water. Angew Chem Int Ed Engl 2024; 63:e202411295. [PMID: 39034288 DOI: 10.1002/anie.202411295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Aryl fluorosulfates of varying complexities have been used in amination reactions in water using a new Pd oxidative addition complex (OAC-1) developed specifically to match the needs of the fine chemicals industry, not only in terms of functional group tolerance, but also reflecting time considerations associated with these important C-N couplings. Also especially noteworthy is that they replace both PFAS-related triflates and nonaflates, which are today out of favor due to recent government regulations. The new complex based on the BippyPhos ligand is used at low loadings and under aqueous micellar conditions. Moreover, it is easily prepared and stable to long term storage. DFT calculations on the OAC precatalyst compare well with the X-ray structure of the crystals with π-complexation to the aromatic system of the ligand and also confirm the NMR data showing a mixture of conformers in solution that differ from the X-ray structure in rotation of the phenyl and t-butyl ligand substituents. An extensive variety of coupling partners, including pharmaceutically relevant APIs, readily participate under mild and environmentally responsible reaction conditions.
Collapse
Affiliation(s)
- Karthik S Iyer
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | - Robert M Lammert
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Jordan R Yirak
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - John M Saunders
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Rahul D Kavthe
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Donald H Aue
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
8
|
Cook A, Kassymbek A, Vaezghaemi A, Barbery C, Newman SG. An S N1-Approach to Cross-Coupling: Deoxygenative Arylation Facilitated by the β-Silicon Effect. J Am Chem Soc 2024; 146:19929-19938. [PMID: 39002160 DOI: 10.1021/jacs.4c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
We report a dual metal-catalyzed method for the cross-coupling of unprotected alcohols by exploiting the β-Si effect. This deoxygenative Suzuki-Miyaura reaction tolerates a range of primary, secondary, and tertiary alcohol substrates along with diverse functional groups and heterocycles. Mechanistic experiments including KIE, VTNA, and Eyring analyses suggest the existence of a carbocation intermediate on the reaction pathway, consistent with a rare SN1 pathway for the activation of an electrophile in cross-coupling reactions. A novel bis-imidazolium N-heterocyclic carbene (NHC) ligand was found to be optimal for reactivity, and nickel(0)-, nickel(I)- and nickel(II)- complexes of this ligand were isolated and characterized. In contrast to more well-established shorter chain ligands, these long-chain NHCs are found to have characteristically large bite angles, which may be critical for enabling the deoxygenative arylation of aliphatic alcohols.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Aishabibi Kassymbek
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Aref Vaezghaemi
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Carlos Barbery
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
9
|
De Smet G, Bai X, Maes BUW. Selective C(aryl)-O bond cleavage in biorenewable phenolics. Chem Soc Rev 2024; 53:5489-5551. [PMID: 38634517 DOI: 10.1039/d3cs00570d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Biorefining of lignocellulosic biomass via a lignin first approach delivers a range of products with high oxygen content. Besides pulp, a lignin oil rich in guaiacols and syringols is obtained bearing multiple C(aryl)-OH and C(aryl)-OMe groups, typically named phenolics. Similarly, technical lignin can be used but is generally more difficult to process providing lower yields of monomers. Removal of the hydroxy and methoxy groups in these oxygenated arenes is challenging due to the inherently strong C-O bonds, in addition to the steric and electronic deactivation by adjacent -OH or -OMe groups. Moreover, chemoselective removal of a specific group in the presence of other similar functionalities is non-trivial. Other side-reactions such as ring saturation and transalkylation further complicate the desired reduction process. In this overview, three different selective reduction reactions are considered. Complete hydrodeoxygenation removes both hydroxy and methoxy groups resulting in benzene and alkylated derivatives (BTX type products) which is often complicated by overreduction of the arene ring. Hydrodemethoxylation selectively removes methoxy groups in the presence of hydroxy groups leading to phenol products, while hydrodehydroxylation only removes hydroxy groups without cleavage of methoxy groups giving anisole products. Instead of defunctionalization via reduction transformation of C(aryl)-OH, albeit via an initial derivatization into C(aryl)-OX, into other functionalities is possible and also discussed. In addition to methods applying guaiacols and syringols present in lignin oil as model substrates, special attention is given to methods using mixtures of these compounds obtained from wood/technical lignin. Finally, other important aspects of C-O bond activation with respect to green chemistry are discussed.
Collapse
Affiliation(s)
- Gilles De Smet
- Organic Synthesis Division (ORSY), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Xingfeng Bai
- Organic Synthesis Division (ORSY), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division (ORSY), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
10
|
Bulger AS, Nasrallah DJ, Tena Meza A, Garg NK. Enantioselective nickel-catalyzed Mizoroki-Heck cyclizations of amide electrophiles. Chem Sci 2024; 15:2593-2600. [PMID: 38362425 PMCID: PMC10866352 DOI: 10.1039/d3sc05797f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Amide cross-couplings that rely on C-N bond activation by transition metal catalysts have emerged as valuable synthetic tools. Despite numerous discoveries in this field, no catalytic asymmetric variants have been disclosed to date. Herein, we demonstrate the first such transformation, which is the Mizoroki-Heck cyclization of amide substrates using asymmetric nickel catalysis. This proof-of-concept study provides an entryway to complex enantioenriched polycyclic scaffolds and advances the field of amide C-N bond activation chemistry.
Collapse
Affiliation(s)
- Ana S Bulger
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Daniel J Nasrallah
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Arismel Tena Meza
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| |
Collapse
|
11
|
Monti A, López-Serrano J, Prieto A, Nicasio MC. Broad-Scope Amination of Aryl Sulfamates Catalyzed by a Palladium Phosphine Complex. ACS Catal 2023; 13:10945-10952. [PMID: 37614522 PMCID: PMC10443792 DOI: 10.1021/acscatal.3c03166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Among phenol-derived electrophiles, aryl sulfamates are attractive substrates since they can be employed as directing groups for C-H functionalization prior to catalysis. However, their use in C-N coupling is limited only to Ni catalysis. Here, we describe a Pd-based catalyst with a broad scope for the amination of aryl sulfamates. We show that the N-methyl-2-aminobiphenyl palladacycle supported by the PCyp2ArXyl2 ligand (Cyp = cyclopentyl; ArXyl2 = 2,6-bis(2,6-dimethylphenyl)phenyl) efficiently catalyzes the C-N coupling of aryl sulfamates with a variety of nitrogen nucleophiles, including anilines, primary and secondary alkyl amines, heteroaryl amines, N-heterocycles, and primary amides. DFT calculations support that the oxidative addition of the aryl sulfamate is the rate-determining step. The C-N coupling takes place through a cationic pathway in the polar protic medium.
Collapse
Affiliation(s)
- Andrea Monti
- Departamento
de Química Inorgánica, Universidad
de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
| | - Joaquín López-Serrano
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación Química Avanzada
(ORFEO-CINQA), Universidad de Sevilla and
CSIC, 41092 Sevilla, Spain
| | - Auxiliadora Prieto
- Laboratorio
de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro
de Investigación en Química Sostenible and Departamento
de Química, Universidad de Huelva, Campus de El Carmen s/n, 21007 Huelva, Spain
| | - M. Carmen Nicasio
- Departamento
de Química Inorgánica, Universidad
de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
| |
Collapse
|
12
|
Rahman MM, Zhao Q, Meng G, Lalancette R, Szostak R, Szostak M. [IPr #-PEPPSI]: A Well-Defined, Highly Hindered and Broadly Applicable Pd(II)-NHC (NHC = N-Heterocyclic Carbene) Precatalyst for Cross-Coupling Reactions. Molecules 2023; 28:5833. [PMID: 37570803 PMCID: PMC10421006 DOI: 10.3390/molecules28155833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
In this Special Issue, "Featured Papers in Organometallic Chemistry", we report on the synthesis and characterization of [IPr#-PEPPSI], a new, well-defined, highly hindered Pd(II)-NHC precatalyst for cross-coupling reactions. This catalyst was commercialized in collaboration with MilliporeSigma, Burlington, ON, Canada (no. 925489) to provide academic and industrial researchers with broad access to reaction screening and optimization. The broad activity of [IPr#-PEPPSI] in cross-coupling reactions in a range of bond activations with C-N, C-O, C-Cl, C-Br, C-S and C-H cleavage is presented. A comprehensive evaluation of the steric and electronic properties is provided. Easy access to the [IPr#-PEPPSI] class of precatalysts based on modular pyridine ligands, together with the steric impact of the IPr# peralkylation framework, will facilitate the implementation of well-defined, air- and moisture-stable Pd(II)-NHC precatalysts in chemistry research.
Collapse
Affiliation(s)
- Md. Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| | - Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430000, China
| | - Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-383 Wroclaw, Poland;
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| |
Collapse
|
13
|
Sihag P, Chakraborty T, Jeganmohan M. Rhodium-Catalyzed Allylic C-H Functionalization of Unactivated Alkenes with α-Diazocarbonyl Compounds. Org Lett 2023. [PMID: 36795960 DOI: 10.1021/acs.orglett.2c04356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A redox-neutral mild methodology for the allylic C-H alkylation of unactivated alkenes with diazo compounds is demonstrated. The developed protocol is able to bypass the possibility of the cyclopropanation of an alkene upon its reaction with the acceptor-acceptor diazo compounds. The protocol is highly accomplished due to its compatibility with various unactivated alkenes functionalized with different sensitive functional groups. A rhodacycle π-allyl intermediate has been synthesized and proved to be the active intermediate. Additional mechanistic investigations aided the elucidation of the plausible reaction mechanism.
Collapse
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Trisha Chakraborty
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
14
|
Yang S, Yu X, Poater A, Cavallo L, Cazin CSJ, Nolan SP, Szostak M. Buchwald-Hartwig Amination and C-S/S-H Metathesis of Aryl Sulfides by Selective C-S Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(μ-Cl)Cl] 2 Precatalysts: Unified Mechanism for Activation of Inert C-S Bonds. Org Lett 2022; 24:9210-9215. [PMID: 36480689 DOI: 10.1021/acs.orglett.2c03717] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a combined experimental and mechanistic study on the Buchwald-Hartwig amination and C-S/S-H metathesis of aryl sulfides by selective activation of C-S bonds mediated by well-defined, air- and moisture-stable Pd(II)-NHC precatalysts, [Pd(NHC)(μ-Cl)Cl]2. This class of Pd(II)-NHC precatalysts displays excellent activity in the cross coupling of aryl sulfides. Most crucially, we unravel the unified mechanism for activation of C-S bonds in the C-N cross-coupling and C-S metathesis manifolds, where the inert C-S bond serves as a precursor to valuable amine or thioether products.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Catherine S J Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, B-9000 Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, B-9000 Ghent, Belgium
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
15
|
Xu X, Lin Z. Understanding the Reaction Mechanism of Nickel-Catalyzed Enantioselective Arylative Activation of the Aromatic C–O Bond. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
16
|
Polydentate P, N-based ligands for palladium-catalyzed cross-coupling reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Mazars F, Zaragoza G, Delaude L. Caffeine and theophylline as sustainable, biosourced NHC ligand precursors for efficient palladium-catalyzed Suzuki–Miyaura cross-coupling reactions. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Yang S, Li H, Yu X, An J, Szostak M. Suzuki–Miyaura Cross-Coupling of Aryl Fluorosulfonates Mediated by Air- and Moisture-stable [Pd(NHC)(μ-Cl)Cl] 2 Precatalysts: Broad Platform for C–O Cross-Coupling of Stable Phenolic Electrophiles. J Org Chem 2022; 87:15250-15260. [DOI: 10.1021/acs.joc.2c01778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Hengzhao Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
19
|
De Smet G, Bai X, Mensch C, Sergeyev S, Evano G, Maes BUW. Selective Nickel‐Catalyzed Hydrodeacetoxylation of Aryl Acetates. Angew Chem Int Ed Engl 2022; 61:e202201751. [DOI: 10.1002/anie.202201751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Gilles De Smet
- Organic Synthesis Division Department of Chemistry University of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Xingfeng Bai
- Organic Synthesis Division Department of Chemistry University of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Carl Mensch
- Organic Synthesis Division Department of Chemistry University of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Sergey Sergeyev
- Organic Synthesis Division Department of Chemistry University of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et PhysicoChimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Bert U. W. Maes
- Organic Synthesis Division Department of Chemistry University of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| |
Collapse
|
20
|
Pietrasiak E, Ha S, Jeon S, Jeong J, Lee J, Seo J, Lee E. Cobalt-Catalyzed Formation of Grignard Reagents via C-O or C-S Bond Activation. J Org Chem 2022; 87:8380-8389. [PMID: 35731897 DOI: 10.1021/acs.joc.2c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C(aryl)-OMe bond functionalization catalyzed by cobalt(II) chloride in combination with a nacnac-type ligand and magnesium as a reductant is reported. Borylation and benzoylation of aryl methoxides are demonstrated, and C(aryl)-SMe bond borylation can be achieved under similar conditions. This is the first example of achieving these transformations using cobalt catalysis. Mechanistic studies suggest that a Grignard reagent is generated as an intermediate in a rare example of a magnesiation via a C-O bond activation reaction. Indeed, an organomagnesium species could be directly observed by electrospray ionization mass spectroscopic analysis. Kinetic experiments indicate that a heterogeneous cobalt catalyst performs the C-O bond activation.
Collapse
Affiliation(s)
- Ewa Pietrasiak
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Seongmin Ha
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Seungwon Jeon
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Jongheon Jeong
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Jiyeon Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| |
Collapse
|
21
|
Toupalas G, Thomann G, Schlemper L, Rivero-Crespo MA, Schmitt HL, Morandi B. Pd-Catalyzed Direct Deoxygenative Arylation of Non-π-Extended Benzyl Alcohols with Boronic Acids via Transient Formation of Non-Innocent Isoureas. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Georgios Toupalas
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH ZurichRINGGOLD, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Gianin Thomann
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH ZurichRINGGOLD, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Lukas Schlemper
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH ZurichRINGGOLD, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Miguel A. Rivero-Crespo
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH ZurichRINGGOLD, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Hendrik L. Schmitt
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH ZurichRINGGOLD, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Bill Morandi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH ZurichRINGGOLD, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
22
|
Liang SW, Guo Y, Lee WC, Zeng PR, Lin TH, Xie PZ, Kang HH, Lu IC, Chang YC. Reactivity‐Tunable Palladium Precatalysts with Favorable Catalytic Properties in Suzuki–Miyaura Cross‐Coupling Reactions. ChemCatChem 2022. [DOI: 10.1002/cctc.202200736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siou-Wei Liang
- Providence University Department of Applied Chemistry TAIWAN
| | - Yingjie Guo
- Providence University Department of Cosmetic Science TAIWAN
| | - Wan-Ching Lee
- National Chung Hsing University Department of Chemistry TAIWAN
| | - Pin-Rui Zeng
- National Chung Hsing University Department of Chemistry TAIWAN
| | - Tzu-Hao Lin
- Providence University Department of Applied Chemistry TAIWAN
| | - Pei-Zhen Xie
- Providence University Department of Applied Chemistry TAIWAN
| | - Hsuan-Hao Kang
- Providence University Department of Applied Chemistry TAIWAN
| | - I-Chung Lu
- National Chung Hsing University Department of Chemistry TAIWAN
| | - Yu-Chang Chang
- Providence University Department of Applied Chemistry 200, Sec. 7, Taiwan Boulevard, Shalu Dist. 43301 Taichung TAIWAN
| |
Collapse
|
23
|
Selective Nickel‐Catalyzed Hydrodeacetoxylation of Aryl Acetates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
DFT Calculations of 31P NMR Chemical Shifts in Palladium Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092668. [PMID: 35566018 PMCID: PMC9105066 DOI: 10.3390/molecules27092668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
In this study, comparative analysis of calculated (GIAO method, DFT level) and experimental 31P NMR shifts for a wide range of model palladium complexes showed that, on the whole, the theory reproduces the experimental data well. The exceptions are the complexes with the P=O phosphorus, for which there is a systematic underestimation of shielding, the value of which depends on the flexibility of the basis sets, especially at the geometry optimization stage. The use of triple-ζ quality basis sets and additional polarization functions at this stage reduces the underestimation of shielding for such phosphorus atoms. To summarize, in practice, for the rapid assessment of 31P NMR shifts, with the exception of the P=O type, a simple PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-31+G(d); Pd(SDD)} approximation is quite acceptable (RMSE = 8.9 ppm). Optimal, from the point of view of “price–quality” ratio, is the PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-311+G(2d); Pd(SDD)} (RMSE = 8.0 ppm) and the PBE0/{def2-TZVP; Pd(SDD)}//PBE0/{6-311+G(2d); Pd(SDD)} (RMSE = 6.9 ppm) approaches. In all cases, a linear scaling procedure is necessary to minimize systematic errors.
Collapse
|
25
|
Abstract
Despite providing interesting solutions to reduce the number of synthetic steps, to decrease energy consumption or to generate less waste, therefore contributing to a more sustainable way of producing important chemicals, the expansion of the use of homogeneous catalysis in industrial processes is hampered by several drawbacks. One of the most important is the difficulty to recycle the noble metals generating potential high costs and pollution of the synthesized products by metal traces detrimental to their applications. Supporting the metals on abundant and cheap biosourced polymers has recently appeared as an almost ideal solution: They are much easier to recover from the reaction medium and usually maintain high catalytic activity. The present bibliographical review focuses on the development of catalysts based on group 10 transition metals (nickel, palladium, platinum) supported on biopolymers obtained from wood, such as cellulose, hemicellulose, lignin, and their derivatives. The applications of these catalysts in organic synthesis or depollution are also addressed in this review with examples of C-C couplings, oxidation, or hydrogenation reactions.
Collapse
|
26
|
Affiliation(s)
- Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
27
|
Zhou X, Yeung C, Kwok Chan WT, Law G. Diastereoselective Bidirectional C(
sp
3
)−H Bond Functionalization of Piperazine Compounds. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao‐Le Zhou
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR People's Republic of China
- Present address: Beijing University of Chemical Technology People's Republic of China
| | - Chi‐Tung Yeung
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR People's Republic of China
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518000 People's Republic of China
| | - Wesley Ting Kwok Chan
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR People's Republic of China
| | - Ga‐Lai Law
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR People's Republic of China
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518000 People's Republic of China
| |
Collapse
|
28
|
Hosseini N, Mokhtari Aliabad J, Yavari I. DCID-Mediated Heck Cross-Coupling of Phenols via C-O Bond activation. NEW J CHEM 2022. [DOI: 10.1039/d1nj06120h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work a Palladium-catalyzed Heck cross-coupling of phenols using dichloroimidazolidinedione (DCID) as new reagent for the activation of C-O bond has been developed for the first time. Substituted phenols...
Collapse
|
29
|
Bonesi SM, Protti S, Capucciati A, Fagnoni M. Photogenerated aryl mesylate and aryl diethyl phosphate radical cations: a time-resolved spectroscopy investigation. NEW J CHEM 2022. [DOI: 10.1039/d2nj01755e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoinduced electron transfer reaction of selected aryl sulfonates and phosphates with K2S2O8 in a MeCN water (9 : 1) mixture has been investigated by LFP experiments.
Collapse
Affiliation(s)
- Sergio M. Bonesi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V.leTaramelli 12, 27100, Pavia, Italy
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- CONICET—Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V.leTaramelli 12, 27100, Pavia, Italy
| | | | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V.leTaramelli 12, 27100, Pavia, Italy
| |
Collapse
|
30
|
Wang CS, Tan PSL, Ding W, Ito S, Yoshikai N. Regio- and Stereoselective Synthesis of Enol Carboxylate, Phosphate, and Sulfonate Esters via Iodo(III)functionalization of Alkynes. Org Lett 2021; 24:430-434. [PMID: 34962817 DOI: 10.1021/acs.orglett.1c04123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
β-Iodo(III)enol carboxylates, phosphates, and tosylates can be efficiently synthesized through regio- and stereoselective iodo(III)functionalization of alkynes. The combination of chlorobenziodoxole and silver salt has proven to generate a versatile cationic iodine(III) electrophile to activate alkynes and engage various carboxylic acids, triethyl phosphate, and p-toluenesulfonic acid as nucleophiles. The β-iodo(III)enol esters serve as starting materials for the synthesis of multisubstituted alkenes through sequential cross-coupling of the C-I(III) and C-O bonds.
Collapse
Affiliation(s)
- Chang-Sheng Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Ploypailin Siew Ling Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wei Ding
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
31
|
Ma Y, Hussein AA, Wang Z. Boosting Palladium-Catalyzed Aryl-Nitro Bond Activation Reaction by Understanding the Electronic, Electrostatic, and Polarization Effect: A Computational Study from a Basic Understanding to Ligand Design. J Org Chem 2021; 87:531-539. [PMID: 34910501 DOI: 10.1021/acs.joc.1c02536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although palladium-catalyzed aryl-nitro bond activation reaction has recently gained a lot of interest, it still requires rather harsh conditions. We here systematically explore the substituent effect on oxidative addition steps, known as the rate-determining step, by density functional theory simulations based on a Nakao's nitrogen heterocyclic carbene (NHC) ligand. The key aryl ring on the catalyst, ring A, acts as a π-donor and stabilizes the palladium center of the transition state, and thus an electron-rich ring A is expected to lower the barrier. However, the polarization and electrostatic effects were shown to be more important, although they were often ignored before. These effects originate from through-space interaction with a nitro group in the resting state, and the overall effect is that any polarizable or partly negative group near ortho- or meta-site of ring A is harmful for the reaction. Based on these discoveries, we proposed a list of guidelines for successful ligand developments and designed several new ligands. These ligands exhibit a significantly lower barrier than the reported Nakao's ligand by as large as ∼5 kcal/mol, in both gas phase and solvent with a moderate dipole. These candidates will promote further experimental studies and enhance the ability to improve ligands in a rational and predictive manner.
Collapse
Affiliation(s)
- Yumiao Ma
- BSJ Institue, Haidian, Beijing 100084, People's Republic of China.,Hangzhou Yanqu Information Technology Co., Ltd. Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, People's Republic of China
| | - Aqeel A Hussein
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Kurdistan Region, Sulaymaniyah, Iraq
| | - Zhaohong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
32
|
Gong B, Zhu H, Liu Y, Li Q, Yang L, Wu G, Fan Q, Xie Z, Le Z. Palladium-catalyzed sulfonylative coupling of benzyl(allyl) carbonates with arylsulfonyl hydrazides. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
33
|
Bisz E. Iron-Catalyzed Cross-Coupling Reactions of Alkyl Grignards with Aryl Chlorobenzenesulfonates. Molecules 2021; 26:5895. [PMID: 34641439 PMCID: PMC8510395 DOI: 10.3390/molecules26195895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
Abstract
Aryl sulfonate esters are versatile synthetic intermediates in organic chemistry as well as attractive architectures due to their bioactive properties. Herein, we report the synthesis of alkyl-substituted benzenesulfonate esters by iron-catalyzed C(sp2)-C(sp3) cross-coupling of Grignard reagents with aryl chlorides. The method operates using an environmentally benign and sustainable iron catalytic system, employing benign urea ligands. A broad range of chlorobenzenesulfonates as well as challenging alkyl organometallics containing β-hydrogens are compatible with these conditions, affording alkylated products in high to excellent yields. The study reveals that aryl sulfonate esters are the most reactive activating groups for iron-catalyzed alkylative C(sp2)-C(sp3) cross-coupling of aryl chlorides with Grignard reagents.
Collapse
Affiliation(s)
- Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, 45-052 Opole, Poland
| |
Collapse
|
34
|
Lo PC, Yang CW, Wu WK, Chen CT. Synthesis, Characterization, and Catalytic Application of Palladium Complexes Containing Indolyl-NNN-Type Ligands. Molecules 2021; 26:molecules26154426. [PMID: 34361584 PMCID: PMC8347745 DOI: 10.3390/molecules26154426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a series of N-heterocyclic indolyl ligand precursors 2-Py-Py-IndH, 2-Py-Pz-IndH, 2-Py-7-Py-IndH, 2-Py-7-Pz-IndH, and 2-Ox-7-Py-IndH (L1H-L5H) were prepared. The treatment of ligand precursors with 1 equivalent of palladium acetate affords palladium complexes 1-5. All ligand precursors and palladium complexes were characterized by NMR spectroscopy and elemental analysis. The molecular structures of complexes 3 and 5 were determined by single crystal X-ray diffraction techniques. The application of those palladium complexes 1-5 to the Suzuki reaction with aryl halide substrates was examined.
Collapse
|
35
|
Tian M, Liu M. The exploration of deoxygenation reactions for alcohols and derivatives using earth-abundant reagents. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In Earth matter evolution, the deoxygenation process plays a central role as plant and animal remains, which are composed by highly oxygenated molecules, were gradually deoxygenated into hydrocarbons to give fossil fuels deep in the Earth crust. The understanding of this process is becoming crucial to the entire world and to the sustainable development of mankind. This review provides a brief summary of the extensive deoxygenation research under mild, potentially sustainable conditions. We also summarize some challenges and opportunities for potential deoxygenation reactions in the future.
Collapse
Affiliation(s)
- Miao Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , 222 Tianshui South Road, Chengguan Dist. , Lanzhou , Gansu , 730000 , China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University , Shenyang , Liaoning , 110034 , China
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , 222 Tianshui South Road, Chengguan Dist. , Lanzhou , Gansu , 730000 , China
- Department of Chemistry and FRQNT Centre in Green Chemistry and Catalysis , McGill University , 801 Sherbrooke Ouest , Montreal , QC , H3A 0B8 , Canada
| |
Collapse
|
36
|
Yang S, Zhou T, Poater A, Cavallo L, Nolan SP, Szostak M. Suzuki-Miyaura Cross-Coupling of Esters by Selective O-C(O) Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(μ-Cl)Cl] 2 Precatalysts: Catalyst Evaluation and Mechanism. Catal Sci Technol 2021; 11:3189-3197. [PMID: 34211698 PMCID: PMC8240519 DOI: 10.1039/d1cy00312g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cross-coupling of aryl esters has emerged as a powerful platform for the functionalization of otherwise inert acyl C-O bonds in chemical synthesis and catalysis. Herein, we report a combined experimental and computational study on the acyl Suzuki-Miyaura cross-coupling of aryl esters mediated by well-defined, air- and moisture-stable Pd(II)-NHC precatalysts [Pd(NHC)(μ-Cl)Cl]2. We present a comprehensive evaluation of [Pd(NHC)(μ-Cl)Cl]2 precatalysts and compare them with the present state-of-the-art [(Pd(NHC)allyl] precatalysts bearing allyl-type throw-away ligands. Most importantly, the study reveals [Pd(NHC)(μ-Cl)Cl]2 as the most reactive precatalysts discovered to date in this reactivity manifold. The unique synthetic utility of this unconventional O-C(O) cross-coupling is highlighted in the late-stage functionalization of pharmaceuticals and sequential chemoselective cross-coupling, providing access to valuable ketone products by a catalytic mechanism involving Pd insertion into the aryl ester bond. Furthermore, we present a comprehensive study of the catalytic cycle by DFT methods. Considering the clear advantages of [Pd(NHC)(μ-Cl)Cl]2 precatalysts on several levels, including facile one-pot synthesis, superior atom-economic profile to all other Pd(II)-NHC catalysts, and versatile reactivity, these should be considered as the 'first-choice' catalysts for all routine applications in ester O-C(O) bond activation.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Luigi Cavallo
- King Abdullah University of Science & Technology, KAUST Catalysis Center (KCC), 23955-6900 Thuwal, Saudi Arabia
| | - Steven P Nolan
- Department of Chemistry, Ghent University, Krijgslaan 281, S-3, B-9000 Ghent, Belgium
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
37
|
Seki R, Hara N, Saito T, Nakao Y. Selective C-O Bond Reduction and Borylation of Aryl Ethers Catalyzed by a Rhodium-Aluminum Heterobimetallic Complex. J Am Chem Soc 2021; 143:6388-6394. [PMID: 33886288 DOI: 10.1021/jacs.1c03038] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the catalytic reduction of a C-O bond and the borylation by a rhodium complex bearing an X-type PAlP pincer ligand. We have revealed the reaction mechanism based on the characterization of the reaction intermediate and deuterium-labeling experiments. Notably, this novel catalytic system shows steric-hindrance-dependent chemoselectivity that is distinct from conventional Ni-based catalysts and suggests a new strategy for selective C-O bond activation by heterobimetallic catalysis.
Collapse
Affiliation(s)
- Rin Seki
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Naofumi Hara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Teruhiko Saito
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
38
|
Zhang SQ, Hong X. Mechanism and Selectivity Control in Ni- and Pd-Catalyzed Cross-Couplings Involving Carbon-Oxygen Bond Activation. Acc Chem Res 2021; 54:2158-2171. [PMID: 33826300 DOI: 10.1021/acs.accounts.1c00050] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transition-metal-catalyzed C-O bond activation provides a useful strategy for utilizing alcohol- and phenol-derived electrophiles in cross-coupling reactions, which has become a research field of active and growing interest in organic chemistry. The synergy between computation and experiment elucidated the mechanistic model and controlling factors of selectivities in these transformations, leading to advances in innovative C-O bond activation and functionalization methods.Toward the rational design of C-O bond activation, our collaborations with the Jarvo group bridged the mechanistic models of C(sp2)-O and C(sp3)-O bond activations. We found that the nickel catalyst cleaves the benzylic and allylic C(sp3)-O bonds via two general mechanisms: the stereoinvertive SN2 back-side attack model and the stereoretentive chelation-assisted model. These two models control the stereochemistry in a wide array of stereospecific Ni-catalyzed cross-coupling reactions with benzylic or allylic alcohol derivatives. Because of the catalyst distortion, the ligands can differentiate the competing stereospecific C(sp3)-O bond activations. The PCy3 ligand interacts with nickel mainly through σ-donation, and the Ni(PCy3) catalyst can undergo facile bending of the substrate-nickel-ligand angle, which favors the stereoretentive benzylic C-O bond activation. The N-heterocyclic carbene SIMes ligand has additional d(metal)-p(ligand) back-donation with nickel, which leads to an extra energy penalty for the same angle bending. This results in the preference of stereoinvertive benzylic C-O bond activation under Ni/SIMes catalysis. In addition to ligand control, a Lewis acid can increase the selectivity for stereoinvertive C(sp3)-O activation by stabilizing the SN2 back-side attack transition state. The oxygen leaving group complexes with the MgI2 Lewis acid in the stereoinvertive activation, leading to the exclusive stereoinvertive Kumada coupling of benzylic ethers. We also identified that the competing C(sp3)-O bond activation models have noticeable differences in charge separation. This leads to the solvent polarity control of the stereospecificity in C(sp3)-O activations. Low-polarity solvents favor the neutral stereoretentive C-O bond activation, while high-polarity solvents favor the zwitterionic stereoinvertive cleavage.In sharp contrast to the nickel catalysts, the C(sp2)-O bond activation under palladium catalysis mainly proceeds via the classic three-membered ring oxidative addition mechanism instead of the chelation-assisted mechanism. This is due to the lower oxophilicity of palladium, which disfavors the oxygen coordination in the chelation-assisted-type activation. The three-membered ring activation model selectively cleaves the weak C-O bond, resulting in the exclusive chemoselectivity of acyl C-O bond activation in Pd-catalyzed cross-coupling reactions with aryl carboxylic acid derivatives. This explains the overall acylation in the Pd-catalyzed Suzuki-Miyaura coupling with aryl esters. In collaboration with the Szostak group, we revealed that the three-membered ring model applies in the Pd-catalyzed C-O bond activation of carboxylic acid anhydride, which stimulated the development of a series of Pd-catalyzed decarbonylative functionalizations of aryl carboxylic acids.
Collapse
Affiliation(s)
- Shuo-Qing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
39
|
Pd-NHCs Enabled Suzuki-Miyaura Cross-Coupling of Arylhydrazines via C–N Bond Cleavage. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Zhou JS, Huang X, Teng S, Chi YR. Nickel-catalyzed Heck reaction of cycloalkenes using aryl sulfonates and pivalates. Chem Commun (Camb) 2021; 57:3933-3936. [PMID: 33871493 DOI: 10.1039/d1cc00634g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nickel-catalyzed Heck reaction of cycloalkenes delivers unusual conjugated arylated isomers. Nickel(0) catalysts ligated by chelating dialkylphosphines effectively activate not only aryl triflates as electrophiles, but also less reactive aryl mesylates, tosylates and pivalates. The omission of bases allows nickel hydride species to exist long enough to perform in situ olefin isomerization of initial Heck adducts.
Collapse
Affiliation(s)
- Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan, Shenzhen 518055, China.
| | - Xiaolei Huang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Shenghan Teng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
41
|
Zhang T, Nohira I, Chatani N. Nickel-catalyzed Suzuki–Miyaura cross-coupling of C–F bonds. Org Chem Front 2021. [DOI: 10.1039/d1qo00656h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient Suzuki–Miyaura cross-coupling of ortho-fluoro aromatic amides with aryl boronates is described. The reaction proceeds effectively, even at 60 °C. The reaction exhibits a good tolerance for functional groups and a broad scope for aromatic amides.
Collapse
Affiliation(s)
- Tianhao Zhang
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Suita
- Japan
| | - Itsuki Nohira
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Suita
- Japan
| | - Naoto Chatani
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
42
|
Iyori Y, Ueno R, Morishige A, Chatani N. Nickel-catalyzed C-O/N-H, C-S/N-H, and C-CN/N-H annulation of aromatic amides with alkynes: C-O, C-S, and C-CN activation. Chem Sci 2020; 12:1772-1777. [PMID: 34163938 PMCID: PMC8179272 DOI: 10.1039/d0sc06056a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Ni-catalyzed reaction of ortho-phenoxy-substituted aromatic amides with alkynes in the presence of LiOtBu as a base results in C–O/N–H annulation with the formation of 1(2H)-isoquinolinones. The use of a base is essential for the reaction to proceed. The reaction proceeds, even in the absence of a ligand, and under mild reaction conditions (40 °C). An electron-donating group on the aromatic ring facilitates the reaction. The reaction was also applicable to carbamate (C–O bond activation), methylthio (C–S bond activation), and cyano (C–CN bond activation) groups as leaving groups. The Ni-catalyzed reaction of ortho-phenoxy-substituted aromatic amides with alkynes in the presence of LiOtBu as a base results in C–O/N–H annulation with the formation of 1(2H)-isoquinolinones.![]()
Collapse
Affiliation(s)
- Yasuaki Iyori
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Rina Ueno
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Aoi Morishige
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|