1
|
Ahmad A, Khawar MR, Ahmad I, Javed MH, Ahmad A, Rauf A, Younas U, Nazir A, Choi D, Karami AM. Green synthesis of ZnO nanocubes from Ceropegia omissa H. Huber extract for photocatalytic degradation of bisphenol An under visible light to mitigate water pollution. ENVIRONMENTAL RESEARCH 2024; 249:118093. [PMID: 38237759 DOI: 10.1016/j.envres.2023.118093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 02/15/2024]
Abstract
Plastic pollution has become a major environmental problem because it does not break down and poses risks to ecosystems and human health. This study focuses on the environmentally friendly synthesis of ZnO nanocubes using an extract from Ceropegia omissa H. Huber plant leaves. The primary goal is to investigate the viability of these nanocubes as visible-light photocatalysts for the degradation of bisphenol A (BPA). The synthesized ZnO nanocubes have a highly crystalline structure and a bandgap of 3.1 eV, making them suitable for effective visible-light photocatalysis. FTIR analysis, which demonstrates that the pertinent functional groups are present, demonstrates the chemical bonding and reducing processes that take place in the plant extract. The XPS method also studies zinc metals, oxygen valencies, and binding energies. Under visible light irradiation, ZnO nanocubes degrade BPA by 86% in 30 min. This plant-extract-based green synthesis method provides a long-term replacement for traditional procedures, and visible light photocatalysis has advantages over ultraviolet light. The study's results show that ZnO nanocubes may be good for the environment and can work well as visible light photocatalysts to break down organic pollutants. This adds to what is known about using nanoparticles to clean up the environment. As a result, this study highlights the potential of using environmentally friendly ZnO nanocubes as a long-lasting and efficient method of reducing organic pollutant contamination in aquatic environments.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Muhammad Ramzan Khawar
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-Daero, Yongin, Gyeonggi, 17104, South Korea
| | - Ikram Ahmad
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Muhammad Hassan Javed
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Anees Ahmad
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Abdul Rauf
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-Daero, Yongin, Gyeonggi, 17104, South Korea.
| | - Abdulnasser M Karami
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Zhang D, Liu P. Biosynthesis of metal nanoparticles: Bioreduction and biomineralization. NANOTECHNOLOGY REVIEWS 2023; 12. [DOI: 10.1515/ntrev-2023-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
The biosynthesis of metal nanoparticles by plants, bacteria, and cells has been receiving considerable attention in recent years. The traditional synthesis of metal nanoparticles always needed high temperatures, high pressure, and toxic agents. However, the biosynthesis process (including bioreduction and biomineralization) is simpler, safe, economical, and green. The process of biosynthesis can insulate toxic agents, streamline flux, increase the transition efficiency of interactants, and improve the product yield. The biosynthesized metal nanoparticles share similar characteristics with traditional ones, serving as photosensors to achieve light-to-heat/energy transduction, or a drug delivery system. The biosynthetic metal nanoparticles thus could be widely applied in the medical field for disease diagnosis and treatment. It contributed a novel modality for the facile and green synthesis of metal nanoparticles. Increasing studies have been exploring the mechanism for the biosynthesis of metal nanoparticles, devoted to a controllable biosynthesis process. Combined with our previous studies on the biosynthesis of gold nanoparticles with green tea, tumor cells, and cell components, we reviewed the green methods of bioreduction and biomineralization of metal nanoparticles including the internal mechanism, aimed to make a comprehensive introduction to the biosynthesis of metal nanoparticles and relevant biomedical applications, and inspired further research.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Pengran Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , 430022 , China
| |
Collapse
|
3
|
Yu B, Cheng L, Dai S, Jiang Y, Yang B, Li H, Zhao Y, Xu J, Zhang Y, Pan C, Cao X, Zhu Y, Lou Y. Silver and Copper Dual Single Atoms Boosting Direct Oxidation of Methane to Methanol via Synergistic Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302143. [PMID: 37401146 PMCID: PMC10502841 DOI: 10.1002/advs.202302143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/04/2023] [Indexed: 07/05/2023]
Abstract
Rationally constructing atom-precise active sites is highly important to promote their catalytic performance but still challenging. Herein, this work designs and constructs ZSM-5 supported Cu and Ag dual single atoms as a proof-of-concept catalyst (Ag1 -Cu1 /ZSM-5 hetero-SAC (single-atom catalyst)) to boost direct oxidation of methane (DOM) by H2 O2 . The Ag1 -Cu1 /ZSM-5 hetero-SAC synthesized via a modified co-adsorption strategy yields a methanol productivity of 20,115 µmol gcat -1 with 81% selectivity at 70 °C within 30 min, which surpasses most of the state-of-the-art noble metal catalysts. The characterization results prove that the synergistic interaction between silver and copper facilitates the formation of highly reactive surface hydroxyl species to activate the C-H bond as well as the activity, selectivity, and stability of DOM compared with SACs, which is the key to the enhanced catalytic performance. This work believes the atomic-level design strategy on dual-single-atom active sites should pave the way to designing advanced catalysts for methane conversion.
Collapse
Affiliation(s)
- Baiyang Yu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| | - Lu Cheng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Computational Chemistry and Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghai200237China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Bing Yang
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physics457 Zhongshan RoadDalian116023China
| | - Hong Li
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physics457 Zhongshan RoadDalian116023China
| | - Yi Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| | - Jing Xu
- School of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| | - Chengsi Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| | - Xiao‐Ming Cao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Computational Chemistry and Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghai200237China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| |
Collapse
|
4
|
Ortega-Nieto C, Losada-Garcia N, Prodan D, Furtos G, Palomo JM. Recent Advances on the Design and Applications of Antimicrobial Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2406. [PMID: 37686914 PMCID: PMC10490178 DOI: 10.3390/nano13172406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Present worldwide difficulties in healthcare and the environment have motivated the investigation and research of novel materials in an effort to find novel techniques to address the current challenges and requirements. In particular, the use of nanomaterials has demonstrated a significant promise in the fight against bacterial infections and the problem of antibiotic resistance. Metal nanoparticles and carbon-based nanomaterials in particular have been highlighted for their exceptional abilities to inhibit many types of bacteria and pathogens. In order for these materials to be as effective as possible, synthetic techniques are crucial. Therefore, in this review article, we highlight some recent developments in the design and synthesis of various nanomaterials, including metal nanoparticles (e.g., Ag, Zn, or Cu), metal hybrid nanomaterials, and the synthesis of multi-metallic hybrid nanostructured materials. Following that, examples of these materials' applications in antimicrobial performance targeted at eradicating multi-drug resistant bacteria, material protection such as microbiologically influenced corrosion (MIC), or additives in construction materials have been described.
Collapse
Affiliation(s)
- Clara Ortega-Nieto
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.O.-N.); (N.L.-G.)
| | - Noelia Losada-Garcia
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.O.-N.); (N.L.-G.)
| | - Doina Prodan
- Department of Dental Composite Materials, Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele St., 400294 Cluj-Napoca, Romania;
| | - Gabriel Furtos
- Department of Dental Composite Materials, Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele St., 400294 Cluj-Napoca, Romania;
| | - Jose M. Palomo
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.O.-N.); (N.L.-G.)
| |
Collapse
|
5
|
Somani M, Mukhopadhyay S, Gupta B. Preparation of functional and reactive nanosilver nanogels using oxidized carboxymethyl cellulose. Int J Biol Macromol 2023; 233:123515. [PMID: 36739055 DOI: 10.1016/j.ijbiomac.2023.123515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
The designing of functional and reactive nanosilver has been carried out by in-situ reduction of silver nitrate using oxidized carboxymethyl cellulose (OCMC). The reduction process is also accompanied by the stabilization of nanoparticles using the OCMC polymer chain, leading to the formation of a structure where nanosilver is entrapped within OCMC gel. The silver nanogels characterized using transmission electron microscopy (TEM) are found to be ∼22 nm. By virtue of the presence of dialdehyde functionality around the silver nanogels, they have the ability to react with a polymer having a complementary functional group. The nanogels have exhibited prominent antimicrobial activity against both gram-negative and gram-positive bacteria. It has been observed that a 0.3 mM concentration of silver nanogel is active in inhibiting bacterial growth. The antibacterial activity of the synthesized Ag nanogels was dose-dependent, with 99.9 % of E. coli and S. aureus destroyed within 5 h at a concentration of 0.4 mM Ag nanogels. The nanogels disrupted the bacterial cell wall and generated reactive oxygen species inside the cell, which resulted in cell death. This investigation provides a very interesting application as a coating for biomedical implants and devices.
Collapse
Affiliation(s)
- Manali Somani
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
6
|
Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20210117. [PMID: 37323620 PMCID: PMC10191045 DOI: 10.1002/exp.20210117] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 06/17/2023]
Abstract
Bacterial infection has become one of the leading causes of death worldwide, particularly in low-income countries. Despite the fact that antibiotics have provided successful management in bacterial infections, the long-term overconsumption and abuse of antibiotics has contributed to the emergence of multidrug resistant bacteria. To address this challenge, nanomaterials with intrinsic antibacterial properties or that serve as drug carriers have been substantially developed as an alternative to fight against bacterial infection. Systematically and deeply understanding the antibacterial mechanisms of nanomaterials is extremely important for designing new therapeutics. Recently, nanomaterials-mediated targeted bacteria depletion in either a passive or active manner is one of the most promising approaches for antibacterial treatment by increasing local concentration around bacterial cells to enhance inhibitory activity and reduce side effects. Passive targeting approach is widely explored by searching nanomaterial-based alternatives to antibiotics, while active targeting strategy relies on biomimetic or biomolecular surface feature that can selectively recognize targeted bacteria. In this review article, we summarize the recent developments in the field of targeted antibacterial therapy based on nanomaterials, which will promote more innovative thinking focusing on the treatment of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- The Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
- Qingdao Cancer InstituteQingdao UniversityQingdaoChina
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
7
|
Almutairi HH, Parveen N, Ansari SA. Hydrothermal Synthesis of Multifunctional Bimetallic Ag-CuO Nanohybrids and Their Antimicrobial, Antibiofilm and Antiproliferative Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4167. [PMID: 36500789 PMCID: PMC9737815 DOI: 10.3390/nano12234167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The rapidly growing global problem of infectious pathogens acquiring resistance to conventional antibiotics is an instigating reason for researchers to continue the search for functional as well as broad-spectrum antimicrobials. Hence, we aimed in this study to synthesis silver-copper oxide (Ag-CuO) nanohybrids as a function of Ag concentration (0.05, 0.1, 0.3 and 0.5 g) via the one-step hydrothermal method. The bimetallic Ag-CuO nanohybrids Ag-C-1, Ag-C-2, Ag-C-3 and Ag-C-4 were characterized for their physico-chemical properties. The SEM results showed pleomorphic Ag-CuO crystals; however, the majority of the particles were found in spherical shape. TEM results showed that the Ag-CuO nanohybrids in formulations Ag-C-1 and Ag-C-3 were in the size range of 20-35 nm. Strong signals of Ag, Cu and O in the EDX spectra revealed that the as-synthesized nanostructures are bimetallic Ag-CuO nanohybrids. The obtained Ag-C-1, Ag-C-2, Ag-C-3 and Ag-C-4 nanohybrids have shown their MICs and MBCs against E. coli and C. albicans in the range of 4-12 mg/mL and 2-24 mg/mL, respectively. Furthermore, dose-dependent toxicity and apoptosis process stimulation in the cultured human colon cancer HCT-116 cells have proven the Ag-CuO nanohybrids as promising antiproliferative agents against mammalian cancer.
Collapse
Affiliation(s)
- Hayfa Habes Almutairi
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia
| | - Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia
| | - Sajid Ali Ansari
- Department of Physics, College of Science, King Faisal University, Al Ahsa, P.O. Box 400, Hofuf 31982, Saudi Arabia
| |
Collapse
|
8
|
Facile synthesis of ε-poly-L-lysine-conjugated ZnO@PDA as photothermal antibacterial agents for synergistic bacteria killing and biofilm eradication. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Xiong Q, Fang Q, Xu K, Liu G, Sang M, Xu Y, Hao L, Xuan S. Near-infrared light-responsive photothermal α-Fe 2O 3@Au/PDA core/shell nanostructure with on-off controllable anti-bacterial effects. Dalton Trans 2021; 50:14235-14243. [PMID: 34550127 DOI: 10.1039/d1dt02251b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial materials are expected to be alternatives for antibiotics against multidrug-resistant bacteria. In this paper, non-spherical α-Fe2O3@Au/PDA core/shell nanoparticles with tunable shapes are synthesized by a one-step in situ oxidation-redox polymerization method toward near infrared light-responsive antibacterial therapy. The thickness and composition of the Au/PDA hybrid shell can be controlled by varying the concentration of HAuCl4 and the dopamine precursor. Owing to the wonderful photothermal characteristics originating from the Au/PDA shell, the spindle α-Fe2O3@Au/PDA core shell nanoparticles exhibit excellent photothermal sterilization effects against both Escherichia coli and Staphylococcus aureus at low concentrations. Meanwhile, the NIR photothermal induced bactericidal performance indicates that α-Fe2O3@Au/PDA hybrid particles with tunable non-spherical shapes possess unique controllable antibacterial effects. As a result, this finding provides a simple strategy for fabricating high performance photothermal antibacterial agents and the final products possess high potential in synergistic antimicrobial therapy.
Collapse
Affiliation(s)
- Qingshan Xiong
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China.
| | - Qunling Fang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China.
| | - Kezhu Xu
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China.
| | - Guanghui Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, Anhui, 230601, PR China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Yunqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Lingyun Hao
- School of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| |
Collapse
|
10
|
Parvathiraja C, Shailajha S. Bioproduction of CuO and Ag/CuO heterogeneous photocatalysis-photocatalytic dye degradation and biological activities. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01743-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
An X, Erramilli S, Reinhard BM. Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing. NANOSCALE 2021; 13:3374-3411. [PMID: 33538743 PMCID: PMC8349509 DOI: 10.1039/d0nr08353d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacterial, viral and fungal infections pose serious threats to human health and well-being. The continuous emergence of acute infectious diseases caused by pathogenic microbes and the rapid development of resistances against conventional antimicrobial drugs necessitates the development of new and effective strategies for the safe elimination of microbes in water, food or on surfaces, as well as for the inactivation of pathogenic microbes in human hosts. The need for new antimicrobials has triggered the development of plasmonic nano-antimicrobials that facilitate both light-dependent and -independent microbe inactivation mechanisms. This review introduces the relevant photophysical mechanisms underlying these plasmonic nano-antimicrobials, and provides an overview of how the photoresponses and materials properties of plasmonic nanostructures can be applied in microbial pathogen inactivation and sensing applications. Through a systematic analysis of the inactivation efficacies of different plasmonic nanostructures, this review outlines the current state-of-the-art in plasmonic nano-antimicrobials and defines the application space for different microbial inactivation strategies. The advantageous optical properties of plasmonic nano-antimicrobials also enhance microbial detection and sensing modalities and thus help to avoid exposure to microbial pathogens. Sensitive and fast plasmonic microbial sensing modalities and their theranostic and targeted therapeutic applications are discussed.
Collapse
Affiliation(s)
- Xingda An
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Shyamsunder Erramilli
- Department of Physics, Boston University, Boston, MA 02215, USA and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Björn M Reinhard
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|