1
|
Du J, Shen M, Chen J, Yan H, Xu Z, Yang X, Yang B, Luo P, Ding K, Hu Y, He Q. The impact of solute carrier proteins on disrupting substance regulation in metabolic disorders: insights and clinical applications. Front Pharmacol 2025; 15:1510080. [PMID: 39850557 PMCID: PMC11754210 DOI: 10.3389/fphar.2024.1510080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions. Based on common metabolic dysregulation and related metabolic substances, we explored the relationship between several major families of SLC supergroup and metabolic diseases, providing examples of drugs targeting SLC proteins that have been approved or are currently in clinical/preclinical research as well as SLC-related diagnostic techniques that are in clinical use or under investigation. By highlighting these connections, we aim to provide insights that may contribute to the development of improved treatment strategies and targeted therapies for metabolic disorders.
Collapse
Affiliation(s)
- Jiangxia Du
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minhui Shen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhuai Hu
- Yuhong Pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qiaojun He
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Zeng Z, Chen M, Liu Y, Zhou Y, Liu H, Wang S, Ji Y. Role of Akkermansia muciniphila in insulin resistance. J Gastroenterol Hepatol 2025; 40:19-32. [PMID: 39396929 DOI: 10.1111/jgh.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Insulin resistance (IR) is a pathogenic factor in numerous metabolic diseases. The gut microbiota plays a crucial role in maintaining the function of the intestinal barrier and overall human health, thereby influencing IR. Dysbiosis of the gut microbiota can contribute to the development of IR. Therefore, it is essential to maintain a balanced and diverse gut microbiota for optimal health. Akkermansia muciniphila, a widely present microorganism in the human intestine, has been shown to regulate gastrointestinal mucosal barrier integrity, reduce endotoxin penetration, decrease systemic inflammation levels, and improve insulin sensitivity. Reduced abundance of A. muciniphila is associated with an increased risk of IR and other metabolic diseases, highlighting its correlation with IR. Understanding the role and regulatory mechanism of A. muciniphila is crucial for comprehending IR pathogenesis and developing novel strategies for preventing and treating related metabolic disorders. Individual variations may exist in both the gut microbiota composition and its impact on IR among different individuals. Further investigation into individual differences between A. muciniphila and IR will facilitate advancements in personalized medicine by promoting tailored interventions based on the gut microbiota composition, which is a potential future direction that would optimize insulin sensitivity while preventing metabolic disease occurrence. In this review, we describe the physiological characteristics of A. muciniphila, emphasize its roles in underlying mechanisms contributing to IR pathology, and summarize how alterations in its abundance affect IR development, thereby providing valuable insights for further research on A. muciniphila, as well as new drug development targeting diabetes.
Collapse
Affiliation(s)
- Zhijun Zeng
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Mengjie Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yimin Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yun Zhou
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hongning Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shaohua Wang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yanhua Ji
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
3
|
Yang B, Yang R, Zhang X, Wang W, Kan J. Hovenia dulcis (Guaizao) polysaccharide ameliorates hyperglycemia through multiple signaling pathways in rats with type 2 diabetes mellitus. Int J Biol Macromol 2024; 285:138338. [PMID: 39638196 DOI: 10.1016/j.ijbiomac.2024.138338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Type 2 diabetes mellitus (T2DM) poses a significant threat to human health, with its incidence and mortality rates increasing annually. This study investigated the hypoglycemic effects and underlying mechanisms of pure Hovenia dulcis (Guaizao) polysaccharide (HDPs-2A) in rats subjected to a high-fat and high-sugar diet combined with streptozotocin-induced T2DM. Oral administration of HDPs-2A resulted in significant increases in body weight and liver glycogen levels compared to untreated controls. Moreover, a reduction in fasting blood glucose levels, alleviation of hyperinsulinemia, enhanced glucose tolerance, and improved insulin resistance were observed in the HDPs-2A-treated group. HDPs-2A also effectively reversed diabetes-induced dyslipidemia, as evidenced by decreased total cholesterol and triglyceride levels, alongside increased high-density lipoprotein cholesterol levels. Histopathological analyses confirmed that HDPs-2A partially repaired liver tissue damage by mitigating oxidative stress responses in the liver. Additionally, treatment with HDPs-2A significantly elevated short-chain fatty acid levels in T2DM rats. Real-time quantitative PCR and Western blot analyses indicated that HDPs-2A significantly enhanced the expression of InsR, IRS2, PI3K, Akt, and GLUT4, suggesting that HDPs-2A regulates insulin resistance and glycometabolism through the activation of the PI3K/Akt signaling pathway. Furthermore, HDPs-2A appeared to modulate the expression of GS, GSK-3β, and FoxO1 to improve glucose metabolism and reduce insulin resistance. It also improved glucose metabolism by activating the AMPK pathway and modulating G6Pase and PEPCK expression. This study provides novel insights into the antidiabetic effects of HDPs, positioning them as promising nutritional agents for the management of T2DM.
Collapse
Affiliation(s)
- Bing Yang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China.
| | - Ruyan Yang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Xinyu Zhang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Wanjia Wang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Zhang G, Li Z, Zhang S, Bai L, Zhou H, Zhang D. Anti-Type II Diabetic Effects of Coix Seed Prolamin Hydrolysates: Physiological and Transcriptomic Analyses. Foods 2024; 13:2203. [PMID: 39063287 PMCID: PMC11275950 DOI: 10.3390/foods13142203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Previous studies have demonstrated that enzymatically prepared coix seed prolamin hydrolysates (CHPs) contain several bioactive peptides that efficiently inhibit the activity of target enzymes (α-glucosidase and dipeptidyl kinase-IV) in type 2 diabetes mellitus (T2DM). However, the anti-T2DM effects and potential mechanisms of CHPs as a whole in vivo have not yet been systematically explored. Therefore, we evaluated the preventive, therapeutic, and modifying effects of CHPs on T2DM by combining physiological and liver transcriptomics with a T2DM mouse model. The results showed that sustained high-fructose intake led to prediabetic symptoms in mice, with abnormal fluctuations in blood glucose and blood lipid levels. Intervention with CPHs effectively prevented weight loss; regulated abnormal changes in blood glucose; improved impaired glucose tolerance; inhibited the abnormal expression of total cholesterol, triglycerides, and low-density lipoproteins; alleviated insulin resistance; and restored pancreatic islet tissue function in mice fed a high-fructose diet. In addition, we found that CHPs also play a palliative role in the loss of liver function and protect various organ tissues (including the liver, kidneys, pancreas, and heart), and are effective in preventing damage to the liver and pancreatic islet cells. We also found that the intake of CHPs reversed the abnormally altered hepatic gene profile in model mice and identified 381 differentially expressed genes that could serve as key genes for preventing the development of T2DM, which are highly correlated with multiple glycolipid metabolic pathways. We demonstrated that CHPs play a positive role in the normal functioning of the insulin signalling pathway dominated by the IRS-1/PI3K/AKT (insulin receptor substrates-1/phosphoinositide 3-kinase/protein kinase B) pathway. In summary, CHPs can be used as effective food-borne glucose-modifying components of healthy foods.
Collapse
Affiliation(s)
- Guifang Zhang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.Z.); (Z.L.); (S.Z.); (L.B.); (H.Z.)
- Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhiming Li
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.Z.); (Z.L.); (S.Z.); (L.B.); (H.Z.)
- Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shu Zhang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.Z.); (Z.L.); (S.Z.); (L.B.); (H.Z.)
- Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lu Bai
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.Z.); (Z.L.); (S.Z.); (L.B.); (H.Z.)
- Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hangqing Zhou
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.Z.); (Z.L.); (S.Z.); (L.B.); (H.Z.)
- Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Dongjie Zhang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.Z.); (Z.L.); (S.Z.); (L.B.); (H.Z.)
- Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
| |
Collapse
|
5
|
Wu G, Cheng H, Guo H, Li Z, Li D, Xie Z. Tea polyphenol EGCG ameliorates obesity-related complications by regulating lipidomic pathway in leptin receptor knockout rats. J Nutr Biochem 2023; 118:109349. [PMID: 37085056 DOI: 10.1016/j.jnutbio.2023.109349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
Tea polyphenol EGCG has been widely recognized for antiobesity effects. However, the molecular mechanism of lipidomic pathway related to lipid-lowering effect of EGCG is still not well understood. The aim of this study was to investigate the effects and mechanism of EGCG activated hepatic lipidomic pathways on ameliorating obesity-related complications by using newly developed leptin receptor knockout (Lepr KO) rats. Results showed that EGCG supplementation (100 mg/kg body weight) significantly decreased total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels both in the serum and liver, and significantly improved glucose intolerance. In addition, EGCG alleviated fatty liver development and restored the normal liver function in Lepr KO rats. Liver lipidomic analysis revealed that EGCG dramatically changes overall composition of lipid classes. Notably, EGCG significantly decreased an array of triglycerides (TGs) and diglycerides (DGs) levels. While EGCG increased 31 glycerophospholipid species and 1 sphingolipid species levels, such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylserines (PSs) and phosphatidylinositols (PIs) levels in the liver of Lepr KO rats. Moreover, 14 diversely regulated lipid species were identified as potential lipid biomarkers. Mechanistic analysis revealed that EGCG significantly activated the SIRT6/AMPK/SREBP1/FAS pathway to decrease DGs and TGs levels and upregulated glycerophospholipids synthesis pathways to increase glycerophospholipid level in the liver of Lepr KO rats. These findings suggested that the regulation of glycerolipids and glycerophospholipid homeostasis might be the key pathways for EGCG in ameliorating obesity-related complications in Lepr KO rats.
Collapse
Affiliation(s)
- Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Huijun Cheng
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Huimin Guo
- Center for Biotechnology, Anhui Agricultural University, Anhui 230036, PR China
| | - Zhuang Li
- Center for Biotechnology, Anhui Agricultural University, Anhui 230036, PR China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China; College of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
6
|
Li X, Abdel-Moneim AME, Hua J, Zhao L, Hu Z, Pang X, Wang S, Chen Z, Yang B. Effects of Sodium Chromate Exposure on Gene Expression Profiles of Primary Rat Hepatocytes (In Vitro). Biol Trace Elem Res 2023; 201:1913-1934. [PMID: 35653032 DOI: 10.1007/s12011-022-03294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
Chromium exposure has adverse impacts on human health and the environment, whereas chromate-induced hepatotoxicity's detailed mechanism is still unclear. Therefore, the purpose of the current study was to reveal the crucial signaling pathways and genes linked to sodium chromate-induced hepatotoxicity. GSE19662, a gene expression microarray, was obtained from Gene Expression Omnibus (GEO). Six primary rat hepatocyte (PRH) samples from GSE19662 include sodium chromate-treated (n = 3) and the control PRH samples (n = 3). A total of 2,525 differentially expressed genes (DEGs) were obtained, especially 962, and 1,563 genes were up- and downregulated in sodium chromate-treated PRHs compared to the control. Gene ontology (GO) enrichment analysis suggested that those DEGs were involved in multiple biological processes, including the response to toxic substances, the positive regulation of apoptotic process, lipid and cholesterol metabolic process, and others. Signaling pathway enrichment analysis indicated that the DEGs were mainly enriched in MAPK, PI3K-Akt, PPAR, AMPK, cellular senescence, hepatitis B, fatty acid biosynthesis, etc. Moreover, many genes, including CYP2E1, CYP1A2, CYP2C13, CDK1, NDC80, and CCNB1, might contribute to sodium chromate-induced hepatotoxicity. Taken together, this study enhances our knowledge of the potential molecular mechanisms of sodium chromate-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiaofeng Li
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Abdel-Moneim Eid Abdel-Moneim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt
| | - Jinling Hua
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Lei Zhao
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhongze Hu
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Xunsheng Pang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Shujuan Wang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhihao Chen
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Bing Yang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
7
|
Song Y, Nie L, Wang M, Liao W, Huan C, Jia Z, Wei D, Liu P, Fan K, Mao Z, Wang C, Huo W. Differential Expression of lncRNA-miRNA-mRNA and Their Related Functional Networks in New-Onset Type 2 Diabetes Mellitus among Chinese Rural Adults. Genes (Basel) 2022; 13:2073. [PMID: 36360309 PMCID: PMC9690016 DOI: 10.3390/genes13112073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Increasing evidence suggested that the expression and inter-regulation of long noncoding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) were related to the development of diabetes. Based on bioinformatics analysis, this study aimed to comprehensively analyze the dysregulated RNA molecules related to new-onset type 2 diabetes mellitus (T2DM). Twenty-four patients with new-onset T2DM were included as cases, and sex- and age-matched participants were included as controls. The differentially expressed lncRNAs, miRNAs, and mRNAs between the two groups were screened by RNA sequencing. LncRNA-miRNA-mRNA network and enrichment analysis were used to reveal the RNA molecules that were potentially associated with T2DM and their early changes. A total of 123 lncRNAs, 49 miRNAs, and 312 mRNAs were differentially expressed in the new-onset T2DM (fold change ≥ 1.5 and p value < 0.05). Functional analysis revealed that differentially expressed RNAs were likely to play essential roles in diabetes-related pathways. In addition, the protein-protein interaction (PPI) network screened multiple hub mRNAs, and lncRNA-miRNA-mRNA networks showed that a single miRNA could be related to multiple lncRNAs, and then they coregulated more mRNAs. SLC25A4, PLCB1, AGTR2, PRKN, and SCD5 were shown to be important mRNAs in T2DM, and miR-199b-5p, miR-202-5p, miR-548o-3p as well as miR-1255b-5p could be involved in their regulation. In conclusion, several new and previously identified dysregulated lncRNAs, miRNAs, and mRNAs were found to be vital biomarkers in T2DM. Their alterations and interactions could modulate the pathophysiology of T2DM. Those findings may provide new insights into the molecular mechanisms underlying the development of T2DM.
Collapse
Affiliation(s)
- Yu Song
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Luting Nie
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Mian Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Changsheng Huan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zexin Jia
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenqian Huo
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Ge Y, Qiu H, Zheng J. Physicochemical characteristics and anti-hyperlipidemic effect of polysaccharide from BaChu mushroom (Helvella leucopus). Food Chem X 2022; 15:100443. [PMID: 36211779 PMCID: PMC9532772 DOI: 10.1016/j.fochx.2022.100443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 10/26/2022] Open
|
9
|
Ma Y, Zhao S, Zhang X, Yang J, Gong J. Allergenicity of alcohol-soluble wasp pupal proteins and its impact on the gut microbiota. Clin Immunol 2022; 241:109069. [DOI: 10.1016/j.clim.2022.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
|
10
|
Ren SM, Zhang QZ, Jiang M, Chen ML, Xu XJ, Wang DM, Pan YN, Liu XQ. Systematic characterization of the metabolites of defatted walnut powder extract in vivo and screening of the mechanisms against NAFLD by UPLC-Q-Exactive Orbitrap MS combined with network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114870. [PMID: 34848359 DOI: 10.1016/j.jep.2021.114870] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Walnut kernel, a well-known TCM, is often used after being defatted in tradition. And defatted walnut powder extract (DWPE) has the actions of tonifying the liver and kidney, dissipating stagnation and removing blood stasis, which has the effect on non-alcoholic fatty liver disease (NAFLD). However, the effective components of DWPE in vivo were unclear and the multiple mechanisms of DWPE against NAFLD have not been explored. AIM OF THE STUDY The studies were performed to screen the effective substances in vivo by identification of the metabolites of DWPE in rats and to seek the potential mechanisms of DWPE on NAFLD by construction of the network pharmacology based on metabolites and verification of the highly correlated pathway. MATERIALS AND METHODS To explore the effective substances in vivo, the metabolites of DWPE were identified in SD rats' bio-samples through UPLC-Q-Exactive Orbitrap MS. To analyze the mechanisms of DWPE on NAFLD, a Metabolite-Target-Disease network was established and the potential mechanisms were predicted. Then, highly correlated pathway was verified in animal and cells studies. RESULTS A total of 52 metabolites of DWPE were identified in vivo, which were derived from gallic acid, ellagic acid (EA) and glansreginin A (Gla A). The possible metabolic pathways were phase Ⅰ (hydroxylation, hydrolyzation, etc) and phase Ⅱ metabolic reactions (methylation, sulfation and glucuronidation). Furthermore, in the network pharmacology, 54 core targets were enriched into pathways in cancer, nitrogen metabolism and other 9 pathways, which were essential pathways of DWPE against NAFLD. And the mechanism of nitrogen metabolism was verified in both of animal and cells studies. The results showed that DWPE could decline the concentration of ammonia and increase the expressions of carbonic anhydrase 2 (CA2) and carbamoylphosphate synthetase (CPS1) in nitrogen metabolism. CONCLUSION Taken together, the study revealed the absorption components and their metabolic pathways and demonstrated the mechanism of nitrogen metabolism of DWPE on anti-NAFLD.
Collapse
Affiliation(s)
- Shu-Meng Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Qing-Zhu Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Man Jiang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Meng-Lin Chen
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xia-Jing Xu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Dong-Mei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Ying-Ni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xiao-Qiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
11
|
Zhang F, Chen D, Zhang L, Zhao Q, Ma Y, Zhang X, Zhao S, Chen C. Diaphragma juglandis extracts modifies the gut microbiota during prevention of type 2 diabetes in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114484. [PMID: 34627985 DOI: 10.1016/j.jep.2021.114484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/08/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The diaphragma juglandis (DJ) comes from the wooden septum in the core of Juglans regia L, also known as the walnut septum. In Iranian traditional medicine, walnut distraction wood was widely used in the treatment of diabetes. However, there is a lack of research data on the mechanism of DJ against diabetes. AIM OF THE STUDY To explore the protective effect of diaphragma juglandis extract (DJE) on type 2 diabetic rats and the hypoglycemic mechanism of DJE. MATERIAL AND METHODS Supplemented DJE and fed a high-fat diet for five weeks, and then injected low-dose STZ, successfully induced type 2 diabetic rats. Collected rat serum, liver, pancreas and feces to determine the biochemical parameters of serum and liver, analyze the pathological damages of pancreas and liver, and measure the changes of gut microbes in feces. RESULTS DJE could inhibit the metabolic abnormalities of T2DM by improving insulin resistance, abnormal lipid metabolism, liver damage, oxidative stress, and reducing inflammation. DJE significantly held fasting blood glucose, glycosylated serum protein, serum low density lipoprotein, high density lipoprotein, oral glucose tolerance test, nitric oxide, superoxide dismutase and catalase, serum and liver triglycerides, total cholesterol, aspartate aminotransferase, alanine aminotransferase, malondialdehyde, lipopolysaccharide, fasting insulin and tumor necrosis factor-α and prevented the pathological damage of pancreas and liver. The 16SrRNA gene sequencing results showed that DJE intercepted the disorders of the fecal gut microbes, mainly including Lactobacillaceae, Rikenella, Pygmaiobacter, Oscillospiraceae and Klebsiella. Spearman correlation analysis showed that the changes of gut microbes were closely relative with biochemical parameters. CONCLUSION DJE might prevent type 2 diabetes and its complications and hold up the disorders of gut microbes.
Collapse
Affiliation(s)
- Feng Zhang
- Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Dan Chen
- Yunnan Institute of Tobacco Quality Inspection and Supervision, Kunming, 650106, China
| | - Liming Zhang
- Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Qingyujing Zhao
- Kunming Customs Technological Center, Kunming, 650200, China
| | - Yage Ma
- Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Xi Zhang
- Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Shenglan Zhao
- Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China.
| | - Chaoyin Chen
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China
| |
Collapse
|
12
|
Zhang XF, Tang YJ, Guan XX, Lu X, Li J, Chen XL, Deng JL, Fan JM. Flavonoid constituents of Amomum tsao-ko Crevost et Lemarie and their antioxidant and antidiabetic effects in diabetic rats - in vitro and in vivo studies. Food Funct 2022; 13:437-450. [PMID: 34918725 DOI: 10.1039/d1fo02974f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amomum tsao-ko Crevost et Lemarie (A. tsao-ko) is a well-known dietary spice and traditional Chinese medicine. This study aimed to identify the flavonoids in A. tsao-ko and evaluate their antioxidant and antidiabetic activities in in vitro and in vivo studies. A. tsao-ko methanol extracts possessed a high flavonoid content (1.21 mg QE per g DW) and a total of 29 flavonoids were identified by employing UPLC-MS/MS. In vitro, A. tsao-ko demonstrated antioxidant activity (ORAC value of 34276.57 μM TE/100 g DW, IC50 of ABTS of 3.49 mg mL-1 and FRAP value of 207.42 μM Fe2+ per g DW) and α-amylase and α-glucosidase inhibitory ability with IC50 values of 14.23 and 1.76 mg mL-1, respectively. In vivo, type 2 diabetes mellitus (T2DM) models were induced by a combined high-fat diet (HFD) and streptozotocin (STZ) injection in rats. Treatment with the A. tsao-ko extract (100 mg freeze-dried powder per kg bw) for 6 weeks could significantly improve impaired glucose tolerance, decrease the levels of fasting blood glucose (FBG), insulin, and malondialdehyde (MDA), and increase the superoxide dismutase (SOD) level. Histopathology revealed that the A. tsao-ko extract preserved the architecture and function of the pancreas. In conclusion, the flavonoid composition of A. tsao-ko exhibits excellent antioxidant and antidiabetic activity in vitro and in vivo. A. tsao-ko could be a novel natural material and developed as a related functional food and medicine in T2DM management.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Yu-Jun Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xiao-Xian Guan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xin Lu
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, 116 Park Road, Zhengzhou, Henan 450002, China
| | - Jiao Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xiao-Li Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Jin-Lan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Jian-Ming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
13
|
Ren SM, Zhang QZ, Chen ML, Jiang M, Zhou Y, Xu XJ, Wang DM, Pan YN, Liu XQ. Anti-NAFLD effect of defatted walnut powder extract in high fat diet-induced C57BL/6 mice by modulating the gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113814. [PMID: 33444725 DOI: 10.1016/j.jep.2021.113814] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Walnut kernel has the actions of removing meteorism, dissipating stagnation and removing blood stasis and is used after being defatted in TCM. Defatted walnut powder extract (DWPE) has the abilities of anti-oxidation and lowering lipid levels in vivo. However, the effects and the potential mechanisms of DWPE on NAFLD have not been explored. AIM OF THE STUDY The study were to investigate the anti-NAFLD effect of DWPE in high fat diet-induced C57BL/6 mice and demonstrate that whether DWPE developed the effect on anti-NAFLD by remodeling the compositions and abundances of gut microbiota. MATERIALS AND METHODS The inhibitory effect of DWPE on the development of NAFLD was conducted on C57BL/6 mice with a high fat diet and the regulation effect of DWPE on gut microbiota was verified on pseudo-sterile mice with treatment of broad spectrum antibiotics. RESULTS The results showed that the oral administration of DWPE remarkably alleviated hepatic lipid accumulation by decreasing the levels of TG, TC, LDL, MDA and increasing HDL. Meanwhile, the expressions of NF-κB and MAPKs family proteins were reduced by DWPE compared with HFD group. Otherwise, the efficacy of anti-NAFLD of DWPE was significantly decreased after treatment of antibiotics, which indicated the key role of gut microbiota in the therapeutic process. Furthermore, sequencing of 16S rRNA gene revealed that DWPE could revert the decreased relative abundance of gut microbiota caused by the long term of a high fat diet. And the disordered microflora was remodeled by DWPE including the reduction of Erysipelotrichia, Firmicutes and Actinobacteria as well as the increment of Bacteroidetes, Clostridiales, Bacteroidales S24-7, Prevotellaceae and Bacteroides. CONCLUSION Taken together, DWPE had a preventing effect on NAFLD, which might be associated with the regulation of gut microbiota.
Collapse
Affiliation(s)
- Shu-Meng Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Qing-Zhu Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Meng-Lin Chen
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Man Jiang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Ye Zhou
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xia-Jing Xu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Dong-Mei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Ying-Ni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xiao-Qiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
14
|
Kim JM, Lee U, Kang JY, Park SK, Shin EJ, Kim HJ, Kim CW, Kim MJ, Heo HJ. Anti-Amnesic Effect of Walnut via the Regulation of BBB Function and Neuro-Inflammation in Aβ 1-42-Induced Mice. Antioxidants (Basel) 2020; 9:antiox9100976. [PMID: 33053754 PMCID: PMC7600148 DOI: 10.3390/antiox9100976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
This study was conducted to assess the protective effect of walnut (Juglans regia L.) extract on amyloid beta (Aβ)1-42-induced institute of cancer research (ICR) mice. By conducting a Y-maze, passive avoidance, and Morris water maze tests with amyloidogenic mice, it was found that walnut extract ameliorated behavioral dysfunction and memory deficit. The walnut extract showed a protective effect on the antioxidant system and cholinergic system by regulating malondialdehyde (MDA) levels, superoxide dismutase (SOD) contents, reduced glutathione (GSH) contents, acetylcholine (ACh) levels, acetylcholinesterase (AChE) activity, and protein expression of AChE and choline acetyltransferase (ChAT). Furthermore, the walnut extract suppressed Aβ-induced abnormality of mitochondrial function by ameliorating reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP contents. Finally, the walnut extract regulated the expression of zonula occludens-1 (ZO-1) and occludin concerned with blood–brain barrier (BBB) function, expression of tumor necrosis factor-alpha (TNF-α), tumor necrosis factor receptor 1 (TNFR1), phosphorylated c-Jun N-terminal kinase (p-JNK), phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (p-IκB), cyclooxygenase-2 (COX-2), and interleukin 1 beta (IL-1β), related to neuroinflammation and the expression of phosphorylated protein kinase B (p-Akt), caspase-3, hyperphosphorylation of tau (p-tau), and heme oxygenase-1 (HO-1), associated with the Aβ-related Akt pathway.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Uk Lee
- Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (C.-W.K.); (M.-J.K.)
| | - Jin Yong Kang
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Seon Kyeong Park
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Eun Jin Shin
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Chul-Woo Kim
- Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (C.-W.K.); (M.-J.K.)
| | - Mahn-Jo Kim
- Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (C.-W.K.); (M.-J.K.)
| | - Ho Jin Heo
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
- Correspondence: ; Tel.: +82-55-772-1907
| |
Collapse
|
15
|
Li P, Cai X, Xiao N, Ma X, Zeng L, Zhang LH, Xie L, Du B. Sacha inchi ( Plukenetia volubilis L.) shell extract alleviates hypertension in association with the regulation of gut microbiota. Food Funct 2020; 11:8051-8067. [PMID: 32852030 DOI: 10.1039/d0fo01770a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dysbiosis of gut microbiota has been implicated in the pathogenesis of hypertension. A definite relationship between gut microbiota and hypertension remains intriguing. Here, we show that the Sacha inchi (Plukenetia volubilis L.) shell extract (SISE) intervention significantly reduced systolic blood pressures in spontaneous hypertensive rats (SHR), attenuated the oxidative damage and modulated plasma calcium homeostasis and left ventricular hypertrophy in both SHR and high-salt diet Wistar-Kyoto rats. SISE reshaped the gut microbiome and metabolome, particularly by improving the prevalence of Roseburia and dihydrofolic acid levels in the gut. Transcriptome analyses showed that the protective effects of SISE were accompanied by the modulation of renal molecular pathways, beneficial for cardiovascular functions such as the L-type voltage-dependent calcium channel (LTCC), a key regulator of calcium signaling. Overall, the results have shown that dietary SISE can alleviate hypertension regulating the gut microbiota, and Ca2+ signaling might be a potential target for spontaneous hypertension.
Collapse
Affiliation(s)
- Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Cai
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaowei Ma
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Liping Zeng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.
| | - Lanhua Xie
- Expert Research Station of Bing Du, Pu'er City, Yunnan 665000, China.
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China and Expert Research Station of Bing Du, Pu'er City, Yunnan 665000, China.
| |
Collapse
|
16
|
Ban Q, Cheng J, Sun X, Jiang Y, Guo M. Effect of feeding type 2 diabetes mellitus rats with synbiotic yogurt sweetened with monk fruit extract on serum lipid levels and hepatic AMPK (5' adenosine monophosphate-activated protein kinase) signaling pathway. Food Funct 2020; 11:7696-7706. [PMID: 32914810 DOI: 10.1039/d0fo01860k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monk fruit extract (MFE) is a natural sweetener that has been used as an ingredient of food and pharmaceutical products. The effects of feeding synbiotic yogurt fortified with MFE to rats with type 2 diabetes induced by high-fat diet and streptozotocin on serum lipid levels and hepatic AMPK signaling pathway were evaluated. Results showed that oral administration of the synbiotic yogurt fortified with MFE could improve serum lipid levels, respiratory exchange rate, and heat level in type 2 diabetic rats. Transcriptome analysis showed that synbiotic yogurt fortified with MFE may affect the expression of genes involved in binding, catalytic activity, and transporter activity. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that these differentially expressed genes were related to AMPK signaling pathway, linoleic acid metabolism, and α-linolenic acid metabolism. Western blotting confirmed that synbiotic yogurt fortified with MFE could activate AMPK signaling and improve the protein level of the hepatic gluconeogenic enzyme G6Pase in diabetic rats. The results indicated that MFE could be a novel sweetener for functional yogurt and related products.
Collapse
Affiliation(s)
- Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China and Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaomeng Sun
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China and Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Yunqing Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China and Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Mingruo Guo
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China. and Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|