1
|
Yang W, Xu X, Xie R, Lin J, Hou Z, Xin Z, Cao X, Shi T. Tryptophan metabolites exert potential therapeutic activity in graves' orbitopathy by ameliorating orbital fibroblasts inflammation and proliferation. J Endocrinol Invest 2025:10.1007/s40618-025-02593-6. [PMID: 40423900 DOI: 10.1007/s40618-025-02593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025]
Abstract
PURPOSE Graves' orbitopathy (GO) is a sight-threatening organ-specific autoimmune disease with complicated pathogenesis. Gut microbiota-derived tryptophan (Trp) metabolites play important roles in immune-related diseases, but their role in GO remains unknown. METHODS Trp metabolism-associated gut flora was analyzed by 16 S sequencing in GO patients and controls. Serum metabolomics profiling was performed to assess Trp metabolic pathway. Trp metabolites levels were measured by ELISA in 401 serum samples from a case-control study, and their effects on inflammation and proliferation in orbital fibroblasts were evaluated in vitro. RESULTS Trp metabolism-associated gut flora, including phylum Firmicutes and genus Anaerostipes, were significantly down-regulated in GO patients. Serum metabolomics revealed significant enrichment of Trp metabolic pathway in both GO and Graves' disease (GD) groups. Serum levels of indolepropionic acid (IPA), indole-3-lactate (ILA), and indoleacetic acid (IAA) were significantly decreased in both GD and GO patients compared to controls, with IAA levels further reduced in GO compared to GD patients. Notably, active GO patients had significantly lower IAA levels compared to inactive ones. Moreover, the levels of IAA were negatively correlated with clinical activity score and serum thyrotropin receptor antibody (TRAb) in GO patients. In vitro, IPA, ILA, and IAA mitigated TNFα-induced inflammation and proliferation in orbital fibroblasts by suppressing the Akt signaling pathway. CONCLUSION Trp metabolites IAA maybe a novel biomarker for GO progression. And IPA, ILA and IAA may play a protective role in GO by regulating inflammation and proliferation in orbital fibroblasts, suggesting their potential as therapeutic targets for GO treatment.
Collapse
Affiliation(s)
- Weili Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xinyu Xu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, China
| | - Rongrong Xie
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jiaqi Lin
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhijia Hou
- Beijing Tongren Hospital, Beijing Tongren Eye Center, Capital Medical University, Beijing, 100176, China
- Beijing Ophthalmology and Visual Science Key Lab, Beijing, 100176, China
| | - Zhong Xin
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, China
| | - Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Tingting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, China.
| |
Collapse
|
2
|
Chen P, Huang Y, Zeng H, Zheng M, Guo J. In vitro assessment of the effect of Porphyra haitanensis polysaccharides on the intestinal flora of allergic mice. Int J Biol Macromol 2025; 311:143950. [PMID: 40334899 DOI: 10.1016/j.ijbiomac.2025.143950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 04/21/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
This study systematically investigated the modulatory effects of Porphyra haitanensis polysaccharides (PHP) and its two P. haitanensis polysaccharide components (PHP40 and PHP80) on gut microbiota in ovalbumin (OVA)-sensitized mice via in vitro fermentation. PHP40 and PHP80 exhibited sulfate contents of 5.94 ± 0.05 % and 11.72 ± 0.03 %, respectively, with galactose and glucose as dominant monosaccharides. The different polysaccharide components had different effects on the aforementioned changes in the species composition and structure of the gut microbiota in allergic mice, with distinct dominant microbial profiles across groups. PHP could promote Bacillus and Enterococcus proliferation while inhibiting Staphylococcus. PHP40 and PHP80 could promote Enterococcus and Enterobacter growth but suppressed Staphylococcus and Bacillus. Functional prediction indicated PHP significantly improved galactose metabolism and primary/secondary bile acid biosynthesis, potentially alleviating allergic responses.
Collapse
Affiliation(s)
- Peilin Chen
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, Fujian, China.
| | - YuShan Huang
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian, China
| | - Juanjuan Guo
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, Fujian, China.
| |
Collapse
|
3
|
Sun B, Lin J. Kv1.3 expression on CD4 (+) T cells promotes interleukin-17A-associated airway inflammation and airway remodeling in asthma. Transl Res 2025; 279:40-54. [PMID: 40221022 DOI: 10.1016/j.trsl.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Different types of T helper cells play an important role in disease severity and treatment response in patients with asthma. The potassium channel Kv1.3 is a type of potentially therapeutic target in T-cell-mediated inflammatory diseases. OBJECTIVE This study aimed to explore the potential of Kv1.3 as a therapeutic target for asthma and to assess the efficacy of the Kv1.3 inhibitor PAP-1 in the treatment of asthma. METHODS Kv1.3 expression on CD4+T cells was determined using data from public databases. CD4+T cells were isolated from peripheral blood samples obtained from healthy individuals and patients with asthma. The mouse models of OVA-induced asthma and Kv1.3 knockout were established. The underlying mechanism was investigated using mouse splenic CD4+T cells and BEAS-2B cells. OVA-induced asthmatic mice were treated with the Kv1.3 selective blocker PAP-1. RESULTS Based on public data, we determined the distribution of Kv1.3 on CD4+T cells, its up-regulation in asthma, and its correlation with Th17/Treg balance. Upregulation of Kv1.3 in CD4+T cells was associated with enhanced activation of these cells and airway inflammation in patients and mice with asthma, accompanied by increased IL-17A levels in alveolar lavage fluid. Conversely, Kv1.3 deficiency significantly attenuated airway inflammation, lowered IL-17A levels in bronchoalveolar lavage fluid, and inhibited airway epithelial-mesenchymal transition in asthmatic mice. Furthermore, treatment with the Kv1.3 selective blocker PAP-1 attenuated inflammation in lung tissues and prevented airway remodeling in OVA-induced asthmatic mice. CONCLUSIONS Kv1.3 expression on CD4+ T cells was correlated with IL-17A-associated airway inflammation and remodeling in asthma, which may be regarded as a potential diagnostic marker and therapeutic target for asthma. TRANSLATIONAL SIGNIFICANCE Based on our study, Kv1.3 expression on CD4+T cells was correlated with IL-17A-associated airway inflammation and remodeling in asthma, which may be regarded as a potential diagnostic marker and therapeutic target for asthma. The treatment with the Kv1.3 selective blocker PAP-1 attenuated inflammation in lung tissues and prevented airway remodeling in OVA-induced asthmatic mice. Our discoveries offer novel perspectives for a better understanding of IL-17A-associated airway remodeling in asthma. The development of drugs targeting Kv1.3 holds application value for IL-17A-associated asthma.
Collapse
Affiliation(s)
- Bingqing Sun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiangtao Lin
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Bai J, Ni Y, Zeng Q, Wu Z, Li X, Tong P, Chen H, Yang A, Cheng X. In vitro screening of synbiotics composed of Lactobacillus and oligosaccharides and evaluating the potential anti-allergic ability. J Food Sci 2025; 90:e70080. [PMID: 40052484 DOI: 10.1111/1750-3841.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 05/13/2025]
Abstract
Studies have demonstrated that the supplementation of oligosaccharides and Lactobacillus has the potential to alleviate food allergies. In this study, the gastrointestinal tolerance and adhesion properties of three anti-allergic Lactobacillus strains were evaluated in vitro. Subsequently, five oligosaccharides were incubated with each selected Lactobacillus strain to determine which combination could significantly promote Lactobacillus proliferation. The ability of Lactobacillus-oligosaccharide combinations to intervene allergic responses was assessed using a bone marrow-derived dendritic cells (BMDCs) and splenocytes co-culture model. The results indicated that Lactiplantibacillus plantarum (Lp) exhibited significant resistance to acidic conditions, bile salts, pepsin and trypsin, as well as excellent hydrophobicity, auto-aggregation, antioxidant properties, and Caco-2 cells adhesion. Moreover, Lp co-cultured with fructo-oligosaccharide (FOS) produced higher levels of short-chain fatty acids. Furthermore, Lp-FOS suppressed the expression of surface markers CD40 and CD86 on BMDCs. Additionally, the DCs-splenocytes co-culture model revealed that Lp-FOS upregulated the percentage of Th1 and Tregs, downregulated the percentage of Th2 and Th17 cells, and suppressed the release of pro-inflammatory cytokines. Overall, this study highlights the potential anti-allergic functions of the synbiotic combination of Lp-FOS, which will provide theoretical basis for intervention of allergy by Lp-FOS as dietary supplement.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing, China
- School of Food Science and Technology, Nanchang University, Nanjing, China
| | - Yuanyuan Ni
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing, China
- School of Food Science and Technology, Nanchang University, Nanjing, China
| | - Qian Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing, China
- School of Food Science and Technology, Nanchang University, Nanjing, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing, China
- School of Food Science and Technology, Nanchang University, Nanjing, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing, China
| | - Xiaoyu Cheng
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanjing, China
| |
Collapse
|
5
|
Bai J, Zeng Q, Den W, Huang L, Wu Z, Li X, Tong P, Chen H, Yang A. Synergistic Synbiotic-Containing Lactiplantibacillus plantarum and Fructo-Oligosaccharide Alleviate the Allergenicity of Mice Induced by Soy Protein. Foods 2025; 14:109. [PMID: 39796399 PMCID: PMC11720218 DOI: 10.3390/foods14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/30/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Prebiotics and probiotics have key roles in the intervention and treatment of food allergies. This study assesses the effect of Lactiplantibacillus plantarum synergistic fructo-oligosaccharide (Lp-FOS) intervention using an allergic mouse model induced by soy protein. The results showed that Lp synergistic FOS significantly decreased clinical allergy scores, inhibited specific antibodies (IgE, IgG, and IgG1), IL-4, IL-6, and IL-17A levels, and increased IFN-γ and IL-10 levels. Meanwhile, flow cytometry showed that Lp-FOS intervention inhibited the percentage of dendritic cell (DC) subsets in splenocytes and increased the Th1/Th2 and Treg/Th17 ratios. Furthermore, Lp-FOS intervention upregulated the mRNA levels of T-bet and Foxp3 and downregulated the mRNA levels of GATA3. Finally, non-targeted metabolomic analysis showed that Lp-FOS improved serum metabolic disorders caused by food allergies through regulating glycine, serine, and threonine metabolism, butanoate metabolism, glyoxylate and dicarboxylate metabolism, the biosynthesis of cofactors, and glycerophospholipid metabolism. These data showed that the combination formulation Lp-FOS could be a promising adjuvant treatment for food allergies.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Qian Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Wen Den
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Liheng Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Q.Z.); (W.D.); (L.H.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| |
Collapse
|
6
|
Wang R, Yu YF, Yu WR, Sun SY, Lei YM, Li YX, Lu CX, Zhai JN, Bai FR, Ren F, Huang JQ, Chen J. Roles of Probiotics, Prebiotics, and Postbiotics in B-Cell-Mediated Immune Regulation. J Nutr 2025; 155:37-51. [PMID: 39551357 DOI: 10.1016/j.tjnut.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024] Open
Abstract
Probiotics, prebiotics, and postbiotics can significantly influence B-cell-related diseases through their immunomodulatory effects. They enhance the immune system's function, particularly affecting B cells, which originate in the bone marrow and are crucial for antibody production and immune memory. These substances have therapeutic potential in managing allergies, autoimmune diseases, and inflammatory conditions by regulating the gut microbiota, strengthening epithelial barriers, and directly interacting with various components of the innate and adaptive immune systems. The review highlights the critical need for further research into the precise mechanisms through which probiotics, prebiotics, and postbiotics modulate B cells. Gaining this understanding could facilitate the development of more effective treatments for B-cell-related diseases by harnessing the immunomodulatory properties of these dietary components.
Collapse
Affiliation(s)
- Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yifei F Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Weiru R Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Siyuan Y Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yumei M Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan X Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Chenxu X Lu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jianan N Zhai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Feirong R Bai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jiaqiang Q Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Yang C, Du Y, Li Q, Liu L, Zhao L, Gao C, Tang Z, Zhang X, Zhao Y, Yang X. Fructo-oligosaccharides Alleviated Ulcerative Colitis via Gut Microbiota-Dependent Tryptophan Metabolism in Association with Aromatic Hydrocarbon Receptor Activation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27912-27922. [PMID: 39641614 DOI: 10.1021/acs.jafc.4c07248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Fructo-oligosaccharide (FOS) is a typical prebiotic with intestinal health-promoting effects. Here, we explored the anticolitis activity of FOS and clarified the underlying mechanisms. Dextran sulfate sodium (DSS)-induced mice were gavaged with FOS (400 mg/kg) for 37 days, and administration of FOS alleviated DSS-induced colitis symptoms. Besides, FOS improved gut microbiota dysbiosis and modulated the intestinal microbiota-controlled tryptophan metabolic pathways. Targeted metabolomic results showed that FOS significantly increased the colonic levels of indole-3-acetic acid (IAA) and indole-3-propionic acid (IPA) and subsequently increased the expressions of aromatic hydrocarbon receptors (AhR) in the colon and further promoted the expressions of interleukin-22 (IL-22) and intestinal tight junction proteins in the colitis mice. These findings for the first time highlight a novel anticolitis mechanism of FOS by alleviating intestinal microbiota dysbiosis and modulating microbial tryptophan metabolism to promote IAA and IPA production for triggering AhR/IL-22 axis activation.
Collapse
Affiliation(s)
- Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yao Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Qimei Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lu Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lu Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chang Gao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengwei Tang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
8
|
Shin JW, Shin YJ, Lee DY, Kim DH. Alleviation of Helicobacter pylori- or aspirin-induced gastritis and neuroinflammation in mice by Lactococcus lactis and Bifidobacterium longum. Lett Appl Microbiol 2024; 77:ovae128. [PMID: 39668634 DOI: 10.1093/lambio/ovae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
Helicobacter pylori (HP) causes gastritis and peptic ulcer. Therefore, we examined whether probiotics Lactococcus lactis P135 and Bifidobacterium longum P142, which inhibited HP growth by 37.9% and 35.3%, respectively, and HP-induced IL-8 expression in KATO III cells by 68.6% and 63.1%, respectively, compared to those of normal controls, could mitigate HP-induced gastritis and psychiatric disorder in mice. Oral administration of P135 and/or P142 alleviated HP- or aspirin-induced gastritis, colitis, neuroinflammation, and depression/cognitive impairment-like behavior. They also suppressed HP infection, neutrophil infiltration, and NF-κB activation in the stomach and TNF-α expression and NF-κB activation in the colon and hippocampus. of P135 and/or P142 alleviated HP- or aspirin-induced gut dysbiosis: they decreased Lachnospiracease, Helicobacteriaceae, and Akkermansiaceae populations and increased Bacteroidaceae and Muribaculaceae populations. These findings suggest that HP growth/inflammation-inhibitory P135 and/or P142 may alleviate gut inflammation (gastritis and colitis) and neuroinflammation through the suppression of neutrophil infiltration, NF-κB activation, and HP growth, thereby leading to the attenuation of systemic inflammation and psychiatric disorder.
Collapse
Affiliation(s)
- Jung-Woo Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Ma WW, Huang ZQ, Liu K, Li DZ, Mo TL, Liu Q. The role of intestinal microbiota and metabolites in intestinal inflammation. Microbiol Res 2024; 288:127838. [PMID: 39153466 DOI: 10.1016/j.micres.2024.127838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 08/19/2024]
Abstract
With the imbalance of intestinal microbiota, the body will then face an inflammatory response, which has serious implications for human health. Bodily allergies, injury or pathogens infections can trigger or promote inflammation and alter the intestinal environment. Meanwhile, excessive changes in the intestinal environment cause the imbalance of microbial homeostasis, which leads to the proliferation and colonization of opportunistic pathogens, invasion of the body's immune system, and the intensification of inflammation. Some natural compounds and gut microbiota and metabolites can reduce inflammation; however, the details of how they interact with the gut immune system and reduce the gut inflammatory response still need to be fully understood. The review focuses on inflammation and intestinal microbiota imbalance caused by pathogens. The body reacts differently to different types of pathogenic bacteria, and the ingestion of pathogens leads to inflamed gastrointestinal tract disorders or intestinal inflammation. In this paper, unraveling the interactions between the inflammation, pathogenic bacteria, and intestinal microbiota based on inflammation caused by several common pathogens. Finally, we summarize the effects of intestinal metabolites and natural anti-inflammatory substances on inflammation to provide help for related research of intestinal inflammation caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Wen-Wen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhi-Qiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Kun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - De-Zhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Tian-Lu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
10
|
Chen B, Wu Y, Wu H, Gao J, Meng X, Chen H. IBD functions as a double-edged sword for food allergy in BALB/c mice model. Immunology 2024; 173:394-407. [PMID: 39005140 DOI: 10.1111/imm.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) and food allergy (FA) increase in tandem, but the potential impact of IBD on FA remains unclear. We sought to determine the role of IBD on FA. We first assessed the changes of FA-related risk factors in dextran sulphate sodium salt (DSS) induced colitis mice model. Then, we evaluated the role of IBD on FA in mice. FA responses were determined using a clinical allergy score, body temperature change, serum antibody levels, cytokines level and mouse mast cell protease 1 (MMCP-1) concentration. Accumulation of regulatory T cells was tested using flow cytometry. Intestinal changes were identified by histology, immunohistochemistry, gene expression and gut microbial community structure. In DSS-induced colitis mice model, we found the intestinal damage, colonic neutrophil infiltration, and downregulation of splenic Th2 cytokines and Tregs in mesenteric lymph nodes (MLN). Moreover, we also found that IBD can alleviate the FA symptoms and lead to the significant downregulation of Th2 cytokines, serum IgE and MMCP-1. However, IBD exacerbates intestinal injury and promotes the gene expression levels of IL-33 and IL-5 in the small intestine, damages the intestinal tissue structure and aggravates intestinal dysbiosis in FA. IBD functions as a double-edged sword in FA. From the perspective of clinical symptoms and humoral immune responses, IBD can reduce FA response by downregulating Th2 cytokines. But from the perspective of the intestinal immune system, IBD potentially disrupts intestinal tolerance to food antigens by damaging intestinal tissue structure and causing intestinal dysbiosis.
Collapse
Affiliation(s)
- Bihua Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Yuhong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Huan Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Niu MM, Li Y, Su Q, Chen SY, Li QH, Guo HX, Meng XC, Liu F. A mannose-rich exopolysaccharide-1 isolated from Bifidobacterium breve mitigates ovalbumin-induced intestinal damage in mice by modulation CD4 + T cell differentiation and inhibiting NF-κB signaling pathway. Int J Biol Macromol 2024; 280:135850. [PMID: 39326613 DOI: 10.1016/j.ijbiomac.2024.135850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Ovalbumin (OVA)-induced intestinal injury is a recurrent and potentially fatal condition. Previous studies have highlighted the roles of exopolysaccharides, particularly a mannose-rich (89.59 %) exopolysaccharide-1 (EPS-1) with a molecular weight of 39.9 kDa, isolated from Bifidobacterium breve H4-2, in repairing intestinal barriers and regulating immune responses. In this study, a mouse model of OVA-induced intestinal injury was used to investigate the effects of EPS-1 on intestinal barrier restoration. The results demonstrated that EPS-1 treatment (400 mg/kg. d) significantly reduced the allergic index (3.25 ± 0.43) in OVA-challenged mice (p < 0.05), improved the physical integrity of the intestinal barrier by increasing mucin content and goblet cell number in the ileum (p < 0.05). EPS-1 treatment (400 mg/kg. d) also maintained immune barrier integrity by restoring imbalanced CD4 + T/CD8 + T ratios from 0.86 ± 0.02 to 1.04 ± 0.06, regulating Th1/Th2 and Th17/Treg cells balance, as well as inhibited the NF-κB signaling pathway. Furthermore, EPS-1 maintained microbiota homeostasis by increasing the abundances of Ruminococcus, Butyricicoccus, and Muribaculaceae, while reducing Streptococcus and Candidatus arthromitus. This microbiota modulation enhanced the levels of metabolites such as tyrosine, methionine, tryptophan, triglycerides, and salidroside. In conclusion, EPS-1 shows promise as a functional polysaccharide for therapeutic use.
Collapse
Affiliation(s)
- Meng-Meng Niu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yan Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qian Su
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Si-Yuan Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qiao-Hui Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Huan-Xin Guo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiang-Chen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Murayama Y, Tabuchi M, Utsumi D, Naruse K, Tokuyama K, Ikedo A, Morimasa E, Kato S, Matsumoto K. Role of transient receptor potential vanilloid 4 channels in an ovalbumin-induced murine food allergic model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6061-6074. [PMID: 38396155 DOI: 10.1007/s00210-024-02969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
The prevalence of food allergy (FA) has increased worldwide but an effective therapeutic strategy has not been established. Transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive nonselective cation channel, is mainly expressed in the epithelium of various organs. The present study investigated the role of TRPV4 in the pathogenesis of an ovalbumin (OVA)-induced FA model in mice. Wild-type (WT) and TRPV4-deficient (TRPV4KO) mice were sensitized and challenged by OVA to establish FA model. Intestinal tissue samples were processed for biochemical, molecular, and image analyses. Intestinal permeability and antigen uptake assay were conducted using FITC-dextran and OVA-FITC, respectively. TRPV4 was expressed in the colonic epithelium in normal and OVA-treated WT mice. Repeated oral administration of OVA to mice induced systemic allergic symptoms, diarrhea, upregulation of T helper 2 cytokines, OVA-specific immunoglobulin, and FA-related inflammatory cells. These responses were significantly augmented in TRPV4KO mice compared with WT mice. After the induction of FA, the intestinal permeability was significantly increased in TRPV4KO mice compared with WT mice. The expressions of the tight junction protein occludin and adherence junction protein E-cadherin in the colon were significantly lower in TRPV4KO mice compared with WT mice under normal and FA conditions. In addition, the uptake of OVA by CD11c-positive cells was significantly increased in TRPV4KO mice compared with WT mice under FA conditions. These results suggest that epithelial TRPV4 protects against OVA-induced FA symptoms by suppressing the penetration of allergens by maintaining epithelial barrier functions.
Collapse
Affiliation(s)
- Yuki Murayama
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mayumi Tabuchi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daichi Utsumi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kei Naruse
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kouga Tokuyama
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ayana Ikedo
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Emina Morimasa
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan.
- Laboratory of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo Kyotanabe, Kyoto, 610-0395, Japan.
| |
Collapse
|
13
|
Wang Y, Zhang K, Chen WM, Mao JH, Wang XM, Shao YH, Tu ZC, Liu J. Gut Microbiome-Serum Metabolism Revealed the Allergenicity of Ferulic Acid Combined with Glucose-Modified β-Lactoglobulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11746-11758. [PMID: 38718253 DOI: 10.1021/acs.jafc.4c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
A novel strategy combining ferulic acid and glucose was proposed to reduce β-lactoglobulin (BLG) allergenicity and investigate whether the reduction in allergenicity was associated with gut microbiome and serum metabolism. As a result, the multistructure of BLG changed, and the modified BLG decreased significantly the contents of IgE, IgG, IgG1, and mMCP-1 in serum, improved the diversity and structural composition of gut microbiota, and increased the content of short-chain fatty acids (SCFAs) in allergic mice. Meanwhile, allergic mice induced by BLG affected arachidonic acid, tryptophan, and other metabolic pathways in serum, the modified BLG inhibited the production of metabolites in arachidonic acid metabolism pathway and significantly increased tryptophan metabolites, and this contribution helps in reducing BLG allergenicity. Overall, reduced allergenicity of BLG after ferulic acid was combined with glucose modification by regulating gut microbiota, the metabolic pathways of arachidonic acid and tryptophan. The results may offer new thoughts alleviating the allergy risk of allergenic proteins.
Collapse
Affiliation(s)
- Yang Wang
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Kai Zhang
- Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, China
| | - Wen-Mei Chen
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Ji-Hua Mao
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xu-Mei Wang
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan-Hong Shao
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jun Liu
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
14
|
Lee SY, Park YM, Yoo HJ, Hong SJ. Metabolomic pathways in food allergy. Pediatr Allergy Immunol 2024; 35:e14133. [PMID: 38727629 DOI: 10.1111/pai.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 07/12/2024]
Abstract
Food allergy (FA) is a widespread issue, affecting as many as 10% of the population. Over the past two to three decades, the prevalence of FA has been on the rise, particularly in industrialized and westernized countries. FA is a complex, multifactorial disease mediated by type 2 immune responses and involving environmental and genetic factors. However, the precise mechanisms remain inadequately understood. Metabolomics has the potential to identify disease endotypes, which could beneficially promote personalized prevention and treatment. A metabolome approach would facilitate the identification of surrogate metabolite markers reflecting the disease activity and prognosis. Here, we present a literature overview of recent metabolomic studies conducted on children with FA.
Collapse
Affiliation(s)
| | - Yoon Mee Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Respiratory Allergy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Duan C, Ma L, Qin M, Zhang L, Hu S, Liu L, Sun Y, Ma F, Li D. Potential of Lactobacillus plantarum A56 in relieving food allergy through immunoregulation, antioxidation, and reshaping intestinal microbiota. J Nutr Biochem 2024; 125:109560. [PMID: 38163625 DOI: 10.1016/j.jnutbio.2023.109560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/14/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Food allergy is an abnormal immune reaction triggered by food protein antigens. Relevant studies have suggested that probiotic supplementation was with the potential to alleviate food allergy. This study aimed to explore the effects of Lactobacillus plantarum A56 on the alleviation of ovalbumin (OVA)-induced food allergy via immunomodulatory function, antioxidation, and modification of intestinal microbiota. Balb/c mice were sensitized with OVA (20 µg/mouse) by intraperitoneal injection for 3 weeks and accompanied by oral administration of L. plantarum A56 (109 CFU/mL), subsequently with orally challenged twice by OVA at 50 mg/mL for 1 week. The results showed that oral supplementation of L. plantarum A56 could effectively relieve allergic symptoms of mice, and decreased OVA-specific IgE and IgG1 concentrations. It also declined interleukin (IL)-4 level, raised interferon-γ (IFN-γ) in serum, and splenocyte supernatant, and the qPCR results were consistent with above results. Moreover, L. plantarum A56 treatment also fortified superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, and reduced malondialdehyde (MDA) level in serum. The increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and forkhead box O1 (Foxo1) expression indicated that L. plantarum A56 exerted antioxidation through Nrf2-Foxo1 pathway. In addition, L. plantarum A56 treatment elevated Bacteroidetes richness, ASV/OTU number, species diversity, etc. Notably, Spearman correlation analysis indicated that Bacteroidetes displayed obviously negative correlation with IgE and IgG1, but Actinobacteria and Acidobacteria exhibited significantly positive correlation with IgG1 and IgE. Collectively, these results suggested that L. plantarum A56 could alleviate OVA-induced food allergy by regulating Th1/Th2 imbalance, antioxidation, and modulating intestinal microbiota.
Collapse
Affiliation(s)
- Cuicui Duan
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun, Jilin, People's Republic of China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled, Ministry of Education, Changchun University, Changchun, Jilin, People's Republic of China
| | - Lin Ma
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun, Jilin, People's Republic of China
| | - Mengchun Qin
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun, Jilin, People's Republic of China
| | - Lingfang Zhang
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun, Jilin, People's Republic of China
| | - Shunan Hu
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun, Jilin, People's Republic of China
| | - Lifan Liu
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun, Jilin, People's Republic of China
| | - Yixue Sun
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun, Jilin, People's Republic of China
| | - Fumin Ma
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun, Jilin, People's Republic of China
| | - Dan Li
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun, Jilin, People's Republic of China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled, Ministry of Education, Changchun University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
16
|
Losol P, Wolska M, Wypych TP, Yao L, O'Mahony L, Sokolowska M. A cross talk between microbial metabolites and host immunity: Its relevance for allergic diseases. Clin Transl Allergy 2024; 14:e12339. [PMID: 38342758 PMCID: PMC10859320 DOI: 10.1002/clt2.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Allergic diseases, including respiratory and food allergies, as well as allergic skin conditions have surged in prevalence in recent decades. In allergic diseases, the gut microbiome is dysbiotic, with reduced diversity of beneficial bacteria and increased abundance of potential pathogens. Research findings suggest that the microbiome, which is highly influenced by environmental and dietary factors, plays a central role in the development, progression, and severity of allergic diseases. The microbiome generates metabolites, which can regulate many of the host's cellular metabolic processes and host immune responses. AIMS AND METHODS Our goal is to provide a narrative and comprehensive literature review of the mechanisms through which microbial metabolites regulate host immune function and immune metabolism both in homeostasis and in the context of allergic diseases. RESULTS AND DISCUSSION We describe key microbial metabolites such as short-chain fatty acids, amino acids, bile acids and polyamines, elucidating their mechanisms of action, cellular targets and their roles in regulating metabolism within innate and adaptive immune cells. Furthermore, we characterize the role of bacterial metabolites in the pathogenesis of allergic diseases including allergic asthma, atopic dermatitis and food allergy. CONCLUSION Future research efforts should focus on investigating the physiological functions of microbiota-derived metabolites to help develop new diagnostic and therapeutic interventions for allergic diseases.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
- Department of Molecular Biology and GeneticsSchool of BiomedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Magdalena Wolska
- Laboratory of Host‐Microbiota InteractionsNencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Tomasz P. Wypych
- Laboratory of Host‐Microbiota InteractionsNencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Lu Yao
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Liam O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| |
Collapse
|
17
|
Basak S, Hridayanka KSN, Duttaroy AK. Bioactives and their roles in bone metabolism of osteoarthritis: evidence and mechanisms on gut-bone axis. Front Immunol 2024; 14:1323233. [PMID: 38235147 PMCID: PMC10792057 DOI: 10.3389/fimmu.2023.1323233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Bioactives significantly modify and maintain human health. Available data suggest that Bioactives might play a beneficial role in chronic inflammatory diseases. Although promised, defining their mechanisms and opting to weigh their benefits and limitations is imperative. Detailed mechanisms by which critical Bioactives, including probiotics and prebiotics such as dietary lipids (DHA, EPA, alpha LA), vitamin D, polysaccharides (fructooligosaccharide), polyphenols (curcumin, resveratrol, and capsaicin) potentially modulate inflammation and bone metabolism is limited. Certain dietary bioactive significantly impact the gut microbiota, immune system, and pain response via the gut-immune-bone axis. This narrative review highlights a recent update on mechanistic evidence that bioactive is demonstrated demonstrated to reduce osteoarthritis pathophysiology.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Wang W, Fan Z, Yan Q, Pan T, Luo J, Wei Y, Li B, Fang Z, Lu W. Gut microbiota determines the fate of dietary fiber-targeted interventions in host health. Gut Microbes 2024; 16:2416915. [PMID: 39418223 PMCID: PMC11487953 DOI: 10.1080/19490976.2024.2416915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Epidemiological investigation confirmed that the intake of dietary fiber (DF) is closely related to human health, and the most important factor affecting the physiological function of DF, besides its physicochemical properties, is the gut microbiota. This paper mainly summarizes the interaction between DF and gut microbiota, including the influence of DF on the colonization of gut microbiota based on its different physicochemical properties, and the physiological role of gut microbiota in destroying the complex molecular structure of DF by encoding carbohydrate-active enzymes, thus producing small molecular products that affect the metabolism of the host. Taking cardiovascular disease (Atherosclerosis and hypertension), liver disease, and immune diseases as examples, it is confirmed that some DF, such as fructo-oligosaccharide, galactooligosaccharide, xylo-oligosaccharide, and inulin, have prebiotic-like physiological effects. These effects are dependent on the metabolites produced by the gut microbiota. Therefore, this paper further explores how DF affects the gut microbiota's production of substances such as short-chain fatty acids, bile acids, and tryptophan metabolites, and provides a preliminary explanation of the mechanisms associated with their impact on host health. Finally, based on the structural properties of DF and the large heterogeneity in the composition of the population gut microbiota, it may be a future trend to utilize DF and the gut microbiota to correlate host health for precision nutrition by combining the information from population disease databases.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Zhexin Fan
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Qingqing Yan
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Tong Pan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Yijiang Wei
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baokun Li
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhifeng Fang
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Rios-Carlos M, Cervantes-García D, Córdova-Dávalos LE, Bermúdez-Humarán LG, Salinas E. Unraveling the gut-skin axis in atopic dermatitis: exploiting insights for therapeutic strategies. Gut Microbes 2024; 16:2430420. [PMID: 39601281 PMCID: PMC11610564 DOI: 10.1080/19490976.2024.2430420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Gut microbiota exert functions of high importance in the intestine. Furthermore, there is increasing evidence for its role in immune regulation and maintenance of homeostasis in many physiological processes taking place in distant tissues. In particular, in this review, we explore the impact of metabolites produced by the gut microbiota on the development of atopic dermatitis (AD). Probiotics and prebiotics balance the microbiota and promote the generation of bacterial metabolites, such as short-chain fatty acids and tryptophan derivates, which promote the regulation of the exacerbated AD immune response through regulatory T cells and IL-10 and TGF-β cytokines. Metabolites also have a direct action on keratinocytes once they reach the bloodstream. Besides, probiotics decrease the levels of metabolites associated with AD onset, such as phenols. Understanding all these crosstalk processes between the gut and the skin reveals a number of possibilities, mainly through the manipulation of the gut microbiome, which may represent therapeutic strategies that can contribute to the standard treatments of AD patients to improve their quality of life.
Collapse
Affiliation(s)
- Marcela Rios-Carlos
- Department of Microbiology, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Department of Microbiology, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Aguascalientes, Mexico
- Consejo Nacional de Humanidades Ciencias y Tecnologías, Ciudad de México, México
| | - Laura E. Córdova-Dávalos
- Department of Microbiology, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Aguascalientes, Mexico
| | | | - Eva Salinas
- Department of Microbiology, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Aguascalientes, Mexico
| |
Collapse
|
20
|
Song J, Zhang H, Tong Y, Wang Y, Xiang Q, Dai H, Weng C, Wang L, Fan J, Shuai Y, Lai C, Fang X, Chen M, Bao J, Zhang W. Molecular mechanism of interleukin-17A regulating airway epithelial cell ferroptosis based on allergic asthma airway inflammation. Redox Biol 2023; 68:102970. [PMID: 38035662 PMCID: PMC10711239 DOI: 10.1016/j.redox.2023.102970] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Interleukin-17A (IL-17A) levels are elevated in patients with asthma. Ferroptosis has been identified as the non-apoptotic cell death type associated with asthma. Data regarding the relation of ferroptosis with asthma and the effect of IL-17A on modulating ferroptosis in asthma remain largely unclear. The present work focused on investigating the role of IL-17A in allergic asthma-related ferroptosis and its associated molecular mechanisms using public datasets, clinical samples, human bronchial epithelial cells, and an allergic asthma mouse model. We found that IL-17A was significantly upregulated within serum in asthma cases. Adding IL-17A significantly increased ferroptosis within human bronchial epithelial cells (BEAS-2B). In ovalbumin (OVA)-induced allergic asthmatic mice, IL-17A regulated and activated lipid peroxidation induced ferroptosis, whereas IL-17A knockdown effectively inhibited ferroptosis in vivo by protection of airway epithelial cells via the xCT-GSH-GPX4 antioxidant system and reduced airway inflammation. Mouse mRNA sequencing results indicated that the tumor necrosis factor (TNF) pathway was the differential KEGG pathway in the OVA group compared to healthy controls and the OVA group compared to the IL-17A knockout OVA group. We further used N-acetylcysteine (TNF inhibitor) to inhibit the TNF signaling pathway, which was found to protect BEAS-2B cells from IL-17A induced lipid peroxidation and ferroptosis damage. Our findings reveal a novel mechanism for the suppression of ferroptosis in airway epithelial cells, which may represent a new strategy for the use of IL-17A inhibitors against allergic asthma.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hui Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu Tong
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yufei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiangwei Xiang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Huan Dai
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Cuiye Weng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junwen Fan
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yilong Shuai
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chuqiao Lai
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoxiao Fang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Mingxin Chen
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiali Bao
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
21
|
Gao K, Chen L, Chen C, Chen Z, Zhang Q, Fan Q, Li Y, Chen S. Leuconostoc mesenteroides WHH1141 ameliorates ovalbumin-induced food allergy in mice. J Food Sci 2023; 88:4289-4304. [PMID: 37680119 DOI: 10.1111/1750-3841.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Food allergy (FA) is acknowledged as a significant public health and food safety issue, due to its manifestation as an amplified immune reaction to food antigens. Recently, probiotics within Lactobacillus and Bifidobacterium have been highlighted as a promising strategy against allergic disease by modulating the balance of Th1/Th2 responses. However, the allergy-alleviating effects of probiotic Leuconostoc mesenteroides strains are unknown. Therefore, this study investigated the potentials of eleven L. mesenteroides strains on the Th1/Th2 balance in vitro by evaluating the expression patterns of interferon-gamma (IFN-γ) (Th1 cytokine) and interleukin-4 (IL-4) (Th2 cytokine) in mesenteric lymph node-derived lymphocytes from ovalbumin (OVA)-sensitized mice. Among strains, WHH1141 incubation caused the highest IFN-γ/IL-4 ratio. Oral administration of WHH1141 (1 × 109 CFU/mL) in the OVA-induced FA mouse model for 40 days improved the weight loss and FA pathological symptoms and normalized the serum immunoglobulin E levels. Meanwhile, the OVA-induced elevated gene expressions of cytokines (IL-4, IL-5, and IL-13) and tight-junction proteins (ZO-1 and Occludin) and levels of cytokines (IL-4, IL-5, and IL-13) and histamine in the jejunum were restored by WHH1141. Furthermore, WHH1141 reversed the reduced gut microbial diversity and short-chain fatty acid (SCFA) levels, specifically increased Bacteroidota abundance, and decreased Firmicutes abundance in OVA-induced mice. Overall, these findings suggest that WHH1141 exerts FA-alleviating effects on OVA-induced mice, which is involved with the inhibition of the jejunal Th2 immune responses and the modulation of gut microbiome composition and SCFA productions. PRACTICAL APPLICATION: Leuconostoc mesenteroides WHH1141 with FA-alleviating potentials may be considered a promising approach in the mitigation of FA symptoms.
Collapse
Affiliation(s)
- Kan Gao
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Lie Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Cailing Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Zuoguo Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Qiwen Zhang
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Qiuling Fan
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Yanjun Li
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Su Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| |
Collapse
|
22
|
Li C, Tian Y, Pei J, Zhang Y, Hao D, Han T, Wang X, Song S, Huang L, Wang Z. Sea cucumber chondroitin sulfate polysaccharides attenuate OVA-induced food allergy in BALB/c mice associated with gut microbiota metabolism and Treg cell differentiation. Food Funct 2023; 14:7375-7386. [PMID: 37477050 DOI: 10.1039/d3fo00146f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Previous research studies have shown that sulfated polysaccharides can inhibit food allergy, but the detailed mechanism remains largely unknown. In this study, RBL-2H3 cells were used to compare the anti-allergic activities of four sulfated polysaccharides, and an ovalbumin (OVA)-sensitized allergic mouse experiment was used to explore their desensitization effect, with regard to the alteration in gut microbiota and immune cell differentiation. Compared with the shark, bovine and porcine chondroitin sulfate, sea cucumber chondroitin sulfate (SCCS) significantly inhibited the degranulation of RBL-2H3 cells. SCCS reduced allergic symptoms and protected the jejunum from injury in mice. Furthermore, SCCS increased the relative abundance of Lachnospiraceae NK4A136, decreased the relative proportion of Prevotellaceae NK3B31, and up-regulated the secretion of short chain fatty acids such as butyric acid in the feces, resulting in an increase in the mucin 2 (MUC2) secretion by goblet cells HT-29. Meanwhile, SCCS induced the differentiation of regulatory T cells in the mesenteric lymph nodes of mice. This study provides a deeper understanding of the functioning mechanism of SCCS in alleviating food allergy and may guide the development and production of anti-allergy active ingredients.
Collapse
Affiliation(s)
- Cheng Li
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Yang Tian
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Jiahuan Pei
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Yuyang Zhang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Daokuan Hao
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Tianjiao Han
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Xiaoqin Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Linjuan Huang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
23
|
Shi J, Wang Y, Cheng L, Wang J, Raghavan V. Gut microbiome modulation by probiotics, prebiotics, synbiotics and postbiotics: a novel strategy in food allergy prevention and treatment. Crit Rev Food Sci Nutr 2022; 64:5984-6000. [PMID: 36576159 DOI: 10.1080/10408398.2022.2160962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food allergy has caused lots of global public health issues, particularly in developed countries. Presently, gut microbiota has been widely studied on allergy, while the role of dysbiosis in food allergy remains unknown. Scientists found that changes in gut microbial compositions and functions are strongly associated with a dramatic increase in the prevalence of food allergy. Altering microbial composition is crucial in modulating food antigens' immunogenicity. Thus, the potential roles of probiotics, prebiotics, synbiotics, and postbiotics in affecting gut bacteria communities and the immune system, as innovative strategies against food allergy, begins to attract high attention of scientists. This review briefly summarized the mechanisms of food allergy and discussed the role of the gut microbiota and the use of probiotics, prebiotics, synbiotics, and postbiotics as novel therapies for the prevention and treatment of food allergy. The perspective studies on the development of novel immunotherapy in food allergy were also described. A better understanding of these mechanisms will facilitate the development of preventive and therapeutic strategies for food allergy.
Collapse
Affiliation(s)
- Jialu Shi
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Youfa Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| |
Collapse
|
24
|
Sun W, Cui Y, Zhang X, Wang Y, Zhang Z, Ding X, Liang H, Wang D, Sun Y, Liu S, Duan X, Lu Y, Sun T. Effects of Gabexate Mesylate on the Gut Microbiota and Metabolomics in Rats with Sepsis. J Inflamm Res 2022; 15:6581-6594. [PMID: 36506782 PMCID: PMC9733569 DOI: 10.2147/jir.s392060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/12/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. However, there is still no single drug that could reduce septic mortality. Previous studies have reported gabexate mesylate (GM) significantly reduced serum inflammatory factors, alleviated sepsis-induced lung injury and improved clinical outcomes. This study aimed to combine with microbiome sequencing and metabolomics analysis to explore the effects of GM administration in septic rats. METHODS Sixty SD rats were randomly divided into the sham control (SC), cecal ligation and puncture (CLP), and GM injection (GM) groups. The mortality was measured and colonic feces were collected to examine the gut microbiota and metabolism 24 h after the procedure. The lung tissues were collected for hematoxylin-eosin staining. RESULTS We observed the relative abundance of Pygmaiobacter, which contributed to short-chain fatty acids (SCFAs) promotion, Lactobacillus and Erysipelotrichaceae UCG-003 increased in the GM-treated rats, while Escherichia-Shigella and Akkermansia decreased compared to the sepsis-induced lung injury group. Furthermore, these 3 metabolites including Palmitoylethanolamide, Deoxycholic acid and Chenodeoxycholic acid correlated significantly to CLP- and GM-rich genus (P < 0.05). Besides, the lung tissues of CLP group showed more severe inflammatory infiltration and edema, and the mortality rate in the CLP group (10/20) was significantly higher than in the SC group (0/20) (P < 0.001) and GM group (4/20) (P < 0.05). CONCLUSION Our findings showed that GM attenuated sepsis-induced lung injury rats and regulated metabolites related to gut microbiota, which may provide an effective treatment for sepsis patients.
Collapse
Affiliation(s)
- Wenju Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Yuqing Cui
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Xiaojuan Zhang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Yuze Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Zihao Zhang
- Department of Clinical Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Xianfei Ding
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Huoyan Liang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Dong Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Yali Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Shaohua Liu
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Xiaoguang Duan
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Yibin Lu
- Department of Critical Care Medicine, Xinyang Hospital Affiliated to Zhengzhou University, Xinyang, 464000, People’s Republic of China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| |
Collapse
|
25
|
Chernikova DA, Zhao MY, Jacobs JP. Microbiome Therapeutics for Food Allergy. Nutrients 2022; 14:5155. [PMID: 36501184 PMCID: PMC9738594 DOI: 10.3390/nu14235155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/10/2022] Open
Abstract
The prevalence of food allergies continues to rise, and with limited existing therapeutic options there is a growing need for new and innovative treatments. Food allergies are, in a large part, related to environmental influences on immune tolerance in early life, and represent a significant therapeutic challenge. An expanding body of evidence on molecular mechanisms in murine models and microbiome associations in humans have highlighted the critical role of gut dysbiosis in the pathogenesis of food allergies. As such, the gut microbiome is a rational target for novel strategies aimed at preventing and treating food allergies, and new methods of modifying the gastrointestinal microbiome to combat immune dysregulation represent promising avenues for translation to future clinical practice. In this review, we discuss the intersection between the gut microbiome and the development of food allergies, with particular focus on microbiome therapeutic strategies. These emerging microbiome approaches to food allergies are subject to continued investigation and include dietary interventions, pre- and probiotics, microbiota metabolism-based interventions, and targeted live biotherapeutics. This exciting frontier may reveal disease-modifying food allergy treatments, and deserves careful study through ongoing clinical trials.
Collapse
Affiliation(s)
- Diana A. Chernikova
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Matthew Y. Zhao
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
26
|
Xu Y, Xu Z, Gu X, Xie Y, He R, Xu J, Jing B, Peng X, Yang G. Immunomodulatory effects of two recombinant arginine kinases in Sarcoptes Scabiei on host peripheral blood mononuclear cells. Front Immunol 2022; 13:1035729. [DOI: 10.3389/fimmu.2022.1035729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022] Open
Abstract
BackgroundAs an important zoonotic parasitic disease with global distribution, scabies causes serious public health and economic problems. Arginine kinase (AK) is involved in cell signal transduction, inflammation, and apoptosis. Two AKs were identified in Sarcoptes scabiei, but their functions in the host immune response remain unclear.MethodsrSsAK-1 and rSsAK-2 were expressed, purified, and immunolocalized. The effects of rSsAK-1 and rSsAK-2 on rabbit PBMC proliferation, apoptosis, and migration; Bcl-2, Bcl-xl, Fas, Bax, and NF-κB transcription levels; and IL-2, IFN-γ, IL-4, IL-10, TGF-β1, and IL-17 secretion were detected.ResultsrSsAK-1 and rSsAK-2 were cloned and expressed successfully. Both enzymes were ~57 kDa and contained 17-kDa tagged proteins, and had good catalytic activity and immunoreactivity. The proteins were located in the S. scabiei exoskeleton, chewing mouthparts, legs, stomach, and intestine. SsAK-1 and SsAK-2 were secreted in the pool and epidermis of the skin lesions, which may be involved in S. scabiei–host interaction. rSsAK-1 and rSsAK-2 significantly promoted cell proliferation, induced cell migration, inhibited apoptosis, and increased Bcl-2, Bcl-xl and NF-κB (p65) transcription levels concentration-dependently, and inhibited IL-2, IFN-γ, and IL-10 secretion and promoted IL-4 and IL-17 secretion.ConclusionrSsAK-1 and rSsAK-2 might increase Bcl-2 and Bcl-xl expression by activating the NF-κB signaling pathway to promote cell proliferation and inhibit apoptosis, which induced PBMC survival. By inducing PBMC migration to the infection site, rSsAK-1 and rSsAK-2 shifted the Th1/Th2 balance toward Th2 and changed the Th17/Treg balance, which indicated their immune role in S. scabiei allergic inflammation.
Collapse
|
27
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
28
|
Zheng H, Zeng X, Xie Q, Wu Y, Liu Q, Chen Q, Huang L, Zhang W. Early life environmental antibiotic exposure and preschool allergic diseases: A biomonitoring-based prospective study in eastern China. Front Public Health 2022; 10:1043942. [PMID: 36388395 PMCID: PMC9659984 DOI: 10.3389/fpubh.2022.1043942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 01/29/2023] Open
Abstract
Background Globally, the prevalence of allergic diseases remains high, as does the level of environmental antibiotics. It has been found that clinical antibiotic application may increase preschool allergy risk. However, few biomonitoring studies have been conducted about the association between early life environmental trace dose antibiotic exposure and preschool allergy. Objective To analyze the association between prenatal environmental antibiotic levels and allergic diseases using logistic regression models. Methods A total of 743 pregnant women and their offspring from the Shanghai Allergy Birth Cohort completed five years follow-up, and 251 mother-infant pairs were finally included. Maternal urine samples were collected for 15 antibiotic quantitative measurements using liquid chromatography-tandem mass spectrometry. The high-antibiotic group was defined as having at least half of antibiotics exceeding the median concentration. Allergic diseases were assessed by clinicians through clinical history, standardized questionnaires, and annual physical examinations until the age of five. Skin-prick-test (SPT) was performed at 5 years old. Results The incidence of allergic diseases was generally higher in the high-antibiotic than that in the low-antibiotic group. Compared to the low-comprehensive antibiotic group, children in the high-antibiotic group were weakly associated with allergic diseases but had a 6-fold increased risk of food allergens sensitivity (OR: 7.09, 95% CI: 1.59, 31.74). Association of above-median single prenatal antibiotic concentration exposure and allergic diseases was also observed (azithromycin and asthma, OR: 2.72, 95% CI: 1.15, 6.42; enrofloxacin and wheeze, OR: 2.22, 95% CI: 1.22, 4.05; trimethoprim and atopic dermatitis, OR: 2.00, 95% CI: 1.08, 3.71). Moreover, children with higher prenatal norfloxacin levels were more sensitive to food allergens (OR: 5.52, 95%CI: 1.54, 19.71). Conclusion Early-life environmental antibiotic exposure may be correlated with an increased risk of asthma, wheeze, atopic dermatitis, and SPT positivity for food allergens in 5-year-old children.
Collapse
Affiliation(s)
- Hang Zheng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China,Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xinxin Zeng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China,Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiuling Xie
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhang Wu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanhua Liu
- Department of Pediatric Respiratory Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisu Huang
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China,*Correspondence: Lisu Huang
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China,Weixi Zhang
| |
Collapse
|
29
|
Xu X, Wang M, Wang Z, Chen Q, Chen X, Xu Y, Dai M, Wu B, Li Y. The bridge of the gut-joint axis: Gut microbial metabolites in rheumatoid arthritis. Front Immunol 2022; 13:1007610. [PMID: 36275747 PMCID: PMC9583880 DOI: 10.3389/fimmu.2022.1007610] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint destruction, synovitis, and pannus formation. Gut microbiota dysbiosis may exert direct pathogenic effects on gut homeostasis. It may trigger the host's innate immune system and activate the "gut-joint axis", which exacerbates the RA. However, although the importance of the gut microbiota in the development and progression of RA is widely recognized, the mechanisms regulating the interactions between the gut microbiota and the host immune system remain incompletely defined. In this review, we discuss the role of gut microbiota-derived biological mediators, such as short-chain fatty acids, bile acids, and tryptophan metabolites, in maintaining intestinal barrier integrity, immune balance and bone destruction in RA patients as the bridge of the gut-joint axis.
Collapse
Affiliation(s)
- Xiaoyu Xu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zikang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xixuan Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yingyue Xu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Min Dai
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bin Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yanping Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
30
|
Su X, Gao Y, Yang R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells 2022; 11:2296. [PMID: 35892593 PMCID: PMC9330295 DOI: 10.3390/cells11152296] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/16/2022] Open
Abstract
Tryptophan is an essential amino acid from dietary proteins. It can be metabolized into different metabolites in both the gut microbiota and tissue cells. Tryptophan metabolites such as indole-3-lactate (ILA), indole-3-acrylate (IAC), indole-3-propionate (IPA), indole-3-aldehyde (IAID), indoleacetic acid (IAA), indole-3-acetaldehyde and Kyn can be produced by intestinal microorganisms through direct Trp transformation and also, partly, the kynurenine (Kyn) pathway. These metabolites play a critical role in maintaining the homeostasis of the gut and systematic immunity and also potentially affect the occurrence and development of diseases such as inflammatory bowel diseases, tumors, obesity and metabolic syndrome, diseases in the nervous system, infectious diseases, vascular inflammation and cardiovascular diseases and hepatic fibrosis. They can not only promote the differentiation and function of anti-inflammatory macrophages, Treg cells, CD4+CD8αα+ regulatory cells, IL-10+ and/or IL-35+B regulatory cells but also IL-22-producing innate lymphoid cells 3 (ILC3), which are involved in maintaining the gut mucosal homeostasis. These findings have important consequences in the immunotherapy against tumor and other immune-associated diseases. We will summarize here the recent advances in understanding the generation and regulation of tryptophan metabolites in the gut microbiota, the role of gut microbiota-derived tryptophan metabolites in different immune cells, the occurrence and development of diseases and immunotherapy against immune-associated diseases.
Collapse
Affiliation(s)
- Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Fang Z, Pan T, Wang H, Zhu J, Zhang H, Zhao J, Chen W, Lu W. Limosilactobacillus reuteri Attenuates Atopic Dermatitis via Changes in Gut Bacteria and Indole Derivatives from Tryptophan Metabolism. Int J Mol Sci 2022; 23:ijms23147735. [PMID: 35887083 PMCID: PMC9320942 DOI: 10.3390/ijms23147735] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Gut bacteria are closely associated with the development of atopic dermatitis (AD) due to their immunoregulatory function. Indole derivatives, produced by gut bacteria metabolizing tryptophan, are ligands to activate the aryl hydrocarbon receptor (AHR), which plays a critical role in attenuating AD symptoms. Limosilactobacillus reuteri, a producer of indole derivatives, regulates mucosal immunity via activating the AHR signaling pathway. However, the effective substance and mechanism of L. reuteri in the amelioration of AD remain to be elucidated. In this research, we found that L. reuteri DYNDL22M62 significantly improved AD-like symptoms in mice by suppressing IgE levels and the expressions of thymic stromal lymphopoietin (TSLP), IL-4, and IL-5. L. reuteri DYNDL22M62 induced an increase in the production of indole lactic acid (ILA) and indole propionic acid (IPA) via targeted tryptophan metabolic analysis and the expression of AHR in mice. Furthermore, L. reuteri DYNDL22M62 increased the proportions of Romboutsia and Ruminococcaceae NK4A214 group, which were positively related to ILA, but decreased Dubosiella, which was negatively related to IPA. Collectively, L. reuteri DYNDL22M62 with the role of modulating gut bacteria and the production of indole derivatives may attenuate AD via activating AHR in mice.
Collapse
Affiliation(s)
- Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tong Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence:
| |
Collapse
|
32
|
Huang L, Zeng Q, Zhang Y, Yin Q, Zhu X, Zhang P, Wang C, Liu J. Effects of fucoidans and alginates from Sargassum graminifolium on allergic symptoms and intestinal microbiota in mice with OVA-induced food allergy. Food Funct 2022; 13:6702-6715. [PMID: 35660845 DOI: 10.1039/d2fo00802e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food allergy has been one of the main problems threatening people's health in recent years. However, there is still no way to completely cure it at present. Therefore, the development of food allergy related drugs is still necessary. Sargassum graminifolium (SG) is a kind of polysaccharide rich marine brown alga used in food and medicine. Sargassum graminifolium polysaccharides (SGP) is mainly composed of fucoidans and alginic acid. In our study, we compared the activity of fucoidans and alginates from SG against OVA-induced food allergy in a mouse model, observed the regulatory effects of fucoidans and alginates from SG on the intestinal microbiota and summarized the possible role of the intestinal microbiota in the anti-food allergy process because polysaccharides can further act on the body through the intestinal microbiota. The results showed that fucoidans and alginates from SG could relieve the symptoms of allergy, diarrhea and jejunum injury significantly in mice with food allergy (p < 0.05). Furthermore, fucoidans at 500 mg kg-1 could reduce OVA-specific IgE and TNF-α levels significantly in the serum of food allergic mice (p < 0.05), while alginates could only significantly down-regulate serum OVA-specific IgE (p < 0.05). The results also showed that fucoidans had a stronger regulatory effect on the richness and diversity of the intestinal microbiota in food allergic mice compared to alginates at the same dose. In addition, fucoidans at 500 mg kg-1 had the most significant regulatory effect on Firmicutes, Lactobacillus and Alistipes in food allergic mice. These results suggested that fucoidans and alginates might regulate food allergy in mice through different pathways. Together, this study enriched the research on the action of alga-derived polysaccharides against food allergy.
Collapse
Affiliation(s)
- Lan Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Qianhui Zeng
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Yudie Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Qing Yin
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Xunxian Zhu
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Peixi Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Cuifang Wang
- Quanzhou Normal University, Quanzhou 362000, China.
| | - Jieqing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| |
Collapse
|
33
|
Li J, Zou C, Liu Y. Amelioration of Ovalbumin-Induced Food Allergy in Mice by Targeted Rectal and Colonic Delivery of Cyanidin-3-O-Glucoside. Foods 2022; 11:foods11111542. [PMID: 35681291 PMCID: PMC9180400 DOI: 10.3390/foods11111542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Targeted rectal and colonic delivery is an effective strategy to exploit the biological functions of polyphenols. This work investigated the anti-food allergy (FA) activity of cyanidin-3-O-glucoside (C3G) delivered by enteric sodium alginate in vivo. The results showed that through targeted rectal and colonic delivery, the C3G showed better results in ameliorating clinical allergic symptoms, diarrhea, and serological indicators including ovalbumin-specific IgE, histamine, and mast cell protease-1. The C3G was more efficient in enhancing the intestinal epithelial barrier by up-regulating the tight junction protein expression and promoting secretory IgA and β-defensin secretion. The improved bioactivity in regulating T helper (Th)1/Th2 immune balance in the intestinal mucosa was also observed. Compared with the intestinal microbiota structure of the model group, targeted rectal and colonic delivery of C3G was able to bring the abundance of Bacteroidota and Firmicutes close to the levels found in normal mice. Furthermore, there was an evident increase in beneficial bacteria in the intestinal flora, such as Lactobacillus and Odoribacter, and a decrease in pathogenic bacteria like Helicobacter and Turicibacter. Therefore, the anti-FA activity of C3G could be increased via targeted rectal and colonic delivery, while the mechanism might be attributed to the regulation of intestinal microecological homeostasis.
Collapse
Affiliation(s)
- Jie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
| | - Chao Zou
- Gaoan Public Inspection and Testing Center, Gao’an 330800, China;
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| |
Collapse
|
34
|
Yao L, Yang P, Lin Y, Bi D, Yu B, Lin Z, Wu Y, Xu H, Hu Z, Xu X. The regulatory effect of alginate on ovalbumin-induced gut microbiota disorders. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
35
|
Cao W, Li RW, Chin Y, Wang Y, Xue C, Tang Q. Transcriptome analysis reveals the protective role of fructo-oligosaccharide in colonic mucosal barriers in exercise-induced stressed mice. Food Funct 2021; 12:4484-4495. [PMID: 33885098 DOI: 10.1039/d0fo02556a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most athletes continually endure mental and physical stress from intense exercise. Fructo-oligosaccharide (FOS) can reduce physical exhaustion, but the concrete mechanism behind it still needs further research. In this study, the effect of FOS on colonic mucosal barriers was investigated using an exercise-induced stress mouse model. Except for control individuals, mice were subject to cycles of 2-day exercise (at 20 rpm) interleaved by 5-day rest. The mice experienced a total of 6 days of exercise during the feeding period. FOS improved common indicators of exhaustion, such as glycogen storage in muscle. 16S rRNA data supported that changes in the gut microbiome were also closely related to stress status. Notably, Anaerotruncus was increased in mice under stress, while FOS facilitated the growth of Dorea, which is negatively associated with exhaustion. The RNA-seq analysis revealed that FOS could maintain the integrity of colonic epithelial barriers. For example, FOS significantly restored the expression of tight junctions (Occludin and Zonula occludens-1) in the colon, which was impaired under a stress state. Besides, the NOD-like receptor family pyrin domain containing 6 (NLRP6) inflammasome might contribute to the protection of the colonic mucosa by promoting the secretion of IL-18, Mucin2 (Muc2) and intestine lectin 1 (Itln1) in FOS-treated individuals. In short, FOS administration attenuated the damage of colonic mucosal barriers in exercise-induced stressed mice.
Collapse
Affiliation(s)
- Wanxiu Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | | | | | | | | | | |
Collapse
|