1
|
Sácký J, Liščáková V, Šnábl J, Zelenka J, Borovička J, Leonhardt T, Kotrba P. Functional analysis of two genes coding for distinct cation diffusion facilitators of the cadmium-accumulating fungus Agaricus crocodilinus. Fungal Biol 2025; 129:101550. [PMID: 40023530 DOI: 10.1016/j.funbio.2025.101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 03/04/2025]
Abstract
The gilled mushroom Agaricus crocodilinus (Agaricaceae) analyzed in this study hyperaccumulated Cd and showed common Zn and very low Mn concentrations. To gain an insight into the handling of heavy metals in this saprotrophic species, its two genes of the cation diffusion facilitator (CDF) protein family were isolated, AcCDF1 and AcCDF2, encoding the membrane transporters of the Zn-CDF and Mn-CDF subfamilies, respectively. When expressed in the model, metal-sensitive yeast, AcCDF1 conferred marked Zn tolerance and promoted the intracellular accumulation of Zn. Green fluorescent protein (GFP) tagging of AcCDF1 visualized the functional protein predominantly in the tonoplast, indicating that AcCDF1 can mediate the transport of Zn into vacuoles, which are used for deposition of excess Zn in most fungi. AcCDF2 conferred a high degree of Mn tolerance to model yeast, in which the transport-active AcCDF2:GFP fusion was localized to the plasma membrane, suggesting a role in Mn export and thus reduced Mn accumulation. Furthermore, the AcCDF2 gene appeared to be Mn-inducible in A. crocodilinus, suggesting an Mn efflux function of AcCDF2. Neither AcCDFs nor the mutant AcCDF1 variants constructed to mimic transmembrane tetrahedral Cd transport sites manifested appreciable Cd-related phenotypes in yeast models, and further efforts are needed to elucidate the mechanism underlying Cd hyperaccumulation in A. crocodilinus.
Collapse
Affiliation(s)
- Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Veronika Liščáková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Jan Šnábl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Jan Borovička
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, Prague 6, 16500, Czech Republic; Nuclear Physics Institute of the Czech Academy of Sciences, Hlavní 130, Husinec-Řež, 25068, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Lampe RH, Coale TH, Forsch KO, Jabre LJ, Kekuewa S, Bertrand EM, Horák A, Oborník M, Rabines AJ, Rowland E, Zheng H, Andersson AJ, Barbeau KA, Allen AE. Short-term acidification promotes diverse iron acquisition and conservation mechanisms in upwelling-associated phytoplankton. Nat Commun 2023; 14:7215. [PMID: 37940668 PMCID: PMC10632500 DOI: 10.1038/s41467-023-42949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
Coastal upwelling regions are among the most productive marine ecosystems but may be threatened by amplified ocean acidification. Increased acidification is hypothesized to reduce iron bioavailability for phytoplankton thereby expanding iron limitation and impacting primary production. Here we show from community to molecular levels that phytoplankton in an upwelling region respond to short-term acidification exposure with iron uptake pathways and strategies that reduce cellular iron demand. A combined physiological and multi-omics approach was applied to trace metal clean incubations that introduced 1200 ppm CO2 for up to four days. Although variable, molecular-level responses indicate a prioritization of iron uptake pathways that are less hindered by acidification and reductions in iron utilization. Growth, nutrient uptake, and community compositions remained largely unaffected suggesting that these mechanisms may confer short-term resistance to acidification; however, we speculate that cellular iron demand is only temporarily satisfied, and longer-term acidification exposure without increased iron inputs may result in increased iron stress.
Collapse
Affiliation(s)
- Robert H Lampe
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Tyler H Coale
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Kiefer O Forsch
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Loay J Jabre
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Samuel Kekuewa
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Erin M Bertrand
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Aleš Horák
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, CZ, Czechia
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, CZ, Czechia
| | - Miroslav Oborník
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, CZ, Czechia
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, CZ, Czechia
| | - Ariel J Rabines
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Elden Rowland
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Hong Zheng
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Andreas J Andersson
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Katherine A Barbeau
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andrew E Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Esteves SM, Jadoul A, Iacono F, Schloesser M, Bosman B, Carnol M, Druet T, Cardol P, Hanikenne M. Natural variation of nutrient homeostasis among laboratory and field strains of Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5198-5217. [PMID: 37235689 DOI: 10.1093/jxb/erad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Natural variation among individuals and populations exists in all species, playing key roles in response to environmental stress and adaptation. Micro- and macronutrients have a wide range of functions in photosynthetic organisms, and mineral nutrition thus plays a sizable role in biomass production. To maintain nutrient concentrations inside the cell within physiological limits and prevent the detrimental effects of deficiency or excess, complex homeostatic networks have evolved in photosynthetic cells. The microalga Chlamydomonas reinhardtii (Chlamydomonas) is a unicellular eukaryotic model for studying such mechanisms. In this work, 24 Chlamydomonas strains, comprising field isolates and laboratory strains, were examined for intraspecific differences in nutrient homeostasis. Growth and mineral content were quantified in mixotrophy, as full nutrition control, and compared with autotrophy and nine deficiency conditions for macronutrients (-Ca, -Mg, -N, -P, and -S) and micronutrients (-Cu, -Fe, -Mn, and -Zn). Growth differences among strains were relatively limited. However, similar growth was accompanied by highly divergent mineral accumulation among strains. The expression of nutrient status marker genes and photosynthesis were scored in pairs of contrasting field strains, revealing distinct transcriptional regulation and nutrient requirements. Leveraging this natural variation should enable a better understanding of nutrient homeostasis in Chlamydomonas.
Collapse
Affiliation(s)
- Sara M Esteves
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| | - Alice Jadoul
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| | - Fabrizio Iacono
- InBioS-PhytoSystems, Genetics and Physiology of Microalgae, University of Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| | - Bernard Bosman
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, Belgium
| | - Monique Carnol
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, Belgium
| | - Tom Druet
- Unit of Animal Genomics (GIGA), University of Liège, Belgium
| | - Pierre Cardol
- InBioS-PhytoSystems, Genetics and Physiology of Microalgae, University of Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| |
Collapse
|
4
|
Feng S, Hou K, Zhang H, Chen C, Huang J, Wu Q, Zhang Z, Gao Y, Wu X, Wang H, Shen C. Investigation of the role of TmMYB16/123 and their targets (TmMTP1/11) in the tolerance of Taxus media to cadmium. TREE PHYSIOLOGY 2023; 43:1009-1022. [PMID: 36808461 DOI: 10.1093/treephys/tpad019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/13/2023] [Indexed: 06/11/2023]
Abstract
The toxicity and stress caused by heavy metal contamination has become an important constraint to the growth and flourishing of trees. In particular, species belonging to the genus Taxus, which are the only natural source for the anti-tumor medicine paclitaxel, are known to be highly sensitive to environmental changes. To investigate the response of Taxus spp. to heavy metal stress, we analyzed the transcriptomic profiles of Taxus media trees exposed to cadmium (Cd2+). In total, six putative genes from the metal tolerance protein (MTP) family were identified in T. media, including two Cd2+ stress inducible TMP genes (TmMTP1, TmMTP11 and Taxus media). Secondary structure analyses predicted that TmMTP1 and TmMTP11, which are members of the Zn-CDF and Mn-CDF subfamily proteins, respectively, contained six and four classic transmembrane domains, respectively. The introduction of TmMTP1/11 into the ∆ycf1 yeast cadmium-sensitive mutant strain showed that TmMTP1/11 might regulate the accumulation of Cd2+ to yeast cells. To screen the upstream regulators, partial promoter sequences of the TmMTP1/11 genes were isolated using the chromosome walking method. Several myeloblastosis (MYB) recognition elements were identified in the promoters of these genes. Furthermore, two Cd2+-induced R2R3-MYB TFs, TmMYB16 and TmMYB123, were identified. Both in vitro and in vivo assays confirmed that TmMTB16/123 play a role in Cd2+ tolerance by activating and repressing the expression of TmMTP1/11 genes. The present study elucidated new regulatory mechanisms underlying the response to Cd stress and can contribute to the breeding of Taxus species with high environmental adaptability.
Collapse
Affiliation(s)
- Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiefang Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Qicong Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenhao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yadi Gao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaomei Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
5
|
Quevedo-Ospina C, Arroyave C, Peñuela-Vásquez M, Villegas A. Effect of mercury in the influx and efflux of nutrients in the microalga Desmodesmus armatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106496. [PMID: 36941145 DOI: 10.1016/j.aquatox.2023.106496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities such as mining and the metallurgical industry are the main sources of mercury contamination. Mercury is one of the most serious environmental problems in the world. This study aimed to investigate, using experimental kinetic data, the effect of different inorganic mercury (Hg2+) concentrations on the response of microalga Desmodesmus armatus stress. Cell growth, nutrients uptake and mercury ions from the extracellular medium, and oxygen production were determined. A Compartment Structured Model allowed elucidating the phenomena of transmembrane transport, including influx and efflux of nutrients, metal ions and bioadsorption of metal ions on the cell wall, which are difficult to determine experimentally. This model was able to explain two tolerance mechanisms against mercury, the first one was the adsorption of Hg2+ions onto the cell wall and the second was the efflux of mercury ions. The model predicted a competition between internalization and adsorption with a maximum tolerable concentration of 5.29 mg/L of HgCl2. The kinetic data and the model showed that mercury causes physiological changes in the cell, which allow the microalga to adapt to these new conditions to counteract the toxic effects. For this reason, D. armatus can be considered as a Hg-tolerant microalga. This tolerance capacity is associated with the activation of the efflux as a detoxification mechanism that facilitates the maintenance of the osmotic balance for all the modeled chemical species. Furthermore, the accumulation of mercury in the cell membrane suggests the presence of thiol groups associated with its internalization, leading to the conclusion that metabolically active tolerance mechanisms are dominant over passive ones.
Collapse
Affiliation(s)
- Catalina Quevedo-Ospina
- Bioprocess Research Group, Department of Chemical Engineering, Faculty of Engineering, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Catalina Arroyave
- GRINBIO Research Group, Department of Environmental Engineering, Universidad de Medellín UdeM, Carrera 87 #30-65, Medellín 050026, Colombia
| | - Mariana Peñuela-Vásquez
- Bioprocess Research Group, Department of Chemical Engineering, Faculty of Engineering, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Adriana Villegas
- TERMOMEC Research Group, Faculty of Engineering, Universidad Cooperativa de Colombia UCC, Medellín 050012, Colombia
| |
Collapse
|
6
|
Fleet J, Ansari M, Pittman JK. Phylogenetic analysis and structural prediction reveal the potential functional diversity between green algae SWEET transporters. FRONTIERS IN PLANT SCIENCE 2022; 13:960133. [PMID: 36186040 PMCID: PMC9520054 DOI: 10.3389/fpls.2022.960133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Sugar-Will-Eventually-be-Exported-Transporters (SWEETs) are an important family of sugar transporters that appear to be ubiquitous in all organisms. Recent research has determined the structure of SWEETs in higher plants, identified specific residues required for monosaccharide or disaccharide transport, and begun to understand the specific functions of individual plant SWEET proteins. However, in green algae (Chlorophyta) these transporters are poorly characterised. This study identified SWEET proteins from across representative Chlorophyta with the aim to characterise their phylogenetic relationships and perform protein structure modelling in order to inform functional prediction. The algal genomes analysed encoded between one and six SWEET proteins, which is much less than a typical higher plant. Phylogenetic analysis identified distinct clusters of over 70 SWEET protein sequences, taken from almost 30 algal genomes. These clusters remain separate from representative higher or non-vascular plant SWEETs, but are close to fungi SWEETs. Subcellular localisation predictions and analysis of conserved amino acid residues revealed variation between SWEET proteins of different clusters, suggesting different functionality. These findings also showed conservation of key residues at the substrate-binding site, indicating a similar mechanism of substrate selectivity and transport to previously characterised higher plant monosaccharide-transporting SWEET proteins. Future work is now required to confirm the predicted sugar transport specificity and determine the functional role of these algal SWEET proteins.
Collapse
Affiliation(s)
- Jack Fleet
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| | - Mujtaba Ansari
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jon K. Pittman
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Zhang Z, Li W, Liu Y, Yang Z, Ma L, Zhuang H, Wang E, Wu C, Huan Z, Guo F, Chang J. Design of a biofluid-absorbing bioactive sandwich-structured Zn-Si bioceramic composite wound dressing for hair follicle regeneration and skin burn wound healing. Bioact Mater 2021; 6:1910-1920. [PMID: 33364530 PMCID: PMC7750441 DOI: 10.1016/j.bioactmat.2020.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
The deep burn skin injures usually severely damage the dermis with the loss of hair follicle loss, which are difficult to regenerate. Furthermore, severe burns often accompanied with large amount of wound exudates making the wound moist, easily infected, and difficult to heal. Therefore, it is of great clinical significance to develop wound dressings to remove wound exudates and promote hair follicle regeneration. In this study, a sandwich-structured wound dressing (SWD) with Janus membrane property was fabricated by hot compression molding using hydrophilic zinc silicate bioceramics (Hardystonite, ZnCS) and hydrophobic polylactic acid (PLA). This unique organic/inorganic Janus membrane structure revealed excellent exudate absorption property and effectively created a dry wound environment. Meanwhile, the incorporation of ZnCS bioceramic particles endowed the dressing with the bioactivity to promote hair follicle regeneration and wound healing through the release of Zn2+ and SiO3 2- ions, and this bioactivity of the wound dressing is mainly attributed to the synergistic effect of Zn2+ and SiO3 2- to promote the recruitment, viability, and differentiation of hair follicle cells. Our study demonstrates that the utilization of the Janus membrane and synergistic effect of different type bioactive ions are effective approaches for the design of wound dressings for burn wound healing.
Collapse
Affiliation(s)
- Zhaowenbin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Wenbo Li
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Ying Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhigang Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Lingling Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Hui Zhuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Endian Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| |
Collapse
|
8
|
Barbosa ED, Neto JXL, Teixeira DG, Bezerra KS, do Amaral VS, Oliveira JIN, Lima JPMS, Machado LD, Fulco UL. Exploring human porphobilinogen synthase metalloprotein by quantum biochemistry and evolutionary methods. Metallomics 2021; 13:6206860. [PMID: 33791795 DOI: 10.1093/mtomcs/mfab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/16/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
Previous studies have shown the porphobilinogen synthase (PBGS) zinc-binding mechanism and its conservation among the living cells. However, the precise molecular interaction of zinc with the active center of the enzyme is unknown. In particular, quantum chemistry techniques within the density functional theory (DFT) framework have been the key methodology to describe metalloproteins, when one is looking for a compromise between accuracy and computational feasibility. Considering this, we used DFT-based models within the molecular fractionation with conjugate caps scheme to evaluate the binding energy features of zinc interacting with the human PBGS. Besides, phylogenetic and clustering analyses were successfully employed in extracting useful information from protein sequences to identify groups of conserved residues that build the ions-binding site. Our results also report a conservative assessment of the relevant amino acids, as well as the benchmark analysis of the calculation models used. The most relevant intermolecular interactions in Zn2+-PBGS are due to the amino acids CYS0122, CYS0124, CYS0132, ASP0169, SER0168, ARG0221, HIS0131, ASP0120, GLY0133, VAL0121, ARG0209, and ARG0174. Among these residues, we highlighted ASP0120, GLY0133, HIS0131, SER0168, and ARG0209 by co-occurring in all clusters generated by unsupervised clustering analysis. On the other hand, the triple cysteines at 2.5 Å from zinc (CYS0122, CYS0124, and CYS0132) have the highest energy attraction and are absent in the taxa Viridiplantae, Sar, Rhodophyta, and some Bacteria. Additionally, the performance of the DFT-based models shows that the processing time-dependence is more associated with the choice of the basis set than the exchange-correlation functional.
Collapse
Affiliation(s)
- E D Barbosa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - J X Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - D G Teixeira
- Institute of Tropical Medicine, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - K S Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - V S do Amaral
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - J I N Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - J P M Santos Lima
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - L D Machado
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - U L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| |
Collapse
|
9
|
González-Villagra J, Escobar AL, Ribera-Fonseca A, Cárcamo MP, Omena-Garcia RP, Nunes-Nesi A, Inostroza-Blancheteau C, Alberdi M, Reyes-Díaz M. Differential mechanisms between traditionally established and new highbush blueberry (Vaccinium corymbosum L.) cultivars reveal new insights into manganese toxicity resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:454-465. [PMID: 33250324 DOI: 10.1016/j.plaphy.2020.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
In acid soils, manganese (Mn) concentration increases, becoming toxic to plants. Mn toxicity differentially affects physiological processes in highbush blueberry (Vaccinium corymbosum L.) cultivars. However, the mechanisms involved in Mn toxicity of the new and traditionally established cultivars are unknown. To understand Mn toxicity mechanisms, four traditionally established (Legacy, Brigitta, Duke, and Star) cultivars and two recently introduced to Chile (Camellia and Cargo) were grown under hydroponic conditions subjected to control Mn (2 μM) and Mn toxicity (1000 μM). Physiological, biochemical, and molecular parameters were evaluated at 0, 7, 14, and 21 days. We found that the relative growth rate was reduced in almost all blueberry cultivars under Mn toxicity, except Camellia, with Star being the most affected. The photosynthetic parameters were reduced only in Star by Mn treatment. Leaf Mn concentrations increased in all cultivars, exhibiting the lowest levels in Camellia and Cargo. Brigitta and Duke exhibited higher β-carotene levels, while Cargo exhibited a reduction under toxic Mn. In Legacy, lutein levels increased under Mn toxicity. Traditionally established cultivars exhibited higher antioxidant activity than the new cultivars under Mn toxicity. The Legacy and Duke cultivars increased VcMTP4 expression with Mn exposure time. A multivariate analysis separated Legacy and Duke from Camellia; Star and Cargo; and Brigitta. Our study demonstrated that Mn toxicity differentially affects physiological, biochemical, and molecular features in the new and traditionally established cultivars, with Legacy, Duke, Camellia, and Cargo as the Mn-resistant cultivars differing in their Mn-resistance mechanisms and Star as the Mn-sensitive cultivar.
Collapse
Affiliation(s)
- Jorge González-Villagra
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Ana Luengo Escobar
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Alejandra Ribera-Fonseca
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 24-D, Temuco, Chile
| | - María Paz Cárcamo
- Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | | | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viҫosa 3657-900, Viҫosa, MG, Brazil
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Miren Alberdi
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|