1
|
Karakiliç E, Başçeken S, Eskiler GG, Uzuner U, Baran A. Bioimaging of thiazolidine-4-one-based new probes, fluorimetric detection of Cu 2+ "on-off" sensor property, DFT calculation, molecular docking studies, and multiple real samples application. Food Chem 2025; 463:141269. [PMID: 39288467 DOI: 10.1016/j.foodchem.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Thiazolidinones have been the subject of various research areas for their biological activities, thus they were promising scaffolds to develop new drug agents. A novel thiazolidine 4-one-based fluorescent chemosensor probes PS (thiazolidine) and BO (oxazolidine) were designed and synthesized. Both probes showed specific recognition against Cu2+ via a "turn-off" fluorescence response in ACN/H2O (v/v: 50/50) stock solution (10 mM, pH = 7.0) with a detection limit of (for BO: 1.9 nM and PS: 1.03 nM). Finally, the detection of chemosensory PS and BO showed positive potential for the determination of Cu2+ in real food samples, drinking water, and mung beans. The compounds were characterized by diferent chemical and spectroscopic methods. The proposed binding mode for PS and BO with Cu2+ was confirmed by DFT calculation, and also they elucidated by bioimaging studies against MCF-7 live cell lines. Additionally, the docking experiment was performed on XylE and hAChE targets.
Collapse
Affiliation(s)
- Emel Karakiliç
- Department of Chemistry, Science Faculty, Sakarya University, 54187, Sakarya, Turkey
| | - Sinan Başçeken
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, 19030 Çorum, Turkey
| | - Gamze Güney Eskiler
- Department of Medical Biolog, Faculty of Medicine, Sakarya University, 54187, Sakarya, Turkey
| | - Uğur Uzuner
- Department of Molecular Biology and Genetics Department, Science Faculty, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Arif Baran
- Department of Chemistry, Science Faculty, Sakarya University, 54187, Sakarya, Turkey.
| |
Collapse
|
2
|
Çol S, Başçeken S, Baran A. Synthesis of biscarbazole derivative, detection of the "on-off" sensor property of Cu 2+ by fluorimetry, and anti-cancer evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124624. [PMID: 38878725 DOI: 10.1016/j.saa.2024.124624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Biscarbazole derivative probe (6) (Z)-2-(3-(((9-heptyl-9H-carbazol-3-yl)methylene)amino)-9H-carbazol-9-yl)ethan-1-ol containing an imine group, which is a sensitive and selective fluorescence chemosensor, was designed and synthesized for the effective evaluation of Cu2+ metal ion levels. The synthesized compounds were characterized using 1H NMR, 13C NMR, FT-IR, and MALDI-TOF MS (for compound 6) spectroscopic data. The interaction model between probe 6 and Cu2+ was determined by combining fluorescence methods, 1H NMR titration, Job's plot, and theoretical calculations. For probe 6, the fluorogenic recognition of Cu2+ was investigated by fluorescence spectroscopy, and the optical changes caused by Cu2+ ions were carried out in ACN/H2O (50:50) solution at pH 7.0. Fluorescence probe 6 was found to "turn-off" its fluorescence in the presence of paramagnetic Cu2+ ions. Probe 6 was determined to have a rapid response within 40s and showed a fluorescence response to Cu2+ with a low detection limit of 0.16 μM. Additionally, in vitro anticancer activity and cell imaging studies of probe 6 against the prostate cell line (PC-3) were performed.
Collapse
Affiliation(s)
- Sümeyye Çol
- Department of Chemistry, Faculty of Sciences, Sakarya University, 54187 Sakarya, Turkey
| | - Sinan Başçeken
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, Çorum, Turkey
| | - Arif Baran
- Department of Chemistry, Faculty of Sciences, Sakarya University, 54187 Sakarya, Turkey.
| |
Collapse
|
3
|
Hao Y, Li X, Li H, Chang S, Zhang J, Dong L. Theoretical investigation of the excited-state intramolecular double proton transfer process of 2,2'-(benzo[1,2- d:4,5- d']bis(thiazole)-2,6-diyl)diphenol. RSC Adv 2024; 14:26239-26245. [PMID: 39211530 PMCID: PMC11358760 DOI: 10.1039/d4ra04553j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
In this work, the excited state intramolecular double proton transfer (ESIDPT) mechanism of 2,2'-(benzo[1,2-d:4,5-d']bis(thiazole)-2,6-diyl)diphenol (BTAP) is proposed using density functional theory (DFT) and time-dependent DFT (TDDFT). The changes in bond lengths, bond angles and IR vibrational spectra associated with two intramolecular hydrogen bonds of BTAP upon photoexcitation indicate that the hydrogen bonds are strengthened in the excited state, facilitating the ESIDPT process. Investigation of the constructed S1-state potential energy surface proposes that BTAP prefers a stepwise ESIDPT mechanism. Electronic spectra and frontier molecular orbitals (FMOs) are also presented to illustrate the luminescent properties of BTAP.
Collapse
Affiliation(s)
- Yongchao Hao
- School of Chemical Engineering and Biotechnology, Xingtai University Xingtai 054001 China
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050024 China
| | - Xiaoran Li
- School of Chemical Engineering and Biotechnology, Xingtai University Xingtai 054001 China
| | - Hongfang Li
- School of Chemical Engineering and Biotechnology, Xingtai University Xingtai 054001 China
| | - Shanyan Chang
- School of Chemical Engineering and Biotechnology, Xingtai University Xingtai 054001 China
| | - Jiangyu Zhang
- School of Chemical Engineering and Biotechnology, Xingtai University Xingtai 054001 China
| | - Lili Dong
- School of Chemical Engineering and Biotechnology, Xingtai University Xingtai 054001 China
| |
Collapse
|
4
|
Hara F, Mizuyama N, Fujino T, Shrestha AK, Meetiyagoda TAOK, Takada S, Saji H, Mukai T, Hagimori M. Development of a water-soluble fluorescent Al 3+ probe based on phenylsulfonyl-2-pyrone in biological systems. Anal Chim Acta 2024; 1299:342436. [PMID: 38499421 DOI: 10.1016/j.aca.2024.342436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Al exists naturally in the environment and is an important component in acidic soils, which harm almost all plants. Furthermore, Al is widely used in food additives, cosmetics, and medicines, resulting in living organisms ingesting traces of Al orally or dermally every day. Accordingly, Al accumulates in the body, which can cause negative bioeffects and diseases, and this concern is gaining increasing attention. Therefore, to detect and track Al in the environment and in living organisms, the development of novel Al-selective probes that are water-soluble and exhibit fluorescence at long wavelengths is necessary. RESULTS In this study, an Al3+-selective fluorescent probe PSP based on a novel pyrone molecule was synthesized and characterized to detect and track Al in biological systems. PSP exhibited fluorescence enhancement at 580 nm in the presence of Al3+ in aqueous media. Binding analysis using Job's plot and structural analysis using 1H NMR showed that PSP formed a 1:1 complex with Al3+ at the two carbonyl groups of the dimethyl malonate of the pyrone ring. Upon testing in biological systems, PSP showed good cell membrane permeability, detected intracellular Al3+ in human breast cancer cells (MDA-MB-231), and successfully imaged accumulated Al3+ in Microcystis aeruginosa and the larvae of Rheocricotopus species. SIGNIFICANCE The novel Al3+-selective fluorescent probe PSP is highly effective and is expected to aid in elucidating the role of Al3+ in the environment and living organisms.
Collapse
Affiliation(s)
- Fumiko Hara
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan
| | - Naoko Mizuyama
- Division of Medical Innovation, Translational Research Center for Medical Innovation, 1-5-4 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takeshi Fujino
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan; Strategic Research Area for Sustainable Development in East Asia, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Ashok Kumar Shrestha
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | | | - Shinya Takada
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan
| | - Hideo Saji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita Machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Masayori Hagimori
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan.
| |
Collapse
|
5
|
Zhao R, Lu W, Chai X, Dong C, Shuang S, Guo Y. Design of a dual-mode ratiometric fluorescent probe via MOF-on-MOF strategy for Al (III) and pH detection. Anal Chim Acta 2024; 1298:342403. [PMID: 38462341 DOI: 10.1016/j.aca.2024.342403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The construction of ratiometric fluorescent MOF sensors with integrated self-calibration and dual-channel detection can efficiently overcome the deficiencies of single-signal sensing. In this regard, the rational design of structurally functionalized MOFs is paramount for enhancing their performance in ratiometric fluorescent sensors. Lately, the concept of MOF-on-MOF design has garnered notable interest as a potential strategy for regulating the structural parameters of MOFs by integrating two or more distinct MOF types. Great efforts have been dedicated to exploring new MOF-on-MOF hybrids and developing their applications in diverse fields. Even so, these materials are still in the stage of advancement in the sensing field. RESULTS Herein, a Zr-based metal-organic framework anchored on a rare-earth metal-organic framework (UiO-66(OH)2@Y-TCPP) was prepared for the ratiometric fluorescence detection toward Al (III) and pH. In this probe, the UiO-66(OH)2 featured hydroxyl active sites for Al (III), leading to a significant enhancement in fluorescence intensity upon the addition of Al (III), while the signal emitted by the red-emitting Y-TCPP, serving as the reference, remained constant. UiO-66(OH)2@Y-TCPP exhibited excellent selectivity for Al (III) sensing with a wider linear range of 0.1-1000 μM, and a lower detection limit of 0.06 μM. This probe has also been utilized for the quantitative determination of Al (III) in hydrotalcite chewable tablets with satisfactory results. In addition, the probe realized ratiometric pH sensing in the range of 7-13 using UiO-66(OH)2 as an interior reference. The paper-based probe strip was developed for visual pH sensing. By installing color recognition and processing software on a smartphone, real-time and convenient pH sensing could be achieved. SIGNIFICANCE This is the first ratiometric fluorescent sensor for Al (III) and pH detection based on a MOF-on-MOF composite probe, which yields two different response modes. The detection results of Al (III) in hydrotalcite chewable tables and smartphone imaging for pH test paper demonstrate the practicability of the probe. This work opens up a new outlook on constructing a multi-functional application platform with substantial potential for employment in environmental and biological analysis tasks.
Collapse
Affiliation(s)
- Ruirui Zhao
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Wenjing Lu
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaojing Chai
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | - Yujing Guo
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
6
|
Mishra S, Kumar Singh A. Benzothiazole-based novel fluorescence probe sensing 1, 3-diaminopropane. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122799. [PMID: 37187148 DOI: 10.1016/j.saa.2023.122799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Amines are extensively present in biological systems and are abundantly used in research, industries and agriculture. Systematic detection and quantification of certain amines can help us in food quality control and diagnosis of many diseases. A Schiff base probe HL was designed and successfully synthesized. It was proposed as a sensor for the exclusive detection of 1, 3- diaminopropane through turn-on fluorescence response in a variety of solvents including water. Micromolar limits of detection was achieved in all these solvents. Mechanism of detection was proposed by investigating mass spectrometric and NMR results. These were corroborated with DFT/TD-DFT calculations. Spiking experiments performed in various real water samples revealed the potential of the sensor to be used in day-to-day applications. Paper strip experiments demonstrated the suitability of the probe for real-life applications.
Collapse
Affiliation(s)
- Sagarika Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India
| | - Akhilesh Kumar Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India.
| |
Collapse
|
7
|
Xu H, Zhang S, Zhang C, Wang Y, Chen X. A new chromone functionalized isoqunoline derived chemosensor with fluorogenic switching effect for selective detection of Zn 2+ in real water samples and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121697. [PMID: 35985162 DOI: 10.1016/j.saa.2022.121697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In this work, a selective chemosensor, (E)-N'-((4-oxo-4H-chromen-3-yl)methylene)isoquinoline-1-carbohydrazide (ENO), was rationally developed for colorimetric and fluorogenic detection of Zn2+ ions. It was readily synthesized from 4-oxo-4H-chromene-3-carbaldehyde and isoquinoline-1-carbohydrazide via one-step Schiff reaction. ENO exhibited excellent fluorescent response performances toward Zn2+ over a wide pH range in EtOH/H2O media, including a distinguished color change from colorless to gold, a low limit of detection (LOD) value (34 nM), strong complexation ability (1.36 × 105 M-1) and rapid identification (2 min). The sensing mechanism of ENO toward Zn2+ was proposed on the basis of the chelation-enhanced fluorescence (CHEF) process, which was further supported by IR studies and the density functional theory (DFT) calculation. Moreover, ENO presented here demonstrated outstanding capability in monitoring trace level of Zn2+ ions in real water samples, living cells as well as the on-site assay kit.
Collapse
Affiliation(s)
- Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| | - Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Chengfang Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
8
|
Xie L, Wang X, Yao RH, Fan TT, Chen XX, Fan CB, Pu SZ. A Novel “Turn-on” Triphenylamine-Based Fluorescent Probe for Ultrasensitive Detection of Al3+ and Its Application on Test Strips. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Yu W, Yu X, Qiu Z, Xu C, Gao M, Zheng J, Zhang J, Wang G, Cheng Y, Zhu M. 1+1>2: Fiber Synergy in Aggregation‐Induced Emission. Chemistry 2022; 28:e202201664. [DOI: 10.1002/chem.202201664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Wanting Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Junjie Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
10
|
Zhang S, Wang Y, Xu H. A new naphthalimide-picolinohydrazide derived fluorescent "turn-on" probe for hypersensitive detection of Al 3+ ions and applications of real water analysis and bio-imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121193. [PMID: 35364410 DOI: 10.1016/j.saa.2022.121193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The development of high-selective chemosensors for trace Al3+ detection in the ecosystem is crucially importance due to its detrimental effects. In this work, a simple Schiff-base fluorescent probe NPP derived from naphthalimide and picolinohydrazide was rationally designed and prepared for efficient detection of Al3+. NPP exhibited prominent sensing behaviors toward Al3+ with low detection limit (LOD) (39 nM), rapid response time (1 min), strong binding affinity (4.02 × 104), good anti-interference characteristics and visual detection. Binding ratio of NPP-Al3+ complex was determined to be 1:1 by Job's plot analysis. In addition, the chelation mechanism of NPP with Al3+ ions was proposed and substantiated by the density functional theory (DFT) and time-dependent density functional theory (TD-DFT), IR spectrum and 1H NMR titration experiments. Furthermore, this "signal-on" probe NPP was efficiently utilized as a promising indicator for Al3+ detection in environmental and biological samples.
Collapse
Affiliation(s)
- Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
11
|
Karuk Elmas SN. A coumarin-based fluorescence chemosensor for the determination of Al3+ and ClO− with different fluorescence emission channels. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
A fluorescent chemoprobe based on 1,8–naphthalimide derivative specific for cellular recognition of cysteine over homocysteine and glutathione. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Two Schiff-base fluorescent-colorimetric probes based on naphthaldehyde and aminobenzoic acid for selective detection of Al3+, Fe3+ and Cu2+ ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
He K, Bu T, Zheng X, Xia J, Bai F, Zhao S, Sun XY, Dong M, Wang L. "Lighting-up" methylene blue-embedded zirconium based organic framework triggered by Al 3+ for advancing the sensitivity of E. coli O157:H7 analysis in dual-signal lateral flow immunochromatographic assay. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128034. [PMID: 34896715 DOI: 10.1016/j.jhazmat.2021.128034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The sensitive detection of foodborne pathogens is of great significance for ensuring food safety and quality. Herein, on the basis of methylene blue-embedded zirconium based organic framework (UIO@MB) as the remarkable capture carrier and signal indicator, with the Al3+-assisted the fluorescent signal response, we developed a label-free and dual-signal lateral flow immunochromatographic assay (LDLFIA) for sensitive detection of Escherichia coli (E. coli) O157:H7. The UIO@MB sensing carrier without monoclonal antibodies (mAbs) was manufactured, which adhered to bacteria to form the UIO@MB-E. coli O157:H7 conjugate, resulting in visible blue band. Then the fluorescent response of the OH-rich UIO@MB was excited by introducing Al3+, arising from capturing of Al3+ by -OH through coordination and electrostatic affinity, thus generating a green fluorescent band. Impressively, a smartphone-based portable reading system was developed that can reflect the test results of UIO@MB-LDLFIA immediately. Under optimum conditions, UIO@MB-LDLFIA can complete colorimetric and fluorescent mode detection within 90 min, with a detection sensitivity of 103 CFU/mL, which were 100 times lower than traditional gold nanoparticles-based LFIA and polymerase chain reaction (PCR). Moreover, the feasibility of the method was further evaluated by the determination of E. coli O157: H7 in drinking water and cabbage with average recoveries of 85.1-123.0%.
Collapse
Affiliation(s)
- Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaohan Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junfang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Yu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengna Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
15
|
Savran T, Karuk Elmas SN, Aydin D, Arslan S, Arslan FN, Yilmaz I. Design of multiple-target chemoprobe: “naked-eye” colorimetric recognition of Fe3+ and off–on fluorogenic detection for Hg2+ and its on-site applications. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04648-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Biswas A, Naskar R, Mitra D, Das A, Gharami S, Murmu N, Mondal TK. A new “turn-on” molecular switch for idiosyncratic detection of Al 3+ ion along with its application in live cell imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj03481f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new highly sensitive, reversible, reusable and fluorogenic “turn-on” switch (HBTC) has been fabricated for the sole detection of Al3+.
Collapse
Affiliation(s)
- Amitav Biswas
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Akash Das
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | | |
Collapse
|
17
|
Ju L, Shao Q, Lu L, Lu H. A New Turn-On Fluorescent Chemosensor for Selective Detection of Al 3+ Based on a Purine Schiff Base and Its Cell Imaging. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Karuk Elmas SN. A simple and rapid determination of Al(III) in natural water samples using dispersive liquid-liquid microextraction after complexation with a novel antipyrine-based Schiff base reagent. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:47. [PMID: 34970705 DOI: 10.1007/s10661-021-09701-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The purpose of this study is the development of a novel strategy for the determination of Al3+ ions using the combination of dispersive liquid-liquid microextraction (DLLME) and UV-Vis spectrophotometry. The method is grounded in the complexation between a novel antipyrine-based Schiff base reagent (EHMP) and Al3+ ions. Aluminum concentrations were detected using UV-Vis spectrophotometry at 260 nm and this technique was optimized using the absorbance value of EHMP-Al complex. pH, mixing period, type and volume of organic solvent, etc. were optimized stepwise in order to find out optimum experimental conditions. The limit of detection and the limit of quantification values for the improved analytical method were to be estimated 0.31 and 1.03 μmol.L-1, respectively. The new strategy was successfully performed to define Al3+ ions in natural water samples with RSD values (84.01-107.71%) and recovery values (0.01-0.09%).
Collapse
Affiliation(s)
- Sukriye Nihan Karuk Elmas
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.
| |
Collapse
|
19
|
Zhang S, Gu Y, Shi Z, Lu N, Xu H. A novel reversible fluorescent probe based on naphthalimide for sequential detection of aluminum (Al 3+) and fluoride (F -) ions and its applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5360-5368. [PMID: 34730585 DOI: 10.1039/d1ay01545a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A new Schiff base fluorescent probe NBP derived from the one-step condensation strategy of 2-butyl-6-hydroxy-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinoline-5-carbaldehyde and N-(2-(hydrazinecarbonyl)phenyl)benzamide was synthesized and characterized. NBP exhibited high selectivity toward Al3+ along with naked-eye color changes and prominent fluorescence enhancement. The limit of detection (LOD) of NBP toward Al3+ was detected to be 80 nM. The binding ratio of NBP with Al3+ ions was obtained as 1 : 2 on the basis of Job's plot with the association constant Ka value of 4.22 × 1010 M-1/2. The plausible complexation mechanism of NBP toward Al3+ ions was validated by the density functional theory (DFT) and IR spectrum. In addition, in situ formed "NBP + Al3+" could be utilized as the second sensor for selective recognition of F-via fluorescence quenching with a low detection limit (44 nM). Furthermore, the cell imaging experiments of probe NBP in HeLa cells have successfully demonstrated that NBP could serve as an indicator for monitoring Al3+ ions in living cells. On top of that, NBP could be used to prepare simple test paper strips for quickly and qualitatively detecting a trace amount of Al3+ ions in a visible manner.
Collapse
Affiliation(s)
- Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Yunlan Gu
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Zongqian Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Nan Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
20
|
Aydin D, Yilmaz I. Simple synthesis and sensing applications of a new and low cost fluorescent chemosensor for selective recognition and facile removal of Hg2+. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Xu H, Chen W, Ju L, Lu H. A purine based fluorescent chemosensor for the selective and sole detection of Al 3+ and its practical applications in test strips and bio-imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119074. [PMID: 33120119 DOI: 10.1016/j.saa.2020.119074] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
A novel purine Schiff base fluorescent probe (WYW), (E)-4-methyl-2-((2-(9-(naphthalen-1-yl)-8-(thiophen-2-yl)-9H-purin-6-yl)hydrazono)methyl)phenol, was designed and prepared as an excellent reversible fluorescent chemosensor for monitoring Al3+. The fluorogenic "turn-on" sensor WYW exhibited high selectivity towards Al3+ over other coexistent metal ions, accompanying with an obvious visual color change in DMSO/H2O (9/1, v/v, pH = 7.4) media. The enhancement fluorescence of WYW could be attributed to the inhibition of PET and ESIPT process induced by Al3+. Notably, the WYW-Al3+ complex exhibited a fluorescence "turn-off" response towards F- with exceptional selectivity via the displacement approach. The detection limit of WYW for Al3+ was calculated to be as low as 82 nM. The formation of complex WYW-Al3+ (1:1 stoichiometry) was confirmed by Job's methods and further verified by density functional theory (DFT) calculations. Furthermore, the probe WYW with low cytotoxicity and excellent membrane-permeable property has also been successfully applied for detecting low concertation Al3+ in living HeLa cells.
Collapse
Affiliation(s)
- Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Wei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Lixin Ju
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
22
|
Zheng X, Zhao Y, Jia P, Wang Q, Liu Y, Bu T, Zhang M, Bai F, Wang L. Dual-Emission Zr-MOF-Based Composite Material as a Fluorescence Turn-On Sensor for the Ultrasensitive Detection of Al 3. Inorg Chem 2020; 59:18205-18213. [PMID: 33285064 DOI: 10.1021/acs.inorgchem.0c02674] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this work, a novel zirconium-based metal-organic framework (MOF) composite material, UiO-(OH)2@RhB, has been solvothermally prepared with zirconyl chloride octahydrate, 2,5-dihydroxyterephthalic acid, and rhodamine B (RhB) for ratiometric fluorescence sensing of Al3+ ions in an aqueous medium. The luminescence measurement results showed that, at the single excitation wavelength of 420 nm, the fluorescence intensity of the ligand at 500 nm increased significantly in the case of Al3+, while that of RhB at 583 nm changed slightly, together with an apparent color change. Under optimal conditions, UiO-(OH)2@RhB exhibited an extraordinary sensitivity (10 nM), good selectivity, and a fast response (2 min) for Al3+. As far as we know, the limit of detection is superior to that of the current reported MOF-based Al3+ fluorescence sensors. The response mechanism suggested that -OH could capture Al3+ in water through coordination and high electrostatic affinity and achieved turn-on ratiometric fluorescence through the excited-state intramolecular proton transfer process and stable fluorescence of RhB. In addition, this sensor was also applied to actual food samples (grain beans), with the recoveries ranging from 89.08% to 113.61%. Such a turn-on ratiometric fluorescence sensor will provide a constructive strategy for the ultrasensitive detection of Al3+ in practical applications.
Collapse
Affiliation(s)
- Xiaohan Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yijian Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinzhi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|