1
|
Li T, Borg AJE, Krammer L, Breinbauer R, Nidetzky B. One-Pot Hetero-Di-C-Glycosylation of the Natural Polyphenol Phloretin by a Single C-Glycosyltransferase With Broad Sugar Substrate Specificity. Biotechnol Bioeng 2025; 122:1296-1304. [PMID: 39918272 PMCID: PMC11975207 DOI: 10.1002/bit.28948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 04/08/2025]
Abstract
The structural motif of hetero-di-C-glycosyl compound is prominent in plant polyphenol natural products and involves two different glycosyl residues (e.g., β-d-glucosyl, β-d-xylosyl) attached to carbons of the same phenolic ring. Polyphenol hetero-di-C-glycosides attract attention as specialized ingredients of herbal medicines and their tailored synthesis by enzymatic C-glycosylation is promising to overcome limitations of low natural availability and to expand molecular diversity to new-to-nature glycoside structures. However, installing these di-C-glycoside structures with synthetic precision and efficiency is challenging. Here we have characterized the syntheses of C-β-galactosyl-C-β-glucosyl and C-β-glucosyl-C-β-xylosyl structures on the phloroglucinol ring of the natural polyphenol phloretin, using kumquat (Fortunella crassifolia) C-glycosyltransferase (FcCGT). The FcCGT uses uridine 5'-diphosphate (UDP)-galactose (5 mU/mg) and UDP-xylose (0.3 U/mg) at lower activity than UDP-glucose (3 U/mg). The 3'-C-β-glucoside (nothofagin) is ~10-fold less reactive than non-glycosylated phloretin with all UDP-sugars, suggesting the practical order of hetero-di-C-glycosylation as C-galactosylation or C-xylosylation of phloretin followed by C-glucosylation of the resulting mono-C-glycoside. Each C-glycosylation performed in the presence of twofold excess of UDP-sugar proceeds to completion and appears to be effectively irreversible, as evidenced by the absence of glycosyl residue exchange at extended reaction times. Synthesis of C-β-glucosyl-C-β-xylosyl phloretin is shown at 10 mM concentration in quantitative conversion using cascade reaction of FcCGT and UDP-xylose synthase, allowing for in situ formation of UDP-xylose from the more expedient donor substrate UDP-glucuronic acid. The desired di-C-glycoside with Xyl or Gal was obtained as a single product of the synthesis and its structure was confirmed by NMR.
Collapse
Affiliation(s)
- Tuo Li
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyGrazAustria
| | - Annika J. E. Borg
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyGrazAustria
- Austrian Centre of Industrial Biotechnology (acib)GrazAustria
| | - Leo Krammer
- Institute of Organic ChemistryGraz University of TechnologyGrazAustria
| | - Rolf Breinbauer
- Institute of Organic ChemistryGraz University of TechnologyGrazAustria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyGrazAustria
- Austrian Centre of Industrial Biotechnology (acib)GrazAustria
| |
Collapse
|
2
|
Jaña GA, Medina FE, Barrios F, Martínez-Araya JI, Mendoza F. Structural analyses of Glycyrrhiza glabra C-glycosyltransferase: a molecular dynamics study to elucidate catalytically active complexes. Org Biomol Chem 2025; 23:3899-3912. [PMID: 40138195 DOI: 10.1039/d4ob01814a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
C-Glycosides belong to a class of bioactive compounds biosynthesized by C-glycosyltransferases, also known as C-GTs. Despite their practical significance, C-GTs have scarcely been studied due to the limited availability of their crystal structures. In this study, we applied molecular dynamics (MD) simulations and density functional theory (DFT) calculations to investigate Glycyrrhiza glabra C-GT (GgCGT), focusing on the impact of protonation states of two histidine residues and specific mutations on enzyme-substrate configurations. We explored nine native ternary models, considering all possible combinations of protonation states for the His351/His373 pair, which we proposed as fundamental for catalysis. We also included four different mutants designed to assess the role of residues found to be essential for catalytic activity through mutagenesis experiments: His12Ala, His12Lys, His12Lysn and Asp375Ala. MD simulations revealed that only two models (M1 and M3) satisfied the criteria for catalytic competence, where the protonation states of His351 and His373 significantly influenced the relative position between donor and acceptor substrates, as well as the acceptor substrate conformation, adopting extended and packed states. DFT calculations confirmed that these conformations impact the electron density distribution, influencing substrate reactivity. Mutant simulations further supported the experimental data: His12Ala, His12Lys, and Asp375Ala mutants failed to meet the catalytic distance criteria, leading us to infer that these mutations prevented the formation of a reactive enzyme-substrate complex. Conversely, the His12Lysn mutant partially meets the criteria, which could help to explain the catalytic activity of this mutant. These findings provide the first molecular interpretation of the role of key residues in substrate binding and catalysis, which are essential for understanding catalytic activity. Furthermore, they offer new structural insights into residues such as His351/His373, which are often overlooked in GT modeling despite their potential to modulate the Michaelis complex. We hope that these findings will contribute to the rational engineering of more efficient C-GTs for biotechnological applications.
Collapse
Affiliation(s)
- Gonzalo A Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
| | - Fabiola E Medina
- Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Collao 1202, Concepción 4051381, Chile
| | - Francisco Barrios
- Centro de Investigación e Innovación Tecnológica (CIITEC), Estado Mayor General, Ejército de Chile, Valenzuela Llanos 623, La Reina, 7860251 Santiago, Chile
| | - Jorge I Martínez-Araya
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, 8370146 Santiago, Chile
| | - Fernanda Mendoza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
| |
Collapse
|
3
|
Liu H, Borg AJE, Nidetzky B. Expanding the high-pH range of the sucrose synthase reaction by enzyme immobilization. J Biotechnol 2024; 396:150-157. [PMID: 39522733 DOI: 10.1016/j.jbiotec.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The glycosylation of an alcohol group from a sugar nucleotide substrate involves proton release, so the reaction is favored thermodynamically at high pH. Here, we explored expansion of the alkaline pH range of sucrose synthase (SuSy; EC 2.4.1.13) to facilitate enzymatic glycosylation from uridine 5'-diphosphate (UDP)-glucose. The apparent equilibrium constant of the SuSy reaction (UDP-glucose + fructose ↔ sucrose + UDP) at 30 °C increases by ∼4 orders of magnitude as the pH is raised from 5.5 to 9.0. However, the SuSy in solution loses ≥80 % of its maximum productivity at pH ∼7 when alkaline reaction conditions (pH 9.0) are used. We therefore immobilized the SuSy on nanocellulose-based biocomposite carriers (∼48 U/g carrier; ≥ 50 % effectiveness) and reveal in the carrier-bound enzyme a substantial broadening of the pH-productivity profile to high pH, with up to 80 % of maximum capacity retained at pH 9.5. Using reaction by the immobilized SuSy with automated pH control at pH ∼9.0, we demonstrate near-complete conversion (≥ 96 %) of UDP-glucose and fructose (each 100 mM) into sucrose, as expected from the equilibrium constant (Keq = ∼7 × 102) under these conditions. Collectively, our results support the idea of glycosyltransferase-catalyzed synthetic glycosylation from sugar nucleotide donor driven by high pH; and they showcase a marked adaptation to high pH of the operational activity of the soybean SuSy by immobilization.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), Graz, Austria.
| |
Collapse
|
4
|
Li M, Zhou Y, Wen Z, Ni Q, Zhou Z, Liu Y, Zhou Q, Jia Z, Guo B, Ma Y, Chen B, Zhang ZM, Wang JB. An efficient C-glycoside production platform enabled by rationally tuning the chemoselectivity of glycosyltransferases. Nat Commun 2024; 15:8893. [PMID: 39406733 PMCID: PMC11480083 DOI: 10.1038/s41467-024-53209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Despite the broad potential applications of C-glycosides, facile synthetic methods remain scarce. Transforming glycosyltransferases with promiscuous or natural O-specific chemoselectivity to C-glycosyltransferases is challenging. Here, we employ rational directed evolution of the glycosyltransferase MiCGT to generate MiCGT-QDP and MiCGT-ATD mutants which either enhance C-glycosylation or switch to O-glycosylation, respectively. Structural analysis and computational simulations reveal that substrate binding mode govern C-/O-glycosylation selectivity. Notably, directed evolution and mechanism analysis pinpoint the crucial residues dictating the binding mode, enabling the rational design of four enzymes with superior non-inherent chemoselectivity, despite limited sequence homology. Moreover, our best mutants undergo testing with 34 substrates, demonstrating superb chemoselectivities, regioselectivities, and activities. Remarkably, three C-glycosides and an O-glycoside are produced on a gram scale, demonstrating practical utility. This work establishes a highly selective platform for diverse glycosides, and offers a practical strategy for creating various types of glycosylation platforms to access pharmaceutically and medicinally interesting products.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
- Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
| | - Yang Zhou
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China
| | - Zexing Wen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Qian Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Ziqin Zhou
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China
| | - Yiling Liu
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China
| | - Qiang Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Bin Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Zhi-Min Zhang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China.
| | - Jian-Bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China.
- Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
| |
Collapse
|
5
|
Moree S, Böhm L, Hoffmann T, Schwab WG. Kinetics of Secoisolariciresinol Glucosyltransferase LuUGT74S1 and Its Mutants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20005-20013. [PMID: 39213532 PMCID: PMC11403609 DOI: 10.1021/acs.jafc.4c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The lignan secoisolariciresinol (SECO) diglucoside (SDG) is a phytoestrogen with diverse effects. LuUGT74S1 glucosylates SECO to SDG, whereby only small amounts of the monoglucoside SMG are formed intermediately, which exhibit increased activity. To identify critical amino acids that are important for enzymatic activity and the SMG/SDG ratio, 3D structural modeling and docking, as well as site-directed mutation studies, were performed. Enzyme assays with ten mutants revealed that four of them had identical kinetic data to LuUGT74S1, while three showed reduced and one increased catalytic efficiency kcat/Km. S82F and E189L substitutions resulted in the complete absence of activity. A17 and Q136 are crucial for the conversion of SMG to SDG as A17S and Q136F mutants exhibited the highest SMG/SDG ratios of 0.7 and 0.4. Kinetic analyses show that diglucosylation is an essentially irreversible reaction, while monoglycosylation is kinetically favored. The results lay the foundation for the biotechnological production of SMG.
Collapse
Affiliation(s)
- Sadiq
Saleh Moree
- Biotechnology
of Natural Products, Technische Universität
München, Liesel-Beckmann-Str.
1, Freising 85354, Germany
- Department
of Biochemistry, University of Thamar, P.O. Box 87246, Sana’a-Tiaz
Road, Thamar 87246, Yemen
| | - Lukas Böhm
- Biotechnology
of Natural Products, Technische Universität
München, Liesel-Beckmann-Str.
1, Freising 85354, Germany
| | - Thomas Hoffmann
- Biotechnology
of Natural Products, Technische Universität
München, Liesel-Beckmann-Str.
1, Freising 85354, Germany
| | - Wilfried G. Schwab
- Biotechnology
of Natural Products, Technische Universität
München, Liesel-Beckmann-Str.
1, Freising 85354, Germany
| |
Collapse
|
6
|
Wang Z, Du X, Ye G, Wang H, Liu Y, Liu C, Li F, Ågren H, Zhou Y, Li J, He C, Guo DA, Ye M. Functional characterization, structural basis, and protein engineering of a rare flavonoid 2'- O-glycosyltransferase from Scutellaria baicalensis. Acta Pharm Sin B 2024; 14:3746-3759. [PMID: 39220864 PMCID: PMC11365401 DOI: 10.1016/j.apsb.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 09/04/2024] Open
Abstract
Glycosylation is an important post-modification reaction in plant secondary metabolism, and contributes to structural diversity of bioactive natural products. In plants, glycosylation is usually catalyzed by UDP-glycosyltransferases. Flavonoid 2'-O-glycosides are rare glycosides. However, no UGTs have been reported, thus far, to specifically catalyze 2'-O-glycosylation of flavonoids. In this work, UGT71AP2 was identified from the medicinal plant Scutellaria baicalensis as the first flavonoid 2'-O-glycosyltransferase. It could preferentially transfer a glycosyl moiety to 2'-hydroxy of at least nine flavonoids to yield six new compounds. Some of the 2'-O-glycosides showed noticeable inhibitory activities against cyclooxygenase 2. The crystal structure of UGT71AP2 (2.15 Å) was solved, and mechanisms of its regio-selectivity was interpreted by pK a calculations, molecular docking, MD simulation, MM/GBSA binding free energy, QM/MM, and hydrogen‒deuterium exchange mass spectrometry analysis. Through structure-guided rational design, we obtained the L138T/V179D/M180T mutant with remarkably enhanced regio-selectivity (the ratio of 7-O-glycosylation byproducts decreased from 48% to 4%) and catalytic efficiency of 2'-O-glycosylation (k cat/K m, 0.23 L/(s·μmol), 12-fold higher than the native). Moreover, UGT71AP2 also possesses moderate UDP-dependent de-glycosylation activity, and is a dual function glycosyltransferase. This work provides an efficient biocatalyst and sets a good example for protein engineering to optimize enzyme catalytic features through rational design.
Collapse
Affiliation(s)
- Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Du
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei 230601, China
| | - Guo Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haotian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yizhan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chenrui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fudong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Yang Zhou
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Chao He
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei 230601, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
7
|
Putkaradze N, Dato L, Kırtel O, Hansen J, Welner DH. Enzymatic glycosylation of aloesone performed by plant UDP-dependent glycosyltransferases. Glycobiology 2024; 34:cwae050. [PMID: 38995933 PMCID: PMC11273223 DOI: 10.1093/glycob/cwae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/14/2024] Open
Abstract
Aloesone is a bioactive natural product and biosynthetic precursor of rare glucosides found in rhubarb and some aloe plants including Aloe vera. This study aimed to investigate biocatalytic aloesone glycosylation and more than 400 uridine diphosphate-dependent glycosyltransferase (UGT) candidates, including multifunctional and promiscuous enzymes from a variety of plant species were assayed. As a result, 137 selective aloesone UGTs were discovered, including four from the natural producer rhubarb. Rhubarb UGT72B49 was further studied and its catalytic constants (kcat = 0.00092 ± 0.00003 s-1, KM = 30 ± 2.5 μM) as well as temperature and pH optima (50 °C and pH 7, respectively) were determined. We further aimed to find an efficient aloesone glycosylating enzyme with potential application for biocatalytic production of the glucoside. We discovered UGT71C1 from Arabidopsis thaliana as an efficient aloesone UGT showing a 167-fold higher catalytic efficiency compared to that of UGT72B49. Interestingly, sequence analysis of all the 137 newly identified aloesone UGTs showed that they belong to different phylogenetic groups, with the highest representation in groups B, D, E, F and L. Finally, our study indicates that aloesone C-glycosylation is highly specific and rare, since it was not possible to achieve in an efficient manner with any of the 422 UGTs assayed, including multifunctional GTs and 28 known C-UGTs.
Collapse
Affiliation(s)
- Natalia Putkaradze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads 220, Lyngby DK-2800, Denmark
| | - Laura Dato
- River Stone Biotech ISG, Fruebjergvej 3, Copenhagen DK-2100, Denmark
| | - Onur Kırtel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads 220, Lyngby DK-2800, Denmark
| | - Jørgen Hansen
- River Stone Biotech ISG, Fruebjergvej 3, Copenhagen DK-2100, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads 220, Lyngby DK-2800, Denmark
| |
Collapse
|
8
|
Li Y, Chen Y, Wang D, Wu L, Li T, An N, Yang H. Elucidating the multifaceted role of MGAT1 in hepatocellular carcinoma: integrative single-cell and spatial transcriptomics reveal novel therapeutic insights. Front Immunol 2024; 15:1442722. [PMID: 39081317 PMCID: PMC11286416 DOI: 10.3389/fimmu.2024.1442722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Background Glycosyltransferase-associated genes play a crucial role in hepatocellular carcinoma (HCC) pathogenesis. This study investigates their impact on the tumor microenvironment and molecular mechanisms, offering insights into innovative immunotherapeutic strategies for HCC. Methods We utilized cutting-edge single-cell and spatial transcriptomics to examine HCC heterogeneity. Four single-cell scoring techniques were employed to evaluate glycosyltransferase genes. Spatial transcriptomic findings were validated, and bulk RNA-seq analysis was conducted to identify prognostic glycosyltransferase-related genes and potential immunotherapeutic targets. MGAT1's role was further explored through various functional assays. Results Our analysis revealed diverse cell subpopulations in HCC with distinct glycosyltransferase gene activities, particularly in macrophages. Key glycosyltransferase genes specific to macrophages were identified. Temporal analysis illustrated macrophage evolution during tumor progression, while spatial transcriptomics highlighted reduced expression of these genes in core tumor macrophages. Integrating scRNA-seq, bulk RNA-seq, and spatial transcriptomics, MGAT1 emerged as a promising therapeutic target, showing significant potential in HCC immunotherapy. Conclusion This comprehensive study delves into glycosyltransferase-associated genes in HCC, elucidating their critical roles in cellular dynamics and immune cell interactions. Our findings open new avenues for immunotherapeutic interventions and personalized HCC management, pushing the boundaries of HCC immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuan Chen
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqiong Wang
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Ling Wu
- Tumor Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Tao Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Na An
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Haikun Yang
- The Gastroenterology Department, Shanxi Provincial People Hospital, Taiyuan, China
| |
Collapse
|
9
|
Jiang Y, Wei Y, Zhou QY, Sun GQ, Fu XP, Levin N, Zhang Y, Liu WQ, Song N, Mohammed S, Davis BG, Koh MJ. Direct radical functionalization of native sugars. Nature 2024; 631:319-327. [PMID: 38898275 PMCID: PMC11236704 DOI: 10.1038/s41586-024-07548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
Naturally occurring (native) sugars and carbohydrates contain numerous hydroxyl groups of similar reactivity1,2. Chemists, therefore, rely typically on laborious, multi-step protecting-group strategies3 to convert these renewable feedstocks into reagents (glycosyl donors) to make glycans. The direct transformation of native sugars to complex saccharides remains a notable challenge. Here we describe a photoinduced approach to achieve site- and stereoselective chemical glycosylation from widely available native sugar building blocks, which through homolytic (one-electron) chemistry bypasses unnecessary hydroxyl group masking and manipulation. This process is reminiscent of nature in its regiocontrolled generation of a transient glycosyl donor, followed by radical-based cross-coupling with electrophiles on activation with light. Through selective anomeric functionalization of mono- and oligosaccharides, this protecting-group-free 'cap and glycosylate' approach offers straightforward access to a wide array of metabolically robust glycosyl compounds. Owing to its biocompatibility, the method was extended to the direct post-translational glycosylation of proteins.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Yi Wei
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Qian-Yi Zhou
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Guo-Quan Sun
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xia-Ping Fu
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Nikita Levin
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Yijun Zhang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Wen-Qiang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - NingXi Song
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shabaz Mohammed
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Chemistry, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Benjamin G Davis
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK.
- Department of Pharmacology, University of Oxford, Oxford, UK.
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Bidart GN, Hyeuk S, Alter TB, Yang L, Welner DH. A growth selection system for sucrose synthases (SuSy): design and test. AMB Express 2024; 14:70. [PMID: 38865019 PMCID: PMC11169191 DOI: 10.1186/s13568-024-01727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
High throughput screening (HTS) methods of enzyme variants are essential for the development of robust biocatalysts suited for low impact, industrial scale, biobased synthesis of a myriad of compounds. However, for the majority of enzyme classes, current screening methods have limited throughput, or need expensive substrates in combination with sophisticated setups. Here, we present a straightforward, high throughput selection system that couples sucrose synthase activity to growth. Enabling high throughput screening of this enzyme class holds the potential to facilitate the creation of robust variants, which in turn can significantly impact the future of cost effective industrial glycosylation.
Collapse
Affiliation(s)
- Gonzalo N Bidart
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark
| | - Se Hyeuk
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark
| | - Tobias Benedikt Alter
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark
- RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Lei Yang
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
11
|
Ushasree MV, Jia Q, Do SG, Lee EY. New opportunities and perspectives on biosynthesis and bioactivities of secondary metabolites from Aloe vera. Biotechnol Adv 2024; 72:108325. [PMID: 38395206 DOI: 10.1016/j.biotechadv.2024.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Historically, the genus Aloe has been an indispensable part of both traditional and modern medicine. Decades of intensive research have unveiled the major bioactive secondary metabolites of this plant. Recent pandemic outbreaks have revitalized curiosity in aloe metabolites, as they have proven pharmacokinetic profiles and repurposable chemical space. However, the structural complexity of these metabolites has hindered scientific advances in the chemical synthesis of these compounds. Multi-omics research interventions have transformed aloe research by providing insights into the biosynthesis of many of these compounds, for example, aloesone, aloenin, noreugenin, aloin, saponins, and carotenoids. Here, we summarize the biological activities of major aloe secondary metabolites with a focus on their mechanism of action. We also highlight the recent advances in decoding the aloe metabolite biosynthetic pathways and enzymatic machinery linked with these pathways. Proof-of-concept studies on in vitro, whole-cell, and microbial synthesis of aloe compounds have also been briefed. Research initiatives on the structural modification of various aloe metabolites to expand their chemical space and activity are detailed. Further, the technological limitations, patent status, and prospects of aloe secondary metabolites in biomedicine have been discussed.
Collapse
Affiliation(s)
- Mrudulakumari Vasudevan Ushasree
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Qi Jia
- Unigen, Inc., 2121 South street suite 400 Tacoma, Washington 98405, USA
| | - Seon Gil Do
- Naturetech, Inc., 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungcheongbuk-do 27858, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
12
|
Fan A, Zhong B, Liu D, Lu Y, Wu M, Jin H, Shi XM, Ren J, Zhang B, Su XD, Ma M, Li SM, Lin W. Biosynthesis of Epipyrone A Reveals a Highly Specific Membrane-Bound Fungal C-Glycosyltransferase for Pyrone Galactosylation. Org Lett 2024; 26:1160-1165. [PMID: 38319976 DOI: 10.1021/acs.orglett.3c04259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Epipyrone A is a unique C-galactosylated 4-hydroxy-2-pyrone derivative with an antifungal potential from the fungus Epicoccum nigrum. We elucidated its biosynthesis via heterologous expression and characterized an unprecedented membrane-bound pyrone C-glycosyltransferase biochemically. Molecular docking and mutagenesis experiments suggested a possible mechanism for the heterocyclic C-glycosylation and the importance of a transmembrane helix for its catalysis. These results expand the repertoire of C-glycosyltransferases and provide new insights into the formation of C-glycosides in fungi.
Collapse
Affiliation(s)
- Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Boyuan Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, China
| | - Yubo Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mengyue Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Zhang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao-Dong Su
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
Liu S, Liu J, Zhao L, Pei J. Efficient and Economic Utilization of Cellobiose for Glycosylation Modification by Regulating Carbon Source Supply and Metabolic Pathway In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:475-482. [PMID: 38116649 DOI: 10.1021/acs.jafc.3c05720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Glycosylation, one of the most common and significant modifications in nature, has prompted the development of a cellobiose phosphorolysis route for glycosylation in vivo. However, the process of glycosylation is hampered by the notably low conversion rate of cellobiose. In this work, regulation of the carbon source supply by changing the ratio of glucose to cellobiose improved the conversion rate of cellobiose, resulting in enhancing the efficiency of glycosylation and the production of vitexin. Moreover, three genes (pgm, agp, and ushA) involved in the degradation of UDP-glucose were knocked out to relieve the degradation and diversion of the cellobiose phosphorolysis route. Finally, through the optimization of conversion conditions, we observed a continuous enhancement in cellobiose conversion rate and vitexin production in BL21ΔushAΔagp-TcCGT-CepA, corresponding to an increased concentration of added glucose. The maximum production of vitexin reached 2228 mg/L with the addition of 2 g/L cellobiose and 6 g/L glucose, which was 312% of that in BL21-TcCGT-CepA with the addition of 2 g/L cellobiose. The conversion rate of cellobiose in BL21ΔushAΔagp-TcCGT-CepA reached 88%, which was the highest conversion rate of cellobiose to date. Therefore, this study presents a cost-effective and efficient method to enhance the conversion rate of cellobiose during the glycosylation process.
Collapse
Affiliation(s)
- Simin Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Jiamei Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| |
Collapse
|
14
|
Tang SN, Barnum CR, Szarzanowicz MJ, Sirirungruang S, Shih PM. Harnessing Plant Sugar Metabolism for Glycoengineering. BIOLOGY 2023; 12:1505. [PMID: 38132331 PMCID: PMC10741112 DOI: 10.3390/biology12121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Plants possess an innate ability to generate vast amounts of sugar and produce a range of sugar-derived compounds that can be utilized for applications in industry, health, and agriculture. Nucleotide sugars lie at the unique intersection of primary and specialized metabolism, enabling the biosynthesis of numerous molecules ranging from small glycosides to complex polysaccharides. Plants are tolerant to perturbations to their balance of nucleotide sugars, allowing for the overproduction of endogenous nucleotide sugars to push flux towards a particular product without necessitating the re-engineering of upstream pathways. Pathways to produce even non-native nucleotide sugars may be introduced to synthesize entirely novel products. Heterologously expressed glycosyltransferases capable of unique sugar chemistries can further widen the synthetic repertoire of a plant, and transporters can increase the amount of nucleotide sugars available to glycosyltransferases. In this opinion piece, we examine recent successes and potential future uses of engineered nucleotide sugar biosynthetic, transport, and utilization pathways to improve the production of target compounds. Additionally, we highlight current efforts to engineer glycosyltransferases. Ultimately, the robust nature of plant sugar biochemistry renders plants a powerful chassis for the production of target glycoconjugates and glycans.
Collapse
Affiliation(s)
- Sophia N. Tang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA;
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; (M.J.S.)
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
| | - Collin R. Barnum
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, CA 95616, USA
| | - Matthew J. Szarzanowicz
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; (M.J.S.)
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sasilada Sirirungruang
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; (M.J.S.)
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Patrick M. Shih
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; (M.J.S.)
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Trobo-Maseda L, Romero-Fernandez M, Guisan JM, Rocha-Martin J. Glycosylation of polyphenolic compounds: Design of a self-sufficient biocatalyst by co-immobilization of a glycosyltransferase, a sucrose synthase and the cofactor UDP. Int J Biol Macromol 2023; 250:126009. [PMID: 37536414 DOI: 10.1016/j.ijbiomac.2023.126009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Glycosyltransferases catalyze the regioselective glycosylation of polyphenolic compounds, increasing their solubility without altering their antioxidant properties. Leloir-type glycosyltransferases require UDP-glucose as a cofactor to glycosylate a hydroxyl of the polyphenol, which is expensive and unstable. To simplify these processes for industrial implementation, the preparation of self-sufficient heterogeneous biocatalysts is needed. In this study, a glycosyltransferase and a sucrose synthase (as an UDP-regenerating enzyme) were co-immobilized onto porous agarose-based supports coated with polycationic polymers: polyethylenimine and polyallylamine. In addition, the UDP cofactor was strongly ionically adsorbed and co-immobilized with the enzymes, eliminating the need to add it separately. Thus, the optimal self-sufficient heterogeneous biocatalyst was able to catalyze the glycosylation of three polyphenolic compounds (piceid, phloretin and quercetin) with in situ regeneration of the UDP-glucose, allowing multiple consecutive reaction cycles without the addition of exogenous cofactor. A TTN value of 50 (theoretical maximum) was obtained in the reaction of piceid glycosylation, after 5 reaction cycles, using the self-sufficient biocatalyst based on an improved sucrose synthase variant. This result was 5-fold higher than the obtained using soluble cofactor and the co-immobilized enzymes, and much higher than those reported in the literature for similar processes.
Collapse
Affiliation(s)
- Lara Trobo-Maseda
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - María Romero-Fernandez
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - José M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
16
|
Jung J, Liu H, Borg AJE, Nidetzky B. Solvent Engineering for Nonpolar Substrate Glycosylation Catalyzed by the UDP-Glucose-Dependent Glycosyltransferase UGT71E5: Intensification of the Synthesis of 15-Hydroxy Cinmethylin β-d-Glucoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13419-13429. [PMID: 37655961 PMCID: PMC10510383 DOI: 10.1021/acs.jafc.3c04027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Sugar nucleotide-dependent glycosyltransferases are powerful catalysts of the glycosylation of natural products and xenobiotics. The low solubility of the aglycone substrate often limits the synthetic efficiency of the transformation catalyzed. Here, we explored different approaches of solvent engineering for reaction intensification of β-glycosylation of 15HCM (a C15-hydroxylated, plant detoxification metabolite of the herbicide cinmethylin) catalyzed by safflower UGT71E5 using UDP-glucose as the donor substrate. Use of a cosolvent (DMSO, ethanol, and acetonitrile; ≤50 vol %) or a water-immiscible solvent (n-dodecane, n-heptane, n-hexane, and 1-hexene) was ineffective due to enzyme activity and stability, both impaired ≥10-fold compared to a pure aqueous solvent. Complexation in 2-hydroxypropyl-β-cyclodextrin enabled dissolution of 50 mM 15HCM while retaining the UGT71E5 activity (∼0.32 U/mg) and stability. Using UDP-glucose recycling, 15HCM was converted completely, and 15HCM β-d-glucoside was isolated in 90% yield (∼150 mg). Collectively, this study highlights the requirement for a mild, enzyme-compatible strategy for aglycone solubility enhancement in glycosyltransferase catalysis applied to glycoside synthesis.
Collapse
Affiliation(s)
- Jihye Jung
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, A-8010 Graz, Austria
| | - Hui Liu
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, A-8010 Graz, Austria
| | - Annika J. E. Borg
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, A-8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, A-8010 Graz, Austria
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, A-8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, A-8010 Graz, Austria
| |
Collapse
|
17
|
Han BY, Wang ZL, Li J, Jin Q, Wang HT, Chen K, Yi Y, Ågren H, Qiao X, Ye M. A highly selective C-rhamnosyltransferase from Viola tricolor and insights into its mechanisms. Acta Pharm Sin B 2023; 13:3535-3544. [PMID: 37655315 PMCID: PMC10465961 DOI: 10.1016/j.apsb.2023.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 09/02/2023] Open
Abstract
C-Glycosides are important natural products with various bioactivities. In plant biosynthetic pathways, the C-glycosylation step is usually catalyzed by C-glycosyltransferases (CGTs), and most of them prefer to accept uridine 5'-diphosphate glucose (UDP-Glc) as sugar donor. No CGTs favoring UDP-rhamnose (UDP-Rha) as sugar donor has been reported, thus far. Herein, we report the first selective C-rhamnosyltransferase VtCGTc from the medicinal plant Viola tricolor. VtCGTc could efficiently catalyze C-rhamnosylation of 2-hydroxynaringenin 3-C-glucoside, and exhibited high selectivity towards UDP-Rha. Mechanisms for the sugar donor selectivity of VtCGTc were investigated by molecular dynamics (MD) simulations and molecular mechanics with generalized Born and surface area solvation (MM/GBSA) binding free energy calculations. Val144 played a vital role in recognizing UDP-Rha, and the V144T mutant could efficiently utilize UDP-Glc. This work provides a new and efficient approach to prepare flavonoid C-rhamnosides such as violanthin and iso-violanthin.
Collapse
Affiliation(s)
- Bo-Yun Han
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Qing Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- College of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Hao-Tian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| |
Collapse
|
18
|
Hoffmann TD, Kurze E, Liao J, Hoffmann T, Song C, Schwab W. Genome-wide identification of UDP-glycosyltransferases in the tea plant ( Camellia sinensis) and their biochemical and physiological functions. FRONTIERS IN PLANT SCIENCE 2023; 14:1191625. [PMID: 37346124 PMCID: PMC10279963 DOI: 10.3389/fpls.2023.1191625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023]
Abstract
Tea (Camellia sinensis) has been an immensely important commercially grown crop for decades. This is due to the presence of essential nutrients and plant secondary metabolites that exhibit beneficial health effects. UDP-glycosyltransferases (UGTs) play an important role in the diversity of such secondary metabolites by catalysing the transfer of an activated sugar donor to acceptor molecules, and thereby creating a huge variety of glycoconjugates. Only in recent years, thanks to the sequencing of the tea plant genome, have there been increased efforts to characterise the UGTs in C. sinensis to gain an understanding of their physiological role and biotechnological potential. Based on the conserved plant secondary product glycosyltransferase (PSPG) motif and the catalytically active histidine in the active site, UGTs of family 1 in C. sinensis are identified here, and shown to cluster into 21 groups in a phylogenetic tree. Building on this, our current understanding of recently characterised C. sinensis UGTs (CsUGTs) is highlighted and a discussion on future perspectives made.
Collapse
Affiliation(s)
- Timothy D. Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Jieren Liao
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| |
Collapse
|
19
|
Liao J, Lederer V, Bardhi A, Zou Z, Hoffmann TD, Sun G, Song C, Hoffmann T, Schwab W. Acceptors and Effectors Alter Substrate Inhibition Kinetics of a Plant Glucosyltransferase NbUGT72AY1 and Its Mutants. Int J Mol Sci 2023; 24:ijms24119542. [PMID: 37298492 DOI: 10.3390/ijms24119542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
One of the main obstacles in biocatalysis is the substrate inhibition (SI) of enzymes that play important roles in biosynthesis and metabolic regulation in organisms. The promiscuous glycosyltransferase UGT72AY1 from Nicotiana benthamiana is strongly substrate-inhibited by hydroxycoumarins (inhibitory constant Ki < 20 µM), but only weakly inhibited when monolignols are glucosylated (Ki > 1000 µM). Apocarotenoid effectors reduce the inherent UDP-glucose glucohydrolase activity of the enzyme and attenuate the SI by scopoletin derivatives, which could also be achieved by mutations. Here, we studied the kinetic profiles of different phenols and used the substrate analog vanillin, which has shown atypical Michaelis-Menten kinetics in previous studies, to examine the effects of different ligands and mutations on the SI of NbUGT72AY1. Coumarins had no effect on enzymatic activity, whereas apocarotenoids and fatty acids strongly affected SI kinetics by increasing the inhibition constant Ki. Only the F87I mutant and a chimeric version of the enzyme showed weak SI with the substrate vanillin, but all mutants exhibited mild SI when sinapaldehyde was used as an acceptor. In contrast, stearic acid reduced the transferase activity of the mutants to varying degrees. The results not only confirm the multi-substrate functionality of NbUGT72AY1, but also reveal that the enzymatic activity of this protein can be fine-tuned by external metabolites such as apocarotenoids and fatty acids that affect SI. Since these signals are generated during plant cell destruction, NbUGT72AY1 likely plays an important role in plant defense by participating in the production of lignin in the cell wall and providing direct protection through the formation of toxic phytoalexins.
Collapse
Affiliation(s)
- Jieren Liao
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Veronika Lederer
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Alba Bardhi
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Zhiwei Zou
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Guangxin Sun
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, China
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| |
Collapse
|
20
|
Liao J, Sun G, Kurze E, Steinchen W, Hoffmann TD, Song C, Zou Z, Hoffmann T, Schwab WG. Subfunctionalization of a monolignol to a phytoalexin glucosyltransferase is accompanied by substrate inhibition. PLANT COMMUNICATIONS 2023; 4:100506. [PMID: 36566353 DOI: 10.1016/j.xplc.2022.100506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
Uridine diphosphate-dependent glycosyltransferases (UGTs) mediate the glycosylation of plant metabolites, thereby altering their physicochemical properties and bioactivities. Plants possess numerous UGT genes, with the encoded enzymes often glycosylating multiple substrates and some exhibiting substrate inhibition kinetics, but the biological function and molecular basis of these phenomena are not fully understood. The promiscuous monolignol/phytoalexin glycosyltransferase NbUGT72AY1 exhibits substrate inhibition (Ki) at 4 μM scopoletin, whereas the highly homologous monolignol StUGT72AY2 is inhibited at 190 μM. We therefore used hydrogen/deuterium exchange mass spectrometry and structure-based mutational analyses of both proteins and introduced NbUGT72AY1 residues into StUGT72AY2 and vice versa to study promiscuity and substrate inhibition of UGTs. A single F87I and chimeric mutant of NbUGT72AY1 showed significantly reduced scopoletin substrate inhibition, whereas its monolignol glycosylation activity was almost unaffected. Reverse mutations in StUGT72AY2 resulted in increased scopoletin glycosylation, leading to enhanced promiscuity, which was accompanied by substrate inhibition. Studies of 3D structures identified open and closed UGT conformers, allowing visualization of the dynamics of conformational changes that occur during catalysis. Previously postulated substrate access tunnels likely serve as drainage channels. The results suggest a two-site model in which the second substrate molecule binds near the catalytic site and blocks product release. Mutational studies showed that minor changes in amino acid sequence can enhance the promiscuity of the enzyme and add new capabilities such as substrate inhibition without affecting existing functions. The proposed subfunctionalization mechanism of expanded promiscuity may play a role in enzyme evolution and highlights the importance of promiscuous enzymes in providing new functions.
Collapse
Affiliation(s)
- Jieren Liao
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Guangxin Sun
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Zhiwei Zou
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried G Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| |
Collapse
|
21
|
Ren J, Barton CD, Zhan J. Engineered production of bioactive polyphenolic O-glycosides. Biotechnol Adv 2023; 65:108146. [PMID: 37028465 DOI: 10.1016/j.biotechadv.2023.108146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from nucleotide-activated diphosphate sugar (NDP-sugar) donors to sugar acceptors such as polyphenolic compounds. In this review, we systematically review and summarize the representative polyphenolic O-glycosides with various bioactivities and their engineered biosynthesis in microbes with different biotechnological strategies. We also review the major routes towards NDP-sugar formation in microbes, which is significant for producing unusual or novel glycosides. Finally, we discuss the trends in NDP-sugar based glycosylation research to promote the development of prodrugs that positively impact human health and wellness.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
22
|
Sirirungruang S, Barnum CR, Tang SN, Shih PM. Plant glycosyltransferases for expanding bioactive glycoside diversity. Nat Prod Rep 2023. [PMID: 36853278 DOI: 10.1039/d2np00077f] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Glycosylation is a successful strategy to alter the pharmacological properties of small molecules, and it has emerged as a unique approach to expand the chemical space of natural products that can be explored in drug discovery. Traditionally, most glycosylation events have been carried out chemically, often requiring many protection and deprotection steps to achieve a target molecule. Enzymatic glycosylation by glycosyltransferases could provide an alternative strategy for producing new glycosides. In particular, the glycosyltransferase family has greatly expanded in plants, representing a rich enzymatic resource to mine and expand the diversity of glycosides with novel bioactive properties. This article highlights previous and prospective uses for plant glycosyltransferases in generating bioactive glycosides and altering their pharmacological properties.
Collapse
Affiliation(s)
- Sasilada Sirirungruang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Collin R Barnum
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Sophia N Tang
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
23
|
Li T, Borg AJE, Krammer L, Breinbauer R, Nidetzky B. Reaction intensification for biocatalytic production of polyphenolic natural product di-C-β-glucosides. Biotechnol Bioeng 2023; 120:1506-1520. [PMID: 36787984 DOI: 10.1002/bit.28354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Polyphenolic aglycones featuring two sugars individually attached via C-glycosidic linkage (di-C-glycosides) represent a rare class of plant natural products with unique physicochemical properties and biological activities. Natural scarcity of such di-C-glycosides limits their use-inspired exploration as pharmaceutical ingredients. Here, we show a biocatalytic process technology for reaction-intensified production of the di-C-β-glucosides of two representative phenol substrates, phloretin (a natural flavonoid) and phenyl-trihydroxyacetophenone (a phenolic synthon for synthesis), from sucrose. The synthesis proceeds via an iterative two-fold C-glycosylation of the respective aglycone, supplied as inclusion complex with 2-hydroxypropyl β-cyclodextrin for enhanced water solubility of up to 50 mmol/L, catalyzed by a kumquat di-C-glycosyltransferase (di-CGT), and it uses UDP-Glc provided in situ from sucrose by a soybean sucrose synthase, with catalytic amounts (≤3 mol%) of UDP added. Time course analysis reveals the second C-glycosylation as rate-limiting (0.4-0.5 mmol/L/min) for the di-C-glucoside production. With internal supply from sucrose keeping the UDP-Glc at a constant steady-state concentration (≥50% of the UDP added) during the reaction, the di-C-glycosylation is driven to completion (≥95% yield). Contrary to the mono-C-glucoside intermediate which is stable, the di-C-glucoside requires the addition of reducing agent (10 mmol/L 2-mercaptoethanol) to prevent its decomposition during the synthesis. Both di-C-glucosides are isolated from the reaction mixtures in excellent purity (≥95%), and their expected structures are confirmed by NMR. Collectively, this study demonstrates efficient glycosyltransferase cascade reaction for flexible use in natural product di-C-β-glucoside synthesis from expedient substrates.
Collapse
Affiliation(s)
- Tuo Li
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.,Austrian Centre of Industrial Biotechnology (acib), Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.,Austrian Centre of Industrial Biotechnology (acib), Graz, Austria
| | - Leo Krammer
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.,Austrian Centre of Industrial Biotechnology (acib), Graz, Austria
| |
Collapse
|
24
|
Franceus J, Lormans J, Desmet T. Building mutational bridges between carbohydrate-active enzymes. Curr Opin Biotechnol 2022; 78:102804. [PMID: 36156353 DOI: 10.1016/j.copbio.2022.102804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
The commercial value of specialty carbohydrates and glycosylated compounds has sparked considerable interest in the synthetic potential of carbohydrate-active enzymes (CAZymes). Protein engineering methods have proven to be highly successful in expanding the range of glycosylation reactions that these enzymes can perform efficiently and cost-effectively. The past few years have witnessed meaningful progress in this area, largely due to a sharper focus on the understanding of structure-function relationships and mechanistic intricacies. Here, we summarize recent studies that demonstrate how protein engineers have become much better at traversing the fitness landscape of CAZymes through mutational bridges that connect the different activity types.
Collapse
Affiliation(s)
- Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jolien Lormans
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
25
|
Wu Y, Wang H, Liu Y, Zhao L, Pei J. An efficient preparation and biocatalytic synthesis of novel C-glycosylflavonols kaempferol 8-C-glucoside and quercetin 8-C-glucoside through using resting cells and macroporous resins. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:129. [PMID: 36434691 PMCID: PMC9700910 DOI: 10.1186/s13068-022-02228-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND C-glycosylated flavonoids are a main type of structural modification and can endow flavonoids with greater stability, bioactivity, and bioavailability. Although some C-glycosylated flavonoids have been biosynthesized in vivo or vitro, only a few C-glycosylflavonols have been prepared by these methods. RESULTS In this study, several uridine 5'-diphosphate (UDP)-glucose biosynthesis pathways and Escherichia coli hosts were screened to reconstruct recombinant strains for producing the novel C-glycosylflavonols kaempferol 8-C-glucoside and quercetin 8-C-glucoside. To increase C-glycosylflavonol production, the timing of flavonol addition was adjusted, and glycerol was added to avoid degradation of C-glycosylflavonols. By using resting cell bioconversion, the highest kaempferol 8-C-glucoside and quercetin 8-C-glucoside production reached 16.6 g/L and 12.5 g/L, respectively. Then, ultrasound-assisted adsorption/desorption was used to prepare C-glycosylflavonols by using macroporous resins. Through screening macroporous resins and optimizing the adsorption/desorption conditions, the highest adsorption capacity and desorption capacity for kaempferol 8-C-glucoside on HPD100 reached 28.57 mg/g and 24.15 mg/g, respectively. Finally, kaempferol 8-C-glucoside (15.4 g) with a yield of 93% and quercetin 8-C-glucoside (11.3 g) with a yield of 91% were obtained from 1 L of fermentation broth. CONCLUSIONS Kaempferol 8-C-glucoside and quercetin 8-C-glucoside are novel C-glycosylflavonols, which have not been extracted from plants. This study provides an efficient method for the preparation and biocatalytic synthesis of kaempferol 8-C-glucoside and quercetin 8-C-glucoside by metabolic engineering of Escherichia coli.
Collapse
Affiliation(s)
- Yangbao Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, China
| | - Huan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, China
| | - Yang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, China.
| |
Collapse
|
26
|
Ni R, Liu XY, Zhang JZ, Fu J, Tan H, Zhu TT, Zhang J, Wang HL, Lou HX, Cheng AX. Identification of a flavonoid C-glycosyltransferase from fern species Stenoloma chusanum and the application in synthesizing flavonoid C-glycosides in Escherichia coli. Microb Cell Fact 2022; 21:210. [PMID: 36242071 PMCID: PMC9563126 DOI: 10.1186/s12934-022-01940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flavonoid C-glycosides have many beneficial effects and are widely used in food and medicine. However, plants contain a limited number of flavonoid C-glycosides, and it is challenging to create these substances chemically. RESULTS To screen more robust C-glycosyltransferases (CGTs) for the biosynthesis of flavonoid C-glycosides, one CGT enzyme from Stenoloma chusanum (ScCGT1) was characterized. Biochemical analyses revealed that ScCGT1 showed the C-glycosylation activity for phloretin, 2-hydroxynaringenin, and 2-hydroxyeriodictyol. Structure modeling and mutagenesis experiments indicated that the glycosylation of ScCGT1 may be initiated by the synergistic action of conserved residue His26 and Asp14. The P164T mutation increased C-glycosylation activity by forming a hydrogen bond with the sugar donor. Furthermore, when using phloretin as a substrate, the extracellular nothofagin production obtained from the Escherichia coli strain ScCGT1-P164T reached 38 mg/L, which was 2.3-fold higher than that of the wild-type strain. Finally, it is proved that the coupling catalysis of CjFNS I/F2H and ScCGT1-P164T could convert naringenin into vitexin and isovitexin. CONCLUSION This is the first time that C-glycosyltransferase has been characterized from fern species and provides a candidate gene and strategy for the efficient production of bioactive C-glycosides using enzyme catalysis and metabolic engineering.
Collapse
Affiliation(s)
- Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xin-Yan Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jiao-Zhen Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hui Tan
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jing Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hai-Long Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
27
|
Heo KT, Lee B, Jang JH, Hong YS. Elucidation of the di-c-glycosylation steps during biosynthesis of the antitumor antibiotic, kidamycin. Front Bioeng Biotechnol 2022; 10:985696. [PMID: 36091425 PMCID: PMC9452638 DOI: 10.3389/fbioe.2022.985696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Kidamycins belong to the pluramycin family of antitumor antibiotics that contain di-C-glycosylated angucycline. Owing to its interesting biological activity, several synthetic derivatives of kidamycins are currently being developed. However, the synthesis of these complex structural compounds with unusual C-glycosylated residues is difficult. In the kidamycin-producing Streptomyces sp. W2061 strain, the genes encoding the biosynthetic enzymes responsible for the structural features of kidamycin were identified. Two glycosyltransferase-coding genes, kid7 and kid21, were found in the kidamycin biosynthetic gene cluster (BGC). Gene inactivation studies revealed that the subsequent glycosylation steps occurred in a sequential manner, in which Kid7 first attached N,N-dimethylvancosamine to the C10 position of angucycline aglycone, following which Kid21 transferred an anglosamine moiety to C8 of the C10-glycosylated angucycline. Therefore, this is the first report to reveal the sequential biosynthetic steps of the unique C-glycosylated amino-deoxyhexoses of kidamycin. Additionally, we confirmed that all three methyltransferases (Kid4, Kid9, and Kid24) present in this BGC were involved in the biosynthesis of these amino-deoxyhexoses, N,N-dimethylvancosamine and anglosamine. Aglycone compounds and the mono-C-glycosylated compound obtained in this process will be used as substrates for the development of synthetic derivatives in the future.
Collapse
Affiliation(s)
- Kyung Taek Heo
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology(UST), Daejeon, South Korea
| | - Byeongsan Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology(UST), Daejeon, South Korea
- *Correspondence: Jae-Hyuk Jang, ; Young-Soo Hong,
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology(UST), Daejeon, South Korea
- *Correspondence: Jae-Hyuk Jang, ; Young-Soo Hong,
| |
Collapse
|
28
|
Zhang YQ, Zhang M, Wang ZL, Qiao X, Ye M. Advances in plant-derived C-glycosides: Phytochemistry, bioactivities, and biotechnological production. Biotechnol Adv 2022; 60:108030. [PMID: 36031083 DOI: 10.1016/j.biotechadv.2022.108030] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023]
Abstract
C-glycosides represent a large group of natural products with a C-C bond between the aglycone and the sugar moiety. They exhibit great structural diversity, wide natural distribution, and significant biological activities. By the end of 2021, at least 754 C-glycosides and their derivatives have been isolated and characterized from plants. Thus far, 66 functional C-glycosyltransferases (CGTs) have been discovered from plants, and provide green and efficient approaches to synthesize C-glycosides. Herein, advances in plant-derived C-glycosides are comprehensively summarized from aspects of structural diversity and identification, bioactivities, and biotechnological production. New strategies to discover novel C-glycosides and CGTs, as well as the applications of biotechnological methods to produce C-glycosides in the future are also discussed.
Collapse
Affiliation(s)
- Ya-Qun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
29
|
Chen Z, Sato S, Geng Y, Zhang J, Liu HW. Identification of the Early Steps in Herbicidin Biosynthesis Reveals an Atypical Mechanism of C-Glycosylation. J Am Chem Soc 2022; 144:15653-15661. [PMID: 35981300 DOI: 10.1021/jacs.2c05728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herbicidins are adenosine-derived nucleoside antibiotics with an unusual tricyclic core structure. Deletion of the genes responsible for formation of the tricyclic skeleton in Streptomyces sp. L-9-10 reveals the in vivo importance of Her4, Her5, and Her6 in the early stages of herbicidin biosynthesis. In vitro characterization of Her4 and Her5 demonstrates their involvement in an initial, two-stage C-C coupling reaction that results in net C5'-glycosylation of ADP/ATP by UDP/TDP-glucuronic acid. Biochemical analyses and intermediate trapping experiments imply a noncanonical mechanism of C-glycosylation reminiscent of NAD-dependent S-adenosylhomocysteine (SAH)-hydrolase catalysis. Structural characterization of the isolated metabolites suggests possible reactions catalyzed by Her6 and Her7. An overall herbicidin biosynthetic pathway is proposed based on these observations.
Collapse
Affiliation(s)
- Zhang Chen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shusuke Sato
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yujie Geng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiawei Zhang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
30
|
Teze D, Bidart GN, Welner DH. Family 1 glycosyltransferases (GT1, UGTs) are subject to dilution-induced inactivation and low chemo stability toward their own acceptor substrates. Front Mol Biosci 2022; 9:909659. [PMID: 35936788 PMCID: PMC9354691 DOI: 10.3389/fmolb.2022.909659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glycosylation reactions are essential but challenging from a conventional chemistry standpoint. Conversely, they are biotechnologically feasible as glycosyltransferases can transfer sugar to an acceptor with perfect regio- and stereo-selectivity, quantitative yields, in a single reaction and under mild conditions. Low stability is often alleged to be a limitation to the biotechnological application of glycosyltransferases. Here we show that these enzymes are not necessarily intrinsically unstable, but that they present both dilution-induced inactivation and low chemostability towards their own acceptor substrates, and that these two phenomena are synergistic. We assessed 18 distinct GT1 enzymes against three unrelated acceptors (apigenin, resveratrol, and scopoletin—respectively a flavone, a stilbene, and a coumarin), resulting in a total of 54 enzymes: substrate pairs. For each pair, we varied catalyst and acceptor concentrations to obtain 16 different reaction conditions. Fifteen of the assayed enzymes (83%) displayed both low chemostability against at least one of the assayed acceptors at submillimolar concentrations, and dilution-induced inactivation. Furthermore, sensitivity to reaction conditions seems to be related to the thermal stability of the enzymes, the three unaffected enzymes having melting temperatures above 55°C, whereas the full enzyme panel ranged from 37.4 to 61.7°C. These results are important for GT1 understanding and engineering, as well as for discovery efforts and biotechnological use.
Collapse
Affiliation(s)
- David Teze
- *Correspondence: David Teze, ; Ditte Hededam Welner,
| | | | | |
Collapse
|
31
|
Tan FF, Zhu R, Xiong B, Zhang GM, Zhao W, Jia KZ. Engineering the Entrance of a Flavonoid Glycosyltransferase Promotes the Glycosylation of Etoposide Aglycone. ACS Synth Biol 2022; 11:1874-1880. [PMID: 35522995 DOI: 10.1021/acssynbio.2c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme entrances, which function as the first molecular filters, influence substrate selectivity and enzymatic activity. Because of low binding affinities, engineering enzyme entrances that recognize non-natural substrates is a major challenge for artificial biocatalyst design. Here, the entrance of flavonoid glycosyltransferase UGT78D2 was engineered to promote the recognition of the aglycone of etoposide, a chemotherapeutic agent. We found that Q258, S446, R444, and R450, the key residues surrounding the substrate entrance, specifically guide the flux of etoposide aglycone, which has a high steric hindrance, into the active site; this activity was inferred to be determined by the entrance size and hydrophobic and electrostatic interactions. Engineering the coordination of Q258 and S446 to increase the entrance size and hydrophobic interaction between UGT78D2 and etoposide aglycone increased the affinity by 10.10-fold and the conversion by 10%. The entrance-engineering strategy applied in this study can improve the design of artificial biocatalysts.
Collapse
Affiliation(s)
- Fei-Fan Tan
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Bin Xiong
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Gui-Min Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Kai-Zhi Jia
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
32
|
Gao HY, Liu Y, Tan FF, Zhu LW, Jia KZ, Tang YJ. Advances and Challenges in Enzymatic C-glycosylation of Flavonoids in Plants. Curr Pharm Des 2022; 28:1466-1479. [PMID: 35466866 DOI: 10.2174/1381612828666220422085128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Flavonoid glycosides play required determinant roles in plants and have considerable potential for applications in medicine and biotechnology. Glycosyltransferases transfer a sugar moiety from uridine diphosphate-activated sugar molecules to an acceptor flavonoid via C-O and C-C linkages. Compared with O-glycosylflavonoids, C-glycosylflavonoids are more stable, are resistant to glycosidase or acid hydrolysis, exhibit better pharmacological properties, and have received more attention. Herein, we discuss the mining of C-glycosylflavones and the corresponding C-glycosyltransferases and evaluate the differences in structure and catalytic mechanisms between C-glycosyltransferase and O-glycosyltransferase. We conclude that promiscuity and specificity are key determinants for general flavonoid C-glycosyltransferase engineering and summarize the C-glycosyltransferase engineering strategy. A thorough understanding of the properties, catalytic mechanisms, and engineering of C-glycosyltransferases will be critical for any future biotechnological applications in areas such as the production of desired C-glycosylflavonoids for nutritional or medicinal use.
Collapse
Affiliation(s)
- Hui-Yao Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Yan Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Fei-Fan Tan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Li-Wen Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Kai-Zhi Jia
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
33
|
Huang J, She Y, Yue J, Chen Y, Li Y, Li J, Hu Y, Yang D, Chen J, Yang L, Liu Z, Wu R, Jin P, Duan L. Exploring the catalytic function and active sites of a novel C-glycosyltransferase from Anemarrhena asphodeloides. Synth Syst Biotechnol 2022; 7:621-630. [PMID: 35198747 PMCID: PMC8841362 DOI: 10.1016/j.synbio.2022.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Anemarrhena asphodeloides is an immensely popular medicinal herb in China, which contains an abundant of mangiferin. As an important bioactive xanthone C-glycoside, mangiferin possesses a variety of pharmacological activities and is derived from the cyclization reaction of a benzophenone C-glycoside (maclurin). Biosynthetically, C-glycosyltransferases are critical for the formation of benzophenone C-glycosides. However, the benzophenone C-glycosyltransferases from Anemarrhena asphodeloides have not been discovered. Herein, a promiscuous C-glycosyltransferase (AaCGT) was identified from Anemarrhena asphodeloides. It was able to catalyze efficiently mono-C-glycosylation of benzophenone, together with di-C-glycosylation of dihydrochalcone. It also exhibited the weak O-glycosylation or potent S-glycosylation capacities toward 12 other types of flavonoid scaffolds and a simple aromatic compound with –SH group. Homology modeling and mutagenesis experiments revealed that the glycosylation reaction of AaCGT was initiated by the conserved residue H23 as the catalytic base. Three critical residues H356, W359 and D380 were involved in the recognition of sugar donor through hydrogen-bonding interactions. In particular, the double mutant of F94W/L378M led to an unexpected enzymatic conversion of mono-C- to di-C-glycosylation. This study highlights the important value of AaCGT as a potential biocatalyst for efficiently synthesizing high-value C-glycosides.
Collapse
Affiliation(s)
- Jia Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yaru She
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jingyang Yue
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yidu Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yu Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jing Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yonger Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiabo Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Lu Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Corresponding author.
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Pengfei Jin
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
- Corresponding author.
| | - Lixin Duan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Corresponding author.
| |
Collapse
|
34
|
Zhang YQ, Wang ZL, Chen Z, Jin ZT, Hasan A, Wang HD, Sun YW, Qiao X, Wang Y, Ye M. A highly selective 2''- O-glycosyltransferase from Ziziphus jujuba and De novo biosynthesis of isovitexin 2''- O-glucoside. Chem Commun (Camb) 2022; 58:2472-2475. [PMID: 35084410 DOI: 10.1039/d1cc06949g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel and efficient 2''-O-glycosyltransferase ZjOGT38 was identified from Ziziphus jujuba. It could regio-selectively glycosylate 2-hydroxyflavanone C-glycosides. ZjOGT38 allowed de novo biosynthesis of isovitexin 2''-O-glucoside in E. coli.
Collapse
Affiliation(s)
- Ya-Qun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Zhuo Chen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China. .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zheng-Tong Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Aobulikasimu Hasan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Hai-Dong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Yu-Wei Sun
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
35
|
Coines J, Cuxart I, Teze D, Rovira C. Computer Simulation to Rationalize “Rational” Engineering of Glycoside Hydrolases and Glycosyltransferases. J Phys Chem B 2022; 126:802-812. [PMID: 35073079 PMCID: PMC8819650 DOI: 10.1021/acs.jpcb.1c09536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Glycoside hydrolases
and glycosyltransferases are the main classes
of enzymes that synthesize and degrade carbohydrates, molecules essential
to life that are a challenge for classical chemistry. As such, considerable
efforts have been made to engineer these enzymes and make them pliable
to human needs, ranging from directed evolution to rational design,
including mechanism engineering. Such endeavors fall short and are
unreported in numerous cases, while even success is a necessary but
not sufficient proof that the chemical rationale behind the design
is correct. Here we review some of the recent work in CAZyme mechanism
engineering, showing that computational simulations are instrumental
to rationalize experimental data, providing mechanistic insight into
how native and engineered CAZymes catalyze chemical reactions. We
illustrate this with two recent studies in which (i) a glycoside hydrolase
is converted into a glycoside phosphorylase and (ii) substrate specificity
of a glycosyltransferase is engineered toward forming O-, N-, or S-glycosidic bonds.
Collapse
Affiliation(s)
- Joan Coines
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Irene Cuxart
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - David Teze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
36
|
Bao YO, Zhang M, Qiao X, Ye M. Functional characterization of a C-glycosyltransferase from Pueraria lobata with dual-substrate selectivity. Chem Commun (Camb) 2022; 58:12337-12340. [DOI: 10.1039/d2cc04279g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported a C-glycosyltransferase PlCGT with dual-substrate selectivity. An Asn16–Asp124 dyad may mediate the SN2-like mechanism in the C-glycosylation.
Collapse
Affiliation(s)
- Yang-Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Yunnan Baiyao International Medical Research Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
37
|
Wen Z, Zhang ZM, Zhong L, Fan J, Li M, Ma Y, Zhou Y, Zhang W, Guo B, Chen B, Wang JB. Directed Evolution of a Plant Glycosyltransferase for Chemo- and Regioselective Glycosylation of Pharmaceutically Significant Flavonoids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zexing Wen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing, Foshan, Guangdong 528200, P. R. China
| | - Liang Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jiaqian Fan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Min Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wei Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Bin Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Jian-Bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
38
|
Chen D, Fan S, Yang Z, Dai J. Biocatalytic Application of a Membrane‐Bound Coumarin C‐Glucosyltransferase in the Synthesis of Coumarin and Benzofuran C‐Glucosides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs NHC Key Laboratory of Biosynthesis of Natural Products Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Shuai Fan
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College 1 Tian Tan Xi Li Beijing 100050 People's Republic of China
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College 1 Tian Tan Xi Li Beijing 100050 People's Republic of China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs NHC Key Laboratory of Biosynthesis of Natural Products Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| |
Collapse
|
39
|
Kurze E, Wüst M, Liao J, McGraphery K, Hoffmann T, Song C, Schwab W. Structure-function relationship of terpenoid glycosyltransferases from plants. Nat Prod Rep 2021; 39:389-409. [PMID: 34486004 DOI: 10.1039/d1np00038a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in terms of polarity, volatility, solubility and reactivity, and their bioactivities are altered accordingly. Significant scientific progress has been made in the functional study of glycosylated terpenes and numerous plant enzymes involved in regio- and enantioselective glycosylation have been characterized, a reaction that remains chemically challenging. Crucial clues to the mechanism of terpenoid glycosylation were recently provided by the first crystal structures of a diterpene glycosyltransferase UGT76G1. Here, we review biochemically characterized terpenoid glycosyltransferases, compare their functions and primary structures, discuss their acceptor and donor substrate tolerance and product specificity, and elaborate features of the 3D structures of the first terpenoid glycosyltransferases from plants.
Collapse
Affiliation(s)
- Elisabeth Kurze
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Matthias Wüst
- Chair of Food Chemistry, Institute of Nutritional and Food Sciences, University of Bonn, Endenicher Allee 19C, 53115 Bonn, Germany.
| | - Jieren Liao
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Kate McGraphery
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Thomas Hoffmann
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University Hefei, Anhui 230036, People's Republic of China.
| | - Wilfried Schwab
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany. .,State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University Hefei, Anhui 230036, People's Republic of China.
| |
Collapse
|
40
|
Gene-Metabolite Network Analysis Revealed Tissue-Specific Accumulation of Therapeutic Metabolites in Mallotus japonicus. Int J Mol Sci 2021; 22:ijms22168835. [PMID: 34445541 PMCID: PMC8396295 DOI: 10.3390/ijms22168835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mallotus japonicus is a valuable traditional medicinal plant in East Asia for applications as a gastrointestinal drug. However, the molecular components involved in the biosynthesis of bioactive metabolites have not yet been explored, primarily due to a lack of omics resources. In this study, we established metabolome and transcriptome resources for M. japonicus to capture the diverse metabolite constituents and active transcripts involved in its biosynthesis and regulation. A combination of untargeted metabolite profiling with data-dependent metabolite fragmentation and metabolite annotation through manual curation and feature-based molecular networking established an overall metabospace of M. japonicus represented by 2129 metabolite features. M. japonicus de novo transcriptome assembly showed 96.9% transcriptome completeness, representing 226,250 active transcripts across seven tissues. We identified specialized metabolites biosynthesis in a tissue-specific manner, with a strong correlation between transcripts expression and metabolite accumulations in M. japonicus. The correlation- and network-based integration of metabolome and transcriptome datasets identified candidate genes involved in the biosynthesis of key specialized metabolites of M. japonicus. We further used phylogenetic analysis to identify 13 C-glycosyltransferases and 11 methyltransferases coding candidate genes involved in the biosynthesis of medicinally important bergenin. This study provides comprehensive, high-quality multi-omics resources to further investigate biological properties of specialized metabolites biosynthesis in M. japonicus.
Collapse
|
41
|
Atanasoff-Kardjalieff AK, Lünne F, Kalinina S, Strauss J, Humpf HU, Studt L. Biosynthesis of Fusapyrone Depends on the H3K9 Methyltransferase, FmKmt1, in Fusarium mangiferae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:671796. [PMID: 37744112 PMCID: PMC10512364 DOI: 10.3389/ffunb.2021.671796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/09/2021] [Indexed: 09/26/2023]
Abstract
The phytopathogenic fungus Fusarium mangiferae belongs to the Fusarium fujikuroi species complex (FFSC). Members of this group cause a wide spectrum of devastating diseases on diverse agricultural crops. F. mangiferae is the causal agent of the mango malformation disease (MMD) and as such detrimental for agriculture in the southern hemisphere. During plant infection, the fungus produces a plethora of bioactive secondary metabolites (SMs), which most often lead to severe adverse defects on plants health. Changes in chromatin structure achieved by posttranslational modifications (PTM) of histones play a key role in regulation of fungal SM biosynthesis. Posttranslational tri-methylation of histone 3 lysine 9 (H3K9me3) is considered a hallmark of heterochromatin and established by the SET-domain protein Kmt1. Here, we show that FmKmt1 is involved in H3K9me3 in F. mangiferae. Loss of FmKmt1 only slightly though significantly affected fungal hyphal growth and stress response and is required for wild type-like conidiation. While FmKmt1 is largely dispensable for the biosynthesis of most known SMs, removal of FmKMT1 resulted in an almost complete loss of fusapyrone and deoxyfusapyrone, γ-pyrones previously only known from Fusarium semitectum. Here, we identified the polyketide synthase (PKS) FmPKS40 to be involved in fusapyrone biosynthesis, delineate putative cluster borders by co-expression studies and provide insights into its regulation.
Collapse
Affiliation(s)
- Anna K. Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Friederike Lünne
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Svetlana Kalinina
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| |
Collapse
|
42
|
Chen Z, Sun Y, Wang G, Zhang Y, Zhang Q, Zhang Y, Li J, Wang Y. De novo biosynthesis of C-arabinosylated flavones by utilization of indica rice C-glycosyltransferases. BIORESOUR BIOPROCESS 2021; 8:49. [PMID: 34150466 PMCID: PMC8196924 DOI: 10.1186/s40643-021-00404-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Flavone C-arabinosides/xylosides are plant-originated glycoconjugates with various bioactivities. However, the potential utility of these molecules is hindered by their low abundance in nature. Engineering biosynthesis pathway in heterologous bacterial chassis provides a sustainable source of these C-glycosides. We previously reported bifunctional C-glucosyl/C-arabinosyltransferases in Oryza sativa japonica and O. sativa indica, which influence the C-glycoside spectrum in different rice varieties. In this study, we proved the C-arabinosyl-transferring activity of rice C-glycosyltransferases (CGTs) on the mono-C-glucoside substrate nothofagin, followed by taking advantage of specific CGTs and introducing heterologous UDP-pentose supply, to realize the production of eight different C-arabinosides/xylosides in recombinant E. coli. Fed-batch fermentation and precursor supplement maximized the titer of rice-originated C-arabinosides to 20–110 mg/L in an E. coli chassis. The optimized final titer of schaftoside and apigenin di-C-arabinoside reached 19.87 and 113.16 mg/L, respectively. We demonstrate here the success of de novo bio-production of C-arabinosylated and C-xylosylated flavones by heterologous pathway reconstitution. These results lay a foundation for further optimal manufacture of complex flavonoid compounds in microbial cell factories. ![]()
Collapse
Affiliation(s)
- Zhuo Chen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yuwei Sun
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Guangyi Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Ying Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Qian Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yulian Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Jianhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
43
|
Yang D, Jang WD, Lee SY. Production of Carminic Acid by Metabolically Engineered Escherichia coli. J Am Chem Soc 2021; 143:5364-5377. [PMID: 33797895 DOI: 10.1021/jacs.0c12406] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carminic acid is an aromatic polyketide found in scale insects (i.e., Dactylopius coccus) and is a widely used natural red colorant. It has long been produced by the cumbersome farming of insects followed by multistep purification processes. Thus, there has been much interest in producing carminic acid by the fermentation of engineered bacteria. Here we report the complete biosynthesis of carminic acid from glucose in engineered Escherichia coli. We first optimized the type II polyketide synthase machinery from Photorhabdus luminescens, enabling a high-level production of flavokermesic acid upon coexpression of the cyclases ZhuI and ZhuJ from Streptomyces sp. R1128. To discover the enzymes responsible for the remaining two reactions (hydroxylation and C-glucosylation), biochemical reaction analyses were performed by testing enzyme candidates reported to perform similar reactions. The two identified enzymes, aklavinone 12-hydroxylase (DnrF) from Streptomyces peucetius and C-glucosyltransferase (GtCGT) from Gentiana triflora, could successfully perform hydroxylation and C-glucosylation of flavokermesic acid, respectively. Then, homology modeling and docking simulations were performed to enhance the activities of these two enzymes, leading to the generation of beneficial mutants with 2-5-fold enhanced conversion efficiencies. In addition, the GtCGT mutant was found to be a generally applicable C-glucosyltransferase in E. coli, as was showcased by the successful production of aloesin found in Aloe vera. Simple metabolic engineering followed by fed-batch fermentation resulted in 0.63 ± 0.02 mg/L of carminic acid production from glucose. The strategies described here will be useful for the design and construction of biosynthetic pathways involving unknown enzymes and consequently the production of diverse industrially important natural products.
Collapse
Affiliation(s)
- Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|