1
|
Yan N, Cao J, Wang J, Zou X, Yu X, Zhang X, Si T. Seed priming with graphene oxide improves salinity tolerance and increases productivity of peanut through modulating multiple physiological processes. J Nanobiotechnology 2024; 22:565. [PMID: 39272089 PMCID: PMC11401308 DOI: 10.1186/s12951-024-02832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Graphene oxide (GO), beyond its specialized industrial applications, is rapidly gaining prominence as a nanomaterial for modern agriculture. However, its specific effects on seed priming for salinity tolerance and yield formation in crops remain elusive. Under both pot-grown and field-grown conditions, this study combined physiological indices with transcriptomics and metabolomics to investigate how GO affects seed germination, seedling salinity tolerance, and peanut pod yield. Peanut seeds were firstly treated with 400 mg L⁻¹ GO (termed GO priming). At seed germination stage, GO-primed seeds exhibited higher germination rate and percentage of seeds with radicals breaking through the testa. Meanwhile, omics analyses revealed significant enrichment in pathways associated with carbon and nitrogen metabolisms in GO-primed seeds. At seedling stage, GO priming contributed to strengthening plant growth, enhancing photosynthesis, maintaining the integrity of plasma membrane, and promoting the nutrient accumulation in peanut seedlings under 200 mM NaCl stress. Moreover, GO priming increased the activities of antioxidant enzymes, along with reduced the accumulation of reactive oxygen species (ROS) in response to salinity stress. Furthermore, the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) of peanut seedlings under GO priming were mainly related to photosynthesis, phytohormones, antioxidant system, and carbon and nitrogen metabolisms in response to soil salinity. At maturity, GO priming showed an average increase in peanut pod yield by 12.91% compared with non-primed control. Collectively, our findings demonstrated that GO plays distinguish roles in enhancing seed germination, mitigating salinity stress, and boosting pod yield in peanut plants via modulating multiple physiological processes.
Collapse
Affiliation(s)
- Ning Yan
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Junfeng Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, P.R. China.
| | - Jie Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaoxia Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaona Yu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China.
| |
Collapse
|
2
|
Cao J, Chen Z, Wang L, Yan N, Lin J, Hou L, Zhao Y, Huang C, Wen T, Li C, Rahman SU, Liu Z, Qiao J, Zhao J, Wang J, Shi Y, Qin W, Si T, Wang Y, Tang K. Graphene enhances artemisinin production in the traditional medicinal plant Artemisia annua via dynamic physiological processes and miRNA regulation. PLANT COMMUNICATIONS 2024; 5:100742. [PMID: 37919898 PMCID: PMC10943550 DOI: 10.1016/j.xplc.2023.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
We investigated the effects of graphene on the model herb Artemisia annua, which is renowned for producing artemisinin, a widely used pharmacological compound. Seedling growth and biomass were promoted when A. annua was cultivated with low concentrations of graphene, an effect which was attributed to a 1.4-fold increase in nitrogen uptake, a 15%-22% increase in chlorophyll fluorescence, and greater abundance of carbon cycling-related bacteria. Exposure to 10 or 20 mg/L graphene resulted in a ∼60% increase in H2O2, and graphene could act as a catalyst accelerator, leading to a 9-fold increase in catalase (CAT) activity in vitro and thereby maintaining reactive oxygen species (ROS) homeostasis. Importantly, graphene exposure led to an 80% increase in the density of glandular secreting trichomes (GSTs), in which artemisinin is biosynthesized and stored. This contributed to a 5% increase in artemisinin content in mature leaves. Interestingly, expression of miR828 was reduced by both graphene and H2O2 treatments, resulting in induction of its target gene AaMYB17, a positive regulator of GST initiation. Subsequent molecular and genetic assays showed that graphene-induced H2O2 inhibits micro-RNA (miRNA) biogenesis through Dicers and regulates the miR828-AaMYB17 module, thus affecting GST density. Our results suggest that graphene may contribute to yield improvement in A. annua via dynamic physiological processes together with miRNA regulation, and it may thus represent a new cultivation strategy for increasing yield capacity through nanobiotechnology.
Collapse
Affiliation(s)
- Junfeng Cao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwen Chen
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Luyao Wang
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ning Yan
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jialing Lin
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lipan Hou
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yongyan Zhao
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chaochen Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tingting Wen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenyi Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Saeed Ur Rahman
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zehui Liu
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China
| | - Jun Qiao
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China
| | - Jianguo Zhao
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China
| | - Jie Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yannan Shi
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuliang Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Cui LW, Fan LY, Shen ZY. Application Research Progress of Nanomaterial Graphene and its Derivative Complexes in Tumor Diagnosis and Therapy. Curr Med Chem 2024; 31:6436-6459. [PMID: 38299292 DOI: 10.2174/0109298673251648231106112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 02/02/2024]
Abstract
Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Li Wen Cui
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Lu Yao Fan
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Zhi Yong Shen
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| |
Collapse
|
4
|
Lee H, Heo E, Yoon H. Physically Exfoliating 2D Materials: A Versatile Combination of Different Materials into a Layered Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18678-18695. [PMID: 38095583 DOI: 10.1021/acs.langmuir.3c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Improving the properties of the existing two-dimensional (2D) materials is a major concern for many researchers today. Synergistic coupling of single-phase 2D material species with secondary functional materials has resulted in 2D nanohybrids with significantly enhanced properties beyond the sum of their individual components. In particular, nanohybrids created by alternatingly integrating different material species in the confined 2D nanometer regime have the potential to meet the needs of a wide variety of applications, particularly the many important energy-related applications that are of interest. However, scaling up production of 2D nanohybrids is still challenging, which is a major barrier to their practical application. Delamination and exfoliation by physical means separate the weakly bound 2D nanosheets into kinetically stable single- or few-layers. Herein, we provide a concise overview of recent achievements in the physical exfoliation-based fabrication of 2D nanohybrids featuring controlled heterolayered structures. Several strategies to efficiently produce heterolayered 2D nanohybrids in large quantities are described, such as (i) coexfoliation of different 2D species, (ii) aqueous-phase synthesis, and (iii) gas-phase synthesis. The versatility of the 2D nanohybrids was also illustrated by remarkable research examples, especially in energy-related applications.
Collapse
Affiliation(s)
- Haney Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Eunseo Heo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| |
Collapse
|
5
|
Polo Y, Luzuriaga J, Gonzalez de Langarica S, Pardo-Rodríguez B, Martínez-Tong DE, Tapeinos C, Manero-Roig I, Marin E, Muñoz-Ugartemendia J, Ciofani G, Ibarretxe G, Unda F, Sarasua JR, Pineda JR, Larrañaga A. Self-assembled three-dimensional hydrogels based on graphene derivatives and cerium oxide nanoparticles: scaffolds for co-culture of oligodendrocytes and neurons derived from neural stem cells. NANOSCALE 2023; 15:4488-4505. [PMID: 36753326 DOI: 10.1039/d2nr06545b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stem cell-based therapies have shown promising results for the regeneration of the nervous system. However, the survival and integration of the stem cells in the neural circuitry is suboptimal and might compromise the therapeutic outcomes of this approach. The development of functional scaffolds capable of actively interacting with stem cells may overcome the current limitations of stem cell-based therapies. In this study, three-dimensional hydrogels based on graphene derivatives and cerium oxide (CeO2) nanoparticles are presented as prospective supports allowing neural stem cell adhesion, migration and differentiation. The morphological, mechanical and electrical properties of the resulting hydrogels can be finely tuned by controlling several parameters of the self-assembly of graphene oxide sheets, namely the amount of incorporated reducing agent (ascorbic acid) and CeO2 nanoparticles. The intrinsic properties of the hydrogels, as well as the presence of CeO2 nanoparticles, clearly influence the cell fate. Thus, stiffer adhesion substrates promote differentiation to glial cell lineages, while softer substrates enhance mature neuronal differentiation. Remarkably, CeO2 nanoparticle-containing hydrogels support the differentiation of neural stem cells to neuronal, astroglial and oligodendroglial lineage cells, promoting the in vitro generation of nerve tissue grafts that might be employed in neuroregenerative cell therapies.
Collapse
Affiliation(s)
| | - Jon Luzuriaga
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Sergio Gonzalez de Langarica
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Beatriz Pardo-Rodríguez
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Daniel E Martínez-Tong
- Polymers and advanced materials: Physics, Chemistry and Technology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain & Centro de Física de Materiales (UPV/EHU-CSIC), Donostia-San Sebastian, Spain
| | - Christos Tapeinos
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, PI, Italy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Irene Manero-Roig
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Université de Bordeaux IINS - UMR 5297, Bordeaux, France
| | - Edurne Marin
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Jone Muñoz-Ugartemendia
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, PI, Italy
| | - Gaskon Ibarretxe
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Fernando Unda
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Jose-Ramon Sarasua
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Jose Ramon Pineda
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Achucarro Basque Center for Neuroscience Fundazioa, Leioa, Spain
| | - Aitor Larrañaga
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
6
|
Kim KH, Seo SE, Park CS, Kim S, Lee S, Ryu C, Yong D, Park YM, Kwon OS. Open-Bandgap Graphene-Based Field-Effect Transistor Using Oligo(phenylene-ethynylene) Interfacial Chemistry. Angew Chem Int Ed Engl 2022; 61:e202209726. [PMID: 35969510 PMCID: PMC9826410 DOI: 10.1002/anie.202209726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/11/2023]
Abstract
Organic interfacial compounds (OICs) are required as linkers for the highly stable and efficient immobilization of bioprobes in nanobiosensors using 2D nanomaterials such as graphene. Herein, we first demonstrated the fabrication of a field-effect transistor (FET) via a microelectromechanical system process after covalent functionalization on large-scale graphene by introducing oligo(phenylene-ethynylene)amine (OPE). OPE was compared to various OICs by density functional theory simulations and was confirmed to have a higher binding energy with graphene and a lower band gap than other OICs. OPE can improve the immobilization efficiency of a bioprobe by forming a self-assembly monolayer via anion-based reaction. Using this technology, Magainin I-conjugated OGMFET (MOGMFET) showed a high sensitivity, high selectivity, with a limit of detection of 100 cfu mL-1 . These results indicate that the OPE OIC can be applied for stable and comfortable interfacing technology for biosensor fabrication.
Collapse
Affiliation(s)
- Kyung Ho Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Sung Eun Seo
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Chul Soon Park
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Soomin Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Soohyun Lee
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Choong‐Min Ryu
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial ResistanceYonsei University College of MedicineSeoulRepublic of Korea
| | - Yoo Min Park
- Division of Nano-Bio Sensors/Chips DevelopmentNational NanoFab Center (NNFC)DaejeonRepublic of Korea
| | - Oh Seok Kwon
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
7
|
Noh S, Lee S, Lee J, Jo H, Lee H, Kim M, Kim H, Kim YA, Yoon H. All-Gas-Phase Synthesis of Heterolayered Two-Dimensional Nanohybrids Decorated with Metallic Nanocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203633. [PMID: 36108130 DOI: 10.1002/smll.202203633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Herein, a sequential gas-phase process involving air jet milling followed by chemical vapor deposition (CVD), is demonstrated to be an efficient strategy for the fabrication of heterolayered 2D nanohybrids (2DNHs) decorated with nanocatalysts. Tens of grams of the nanohybrids, which is a substantial quantity at the laboratory scale, are produced in the absence of solvents and water, and without the need for an extra purification procedure. Air jet milling enables the development of binary/ternary heterolayered structures consisting of graphene, WSe2 , and/or MoS2 via the gas-phase co-exfoliation of their bulk counterparts. Based on the X-ray photoelectron and Raman spectroscopy data, the heterolayers of the 2DNHs exert chemical and electronic effects on each other, while diminishing the interactions between same-component layers. Moreover, the electrochemically active surface area increases by >190% and the charge transfer resistance decreases by >35%. CVD is performed to introduce Pt and Ru nanoparticles with diameters of a few nanometers as additional electrocatalysts into the 2DNHs. The nanocatalyst-decorated 2DNHs show excellent performance for the production of hydrogen and oxygen gases in water-splitting cells. Notably, the proposed all-gas-phase processes allow for the large-scale production of functional 2DNHs with minimal negative environmental impact, which is crucial for the commercialization of nanomaterials.
Collapse
Affiliation(s)
- Seonmyeong Noh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Seungmin Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jisun Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyemi Jo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Haney Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Minjin Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyungwoo Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Yoong Ahm Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
8
|
Kim KH, Seo SE, Park CS, Kim S, Lee S, Ryu CM, Yong D, Park YM, Kwon OS. Open‐Bandgap Graphene‐based Field‐Effect Transistor Using Oligo(phenylene‐ethynylene) Interfacial Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kyung Ho Kim
- KRIBB: Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center KOREA, REPUBLIC OF
| | - Sung Eun Seo
- KRIBB: Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center KOREA, REPUBLIC OF
| | - Chul Soon Park
- KRIBB: Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center KOREA, REPUBLIC OF
| | - Soomin Kim
- KRIBB: Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center KOREA, REPUBLIC OF
| | - Soohyun Lee
- KRIBB: Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center KOREA, REPUBLIC OF
| | - Choong-Min Ryu
- KRIBB: Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center KOREA, REPUBLIC OF
| | - Dongeun Yong
- Yonsei University College of Medicine Department of Laboratory Medicine and Research Institute of Bacterial Resistanc KOREA, REPUBLIC OF
| | - Yoo Min Park
- National NanoFab Center Division of Nano-Bio Sensors/Chips Development KOREA, REPUBLIC OF
| | - Oh Seok Kwon
- Korea Research Institute of Bioscience and Biotechnology Infectious Disease Research Center 125 Gwahak-ro, Yuseong-gu 34141 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
9
|
Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022; 23:4949. [PMID: 35563340 PMCID: PMC9100005 DOI: 10.3390/ijms23094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Recent interest in research on photoluminescent molecules due to their unique properties has played an important role in advancing the bioimaging field. In particular, small molecules and organic dots as probes have great potential for the achievement of bioimaging because of their desirable properties. In this review, we provide an introduction of probes consisting of fluorescent small molecules and polymers that emit light across the ultraviolet and near-infrared wavelength ranges, along with a brief summary of the most recent techniques for bioimaging. Since photoluminescence probes emitting light in different ranges have different goals and targets, their respective strategies also differ. Diverse and novel strategies using photoluminescence probes against targets have gradually been introduced in the related literature. Among recent papers (published within the last 5 years) on the topic, we here concentrate on the photophysical properties and strategies for the design of molecular probes, with key examples of in vivo photoluminescence research for practical applications. More in-depth studies on these probes will provide key insights into how to control the molecular structure and size/shape of organic probes for expanded bioimaging research and applications.
Collapse
Affiliation(s)
- Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Chul Soon Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
10
|
In-situ food spoilage monitoring using a wireless chemical receptor-conjugated graphene electronic nose. Biosens Bioelectron 2021; 200:113908. [PMID: 34972042 DOI: 10.1016/j.bios.2021.113908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022]
Abstract
Monitoring food spoilage is one of the most effective methods for preventing food poisoning caused by biogenic amines or microbes. Therefore, various analytical techniques have been introduced to detect low concentrations of cadaverine (CV) and putrescine (PT), which are representative biogenic polyamines involved in food spoilage (5-8 ppm at the stage of initial decomposition after storage for 5 days at 5 °C and 17-186 ppm at the stage of advanced decomposition after storage for 7 days at 5 °C). Although previous methods showed selective CV and PT detection even at low concentrations, the use of these methods remains challenging in research areas that require in-situ, real-time, on-site monitoring. In this study, we demonstrated for the first time an in-situ high-performance chemical receptor-conjugated graphene electronic nose (CRGE-nose) whose limits of detection (LODs), 27.04 and 7.29 ppb, for CV and PT are up to 102 times more sensitive than those of conventional biogenic amine sensors. Specifically, the novel chemical receptors 2,7-bis(3-morpholinopropyl)benzo[lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (NaPhdiMor (NPM)) and 2,7-bis(2-((3-morpholinopropyl)amino)ethyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NaPhdiEtAmMor (NPEAM)) were designed on the basis of density functional theory (DFT) calculations, and their interaction mechanism was characterized by a DFT 3D simulation. Interestingly, the CRGE-nose was connected on a micro sim chip substrate via wire bonding and then integrated into wireless portable devices, resulting in a cost-effective, high-performance prototype CRGE-nose device capable of on-site detection. The portable CRGE-nose can be used for in-situ monitoring of CV and PT concentration changes as low as 27.04 and 7.29 ppb in real meats such as pork, beef, lamb and chicken.
Collapse
|
11
|
Heo E, Noh S, Lee U, Le TH, Lee H, Jo H, Lee S, Yoon H. Surfactant-in-Polymer Templating for Fabrication of Carbon Nanofibers with Controlled Interior Substructures: Designing Versatile Materials for Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007775. [PMID: 33739582 DOI: 10.1002/smll.202007775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/17/2021] [Indexed: 06/12/2023]
Abstract
A simple, scalable, surfactant-in-polymer templating approach is demonstrated to create controlled long-range secondary substructures in a primary structure. A metal bis(2-ethylhexyl) sulfosuccinate (MAOT) as the surfactant is shown to be capable of serving as a sacrificial template and metal precursor in carbon nanofibers. The low interfacial tension and controllable dimensions of the MAOT are maintained in the solid-phase polymer, even during electrospinning and heat-treatment processes, allowing for the long-range uniform formation of substructures in the nanofibers. The MAOT content is found to be a critical parameter for tailoring the diameter of the nanofibers and their textural properties, such as size and volume of interior pores. The metal counterion species in the MAOT determine the introduction of metallic phases in the nanofiber interior. The incorporation of MAOT with Na as the counterion into the polymer phase leads to the formation of a built-in pore structure in the nanofibers. In contrast, MAOT with Fe as a counterion generates unique iron-in-pore substructures in the nanofibers (FeCNFs). The FeCNFs exhibit outstanding charge storage and water splitting performances. As a result, the MAOT-in-polymer templating approach can be extended to combinations of various metal precursors and thus create desirable functionalities for different target applications.
Collapse
Affiliation(s)
- Eunseo Heo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Seonmyeong Noh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Unhan Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Haney Lee
- Alan G. MacDiarmid Energy Research Institute, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyemi Jo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- Alan G. MacDiarmid Energy Research Institute, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
12
|
Kim Y, Lee S, Yoon H. Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers. Polymers (Basel) 2021; 13:540. [PMID: 33673106 PMCID: PMC7918670 DOI: 10.3390/polym13040540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Currently, polymers are competing with metals and ceramics to realize various material characteristics, including mechanical and electrical properties. However, most polymers consist of organic matter, making them vulnerable to flames and high-temperature conditions. In addition, the combustion of polymers consisting of different types of organic matter results in various gaseous hazards. Therefore, to minimize the fire damage, there has been a significant demand for developing polymers that are fire resistant or flame retardant. From this viewpoint, it is crucial to design and synthesize thermally stable polymers that are less likely to decompose into combustible gaseous species under high-temperature conditions. Flame retardants can also be introduced to further reinforce the fire performance of polymers. In this review, the combustion process of organic matter, types of flame retardants, and common flammability testing methods are reviewed. Furthermore, the latest research trends in the use of versatile nanofillers to enhance the fire performance of polymeric materials are discussed with an emphasis on their underlying action, advantages, and disadvantages.
Collapse
Affiliation(s)
- Yukyung Kim
- R&D Laboratory: Korea Fire Institute, 331 Jisam-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17088, Korea;
| | - Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|