1
|
Kim HJ, Kim BC, Lim G, Han Y, Jeong Y, Kim HT, Jeon WY, Ahn J, Bhatia SK, Yang YH. Enhanced production of microbial levulinic acid through deletion of the levulinic acid transcriptional regulator (lvaR) in engineered Pseudomonas putida KT2440. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03175-9. [PMID: 40387897 DOI: 10.1007/s00449-025-03175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
Levulinic acid (LA) is a platform compound regarded as a promising organic intermediate for the synthesis of various chemicals such as fuel additives, plasticizers, solvents, and pharmaceuticals. Traditionally, LA is produced via acid-catalyzed dehydration and hydrolysis of lignocellulosic biomass, but this process involves challenges such as high temperatures and pressures, the use of strong acids, byproducts formation, and limitations in recovery and purification. To provide an alternative for chemical synthesis, we previously designed an integrated process to produce LA from glucose using genetically engineered Pseudomonas putida KT2440. However, as the consumption of the produced LA could not be completely prevented, its overall yield was limited. Therefore, in this study we constructed P. putida strains with additional knock-out of the lva operon genes (lvaAB, lvaE, and lvaR) in a pcaIJ knock-out strain, and introduced the aroG, asbF, and adc genes to design an LA production pathway. The pcaIJ, lvaR double knock-out strain P. putida HP205 produced 20.42 mM of LA from glycerol, and culture condition including temperature, glucose concentration, and nitrogen source were optimized. Under optimal conditions, P. putida HP205 produced 73.9 mM (8.58 g/L) LA in fed-batch fermentation. When crude glycerol was used as the substrate, both LA production and cell growth were enhanced. This study presents the impact of the LA transcriptional regulator and demonstrates a strategy for enhanced LA production in P. putida.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byung Chan Kim
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gaeun Lim
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yebin Han
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yunhee Jeong
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Woo-Young Jeon
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Chungbuk, Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Chungbuk, Republic of Korea
| | - Shashi Kant Bhatia
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Bujaldón R, Fons A, Garcia-Amorós J, Vaca C, Nogués J, Esplandiu MJ, Gómez E, Sepúlveda B, Serrà A. Minimizing Energy Demand in the Conversion of Levulinic Acid to γ‑Valerolactone via Photothermal Catalysis Using Raney Ni. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416153. [PMID: 40245161 DOI: 10.1002/advs.202416153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/05/2025] [Indexed: 04/19/2025]
Abstract
The valorization of lignocellulosic wastes emerges as a prime strategy to mitigate the global carbon footprint. Among the multiple biomass derivatives, γ-valerolactone is particularly attractive as precursor of high-value chemicals, biofuel, green solvent or perfumery. γ-Valerolactone can be synthesized through a hydrogenation reaction from levulinic acid, obtained from cellulose. However, the high energy requirements of this synthetic pathway have hindered its industrial viability. To drastically reduce the reaction energy requirements, here a novel synthetic strategy, based on solvothermal-photothermal processes using cost-effective Raney-Ni as photothermal catalyst, is proposed. First, the use of hydrogen gas is avoided by selecting isopropanol as a safer and greener H-source. Second, a photothermocatalytic process is used to minimize the reaction temperature and time with respect to conventional reactions. This approach exploits the broadband optical absorption of the Raney®-Ni, due to its highly damped plasmonic behavior, to achieve fast and efficient catalyst heating inside the reactor. The photothermal reaction required less than 2 h and just 132 °C to reach over 95% conversion, thereby drastically reducing the reaction time and energy consumption compared to conventional reactions. Importantly, these conditions granted high catalyst reusability. This solvothermal-photothermal approach could offer a sustainable alternative for the industrial production of γ-valerolactone.
Collapse
Affiliation(s)
- Roger Bujaldón
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, Barcelona, Catalonia, E-08028, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Arnau Fons
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Jaume Garcia-Amorós
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Grup de Materials Orgànics, Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, Barcelona, Catalonia, E-08028, Spain
| | - Cristina Vaca
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, E-08193, Spain
| | - Josep Nogués
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, E-08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Maria José Esplandiu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, E-08193, Spain
| | - Elvira Gómez
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, Barcelona, Catalonia, E-08028, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Borja Sepúlveda
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Albert Serrà
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, Barcelona, Catalonia, E-08028, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Bhardwaj S, Patel DM, Forrester MJ, Roling LT, Cochran EW. Mild decarboxylation of neat muconic acid to levulinic acid: a combined experimental and computational mechanistic study. RSC Adv 2024; 14:39408-39417. [PMID: 39679420 PMCID: PMC11638912 DOI: 10.1039/d4ra05226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
Levulinic acid (LA) is a key platform molecule with current applications in the synthesis of several commodity chemicals, including amino-levulinic acid, succinic acid, and valerolactone. In contrast to existing petroleum-based synthesis pathway, biomass-derived cis-cis-muconic acid (MA) offers a sustainable route to synthesize LA. Here, we show the complete decarboxylation of neat MA to LA without solvent at atmospheric pressure and mild temperature. In a series of sulfuric acid catalyzed experiments, we used a suite of one and two-dimensional NMR techniques along with gas chromatography-mass spectrometry (GCMS) analysis and density functional theory (DFT) calculations to elucidate the intermediates involved in LA synthesis. Experimental kinetic studies revealed rate constants for the consumption of MA and the formation of LA, with activation energies calculated to be 16.10 kJ mol-1 and 158.18 kJ mol-1, respectively.
Collapse
Affiliation(s)
- Siddhant Bhardwaj
- Department of Chemical and Biological Engineering, Iowa State University Ames IA 50011 USA +1-515-294-0625
| | - Deep M Patel
- Department of Chemical and Biological Engineering, Iowa State University Ames IA 50011 USA +1-515-294-0625
- Center for Biorenewable Chemicals (CBiRC) Ames IA 50011 USA
| | - Michael J Forrester
- Department of Chemical and Biological Engineering, Iowa State University Ames IA 50011 USA +1-515-294-0625
| | - Luke T Roling
- Department of Chemical and Biological Engineering, Iowa State University Ames IA 50011 USA +1-515-294-0625
- Center for Biorenewable Chemicals (CBiRC) Ames IA 50011 USA
| | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University Ames IA 50011 USA +1-515-294-0625
| |
Collapse
|
4
|
Adams F. Merging σ-Bond Metathesis with Polymerization Catalysis: Insights into Rare-Earth Metal Complexes, End-Group Functionalization, and Application Prospects. Macromol Rapid Commun 2024; 45:e2400122. [PMID: 38831565 DOI: 10.1002/marc.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Indexed: 06/05/2024]
Abstract
Polymers with well-defined structures, synthesized through metal-catalyzed processes, and having end groups exhibiting different polarity and reactivity than the backbone, are gaining considerable attention in both scientific and industrial communities. These polymers show potential applications as fundamental building blocks and additives in the creation of innovative functional materials. Investigations are directed toward identifying the most optimal and uncomplicated synthetic approach by employing a combination of living coordination polymerization mediated by rare-earth metal complexes and C-H bond activation reaction by σ-bond metathesis. This combination directly yields catalysts with diverse functional groups from a single precursor, enabling the production of terminal-functionalized polymers without the need for sequential reactions, such as termination reactions. The utilization of this innovative methodology allows for precise control over end-group functionalities, providing a versatile approach to tailor the properties and applications of the resulting polymers. This perspective discusses the principles, challenges, and potential advancements associated with this synthetic strategy, highlighting its significance in advancing the interface of metalorganic chemistry, polymer chemistry, and materials science.
Collapse
Affiliation(s)
- Friederike Adams
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
- University Eye Hospital Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| |
Collapse
|
5
|
Lee JW, Choi EJ, Ryu WB, Hong GP. Characterization of temperature-dependent subcritical water hydrolysis pattern of strong and floury rice cultivars and potential utilizations of their hydrolysates. Food Chem 2024; 445:138737. [PMID: 38350199 DOI: 10.1016/j.foodchem.2024.138737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
This study investigated the effects of subcritical water (SW) temperatures on the hydrolysis pattern and characteristics of hydrolysates prepared with strong rice (SR) and floury rice (FR). The characteristics of the hydrolysates were generally dependent on the rice cultivar in the SW temperature range of 150-250 °C, while the cultivar dependence was diminished at temperatures greater than 300 °C. Based on brix and reducing sugar content, an optimal production of rice hydrolysates was obtained at a SW temperature range of 200-250 °C. However, thermal conversion of sugar into acids, 5-hydroxymethylfurfural (HMF) and furfural was manifested at 250 °C. The rice hydrolysates prepared at 250 ∼ 300 °C had the highest antioxidant activity with strong umami intensity, but they suppressed the growth of prebiotics. Therefore, the present study demonstrated that controlling the SW temperature is crucial to improve rice hydrolysis efficiency and to regulate the physiological activity of the hydrolysates.
Collapse
Affiliation(s)
- Jong Won Lee
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, South Korea
| | - Eun Jung Choi
- R&D Research Center, Life Salad Inc., Seoul 03909, South Korea
| | - Wang Bo Ryu
- R&D Research Center, Life Salad Inc., Seoul 03909, South Korea
| | - Geun-Pyo Hong
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
6
|
Correa-Galetote D, Serrano A, Ciudad G, Pinto-Ibieta F. Optimisation of the biological production of levulinic acid in a mixed microbial culture fed with synthetic grape pomace. Front Bioeng Biotechnol 2024; 12:1398110. [PMID: 38798952 PMCID: PMC11116726 DOI: 10.3389/fbioe.2024.1398110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Levulinic acid (LA) is a polymer with a vast industrial application range and can be co-produced as a minor by-product during the biological production of polyhydroxyalkanoates (PHA). However, the influence of key parameters as tools for favouring the production of LA over PHA is still unclear. In this study, we investigated how several critical operational conditions, i.e., carbon-nitrogen ratio (C/N), organic loading rate (OLR) and airflow, can be optimised to favour LA accumulation over PHA production by a mixed microbial culture (MMC), using synthetic grape pomace (GP) hydrolysate as the substrate. The results showed that it was possible to direct the MMC towards LA accumulation instead of PHA. The maximum LA yield was 2.7 ± 0.2 g LA/(L·d) using a C/N of 35, an airflow of 5 L/min and an OLR of 4 g sCOD/(L·d). The OLR and, to a lesser extent, the C/N ratio were the main factors significantly and positively correlated with the biological synthesis of LA.
Collapse
Affiliation(s)
- David Correa-Galetote
- Departamento de Microbiología, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, Granada, Spain
- Instituto de Investigación del Agua, Universidad de Granada, Granada, Spain
| | - Antonio Serrano
- Departamento de Microbiología, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, Granada, Spain
- Instituto de Investigación del Agua, Universidad de Granada, Granada, Spain
| | - Gustavo Ciudad
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Temuco, Chile
- Centro de Excelencia en Investigación Biotecnologica aplicada al Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Fernanda Pinto-Ibieta
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
7
|
Zhai Z, Edgar KJ. Polysaccharide Aldehydes and Ketones: Synthesis and Reactivity. Biomacromolecules 2024; 25:2261-2276. [PMID: 38490188 PMCID: PMC11005020 DOI: 10.1021/acs.biomac.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Polysaccharides are biodegradable, abundant, sustainable, and often benign natural polymers. The achievement of selective modification of polysaccharides is important for targeting specific properties and structures and will benefit future development of highly functional, sustainable materials. The synthesis of polysaccharides containing aldehyde or ketone moieties is a promising tool for achieving this goal because of the rich chemistry of aldehyde or ketone groups, including Schiff base formation, nucleophilic addition, and reductive amination. The obtained polysaccharide aldehydes or ketones themselves have rich potential for making useful materials, such as self-healing hydrogels, polysaccharide-protein therapeutic conjugates, or drug delivery vehicles. Herein, we review recent advances in synthesizing polysaccharides containing aldehyde or ketone moieties and briefly introduce their reactivity and corresponding applications.
Collapse
Affiliation(s)
- Zhenghao Zhai
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Gutiérrez A, Rozas Azcona S, Zamora Pastor L, Benito C, Atilhan M, Aparicio S. Nature of a Tetrabutylammonium Chloride-Levulinic Acid Deep Eutectic Solvent. Ind Eng Chem Res 2023; 62:20412-20426. [PMID: 38045734 PMCID: PMC10690803 DOI: 10.1021/acs.iecr.3c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 12/05/2023]
Abstract
A deep eutectic solvent was formed by considering the mixtures of tetrabutylammonium chloride and levulinic acid, and it is studied via a combined theoretical and experimental approach. Physicochemical properties were measured as a function of temperature, providing a macroscopic characterization of the fluid. Quantum chemistry and classical molecular dynamics simulations were carried out for the nanoscopic characterization, providing attention to the nature, extension, and dynamics of the hydrogen bonding network, which is at the root of the properties of the fluid. The reported study allows multiscale characterization of this fluid as an archetypical example of a natural, low-cost, and sustainable fluid.
Collapse
Affiliation(s)
| | | | | | - Cristina Benito
- Department
of Chemistry, University of Burgos, Burgos 09001, Spain
| | - Mert Atilhan
- Department
of Chemical and Paper Engineering, Western
Michigan University, Kalamazoo, Michigan 49008-5462, United States
| | | |
Collapse
|
9
|
Matt L, Sedrik R, Bonjour O, Vasiliauskaité M, Jannasch P, Vares L. Covalent Adaptable Polymethacrylate Networks by Hydrazide Crosslinking Via Isosorbide Levulinate Side Groups. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:8294-8307. [PMID: 37292449 PMCID: PMC10245394 DOI: 10.1021/acssuschemeng.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/04/2023] [Indexed: 06/10/2023]
Abstract
Reversible crosslinking offers an attractive strategy to modify and improve the properties of polymer materials while concurrently enabling a pathway for chemical recycling. This can, for example, be achieved by incorporating a ketone functionality into the polymer structure to enable post-polymerization crosslinking with dihydrazides. The resulting covalent adaptable network contains acylhydrazone bonds cleavable under acidic conditions, thereby providing reversibility. In the present work, we regioselectively prepare a novel isosorbide monomethacrylate with a pendant levulinoyl group via a two-step biocatalytic synthesis. Subsequently, a series of copolymers with different contents of the levulinic isosorbide monomer and methyl methacrylate are prepared by radical polymerization. Using dihydrazides, these linear copolymers are then crosslinked via reaction with the ketone groups in the levulinic side chains. Compared to the linear prepolymers, the crosslinked networks exhibit enhanced glass transition temperatures and thermal stability, up to 170 and 286 °C, respectively. Moreover, the dynamic covalent acylhydrazone bonds are efficiently and selectively cleaved under acidic conditions to retrieve the linear polymethacrylates. We next show that recovered polymers can again be crosslinked with adipic dihydrazide, thus demonstrating the circularity of the materials. Consequently, we envision that these novel levulinic isosorbide-based dynamic polymethacrylate networks have great potential in the field of recyclable and reusable biobased thermoset polymers.
Collapse
Affiliation(s)
- Livia Matt
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Rauno Sedrik
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Olivier Bonjour
- Department
of Chemistry, Lund University, P.O. Box 124, Lund 221
00, Sweden
| | | | - Patric Jannasch
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Department
of Chemistry, Lund University, P.O. Box 124, Lund 221
00, Sweden
| | - Lauri Vares
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
10
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
11
|
Zhou T, Meng XB, Du FS, Li ZC. Fully Bio-based Poly(ketal-ester)s by Ring-opening Polymerization of a Bicylcic Lactone from Glycerol and Levulinic Acid. Chem Asian J 2023; 18:e202201238. [PMID: 36756897 DOI: 10.1002/asia.202201238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
A fully renewable bio-based bicyclic lactone containing a five-membered cyclic ketal moiety, 7-methyl-3,8,10-trioxabicyclo[5.2.1]decan-4-one (TOD), was synthesized through a two-step acid-catalyzed process from glycerol and levulinic acid. The ring-opening polymerization (ROP) of TOD at 30°C with benzyl alcohol (BnOH) as the initiator and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as the catalyst can afford high molar mass PTOD with a cis-2.4-disubstitued 2-methyl 1,3-dioxolane moiety in its repeating unit. PTOD is an amorphous polymer with a glass transition temperature (Tg ) of 13°C. It can be hydrolyzed into structurally defined small molecules under acidic or basic conditions by the selective cleavage of either the cyclic ketal or the ester linkage respectively. The TBD-catalyzed copolymerization of L-lactide (L-LA) and TOD at -20°C was investigated. It was confirmed that L-LA polymerized quickly with racemization to form PLA, followed by a slow incorporation of TOD into the formed PLA chains via transesterification. By varying the feed ratios of L-LA to TOD, a series of random copolymers (PLA-co-PTOD) with different TOD incorporation ratios and tunable Tg s were obtained. Under acidic conditions, PLA-co-PTOD degrades much faster than PLA via the selective cleavage of the cyclic ketal linkages. This work provides insights for the development of more sustainable and acid-accelerated degradable alternatives to aliphatic polyesters.
Collapse
Affiliation(s)
- Tong Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xian-Bin Meng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
12
|
Szabó Y, Kiss MA, Kónya Z, Kukovecz Á, Pálinkó I, Sipos P, Frank É, Szabados M. Microwave-induced base-catalyzed synthesis of methyl levulinate, a further improvement in dimethyl carbonate-mediated valorization of levulinic acid. APPLIED CATALYSIS A: GENERAL 2023; 651:119020. [DOI: 10.1016/j.apcata.2022.119020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Lee J, Chen WH, Park YK. Recent achievements in platform chemical production from food waste. BIORESOURCE TECHNOLOGY 2022; 366:128204. [PMID: 36326551 DOI: 10.1016/j.biortech.2022.128204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Food waste conversion/valorization to produce bio-based chemicals plays a key role toward achieving carbon neutrality by 2050. Food waste valorization to renewable chemicals is thus an attractive and eco-friendly approach to handling food waste. The production of platform chemicals from food waste is crucial for making highly value-added renewable chemicals. However, earlier reviews dealing with food waste valorization to produce value-added chemicals have emphasized the enhancement of methane, hydrogen, and ethanol production. Along these lines, the existing methods of food waste to produce platform chemicals (e.g., volatile fatty acids, glucose, hydroxymethylfurfural, levulinic acid, lactic acid, and succinic acid) through physical, chemical, and enzymatic pretreatments, hydrolysis, fermentation, and hydrothermal conversion are extensively reviewed. Finally, the challenges faced under these methods are discussed, along with suggestions for future research on platform chemical production from food waste.
Collapse
Affiliation(s)
- Jechan Lee
- School of Civil, Architectural Engineering, and Landscape Architecture & Department of Global Smart City, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 02504 Seoul, South Korea.
| |
Collapse
|
14
|
Zhou S, Wu L, Bai J, Lei M, Long M, Huang K. Catalytic Esterification of Levulinic Acid into the Biofuel n-Butyl Levulinate over Nanosized TiO 2 Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3870. [PMID: 36364645 PMCID: PMC9656612 DOI: 10.3390/nano12213870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Levulinic esters, synthesized by the esterification of biomass-derived levulinic acid with various alcohols, is an important chemical that plays an essential role in the fields of biomass fuel additives, organic synthesis, and high value-added products. In the present work, the catalytic esterification of levulinic acid with n-butyl alcohol was selected as a typical model reaction to investigate the catalytic performance of an inexpensive commercial catalyst, titanium oxide nanoparticles. The influences of reaction time, reaction temperature, and catalyst loading on the conversion of levulinic acid to n-butyl levulinate were systematically examined through single-factor experiments. Additionally, the optimization of the reaction conditions was further investigated by a Box-Behnken design in response to the surface methodology. The desired product, n-butyl levulinate, with a good yield (77.6%) was achieved under the optimal conditions (reaction time of 8 h, reaction temperature of 120 °C, and catalyst dosage of 8.6 wt.%) when using titanium oxide nanoparticles as catalysts. Furthermore, it was found that addition of water to the catalytic system facilitated the reaction process, to some extent. This study reveals that the nanosized TiO2 material, as an efficient solid acid catalyst, had good catalytic performance and stability for the esterification of levulinic acid after six consecutive uses.
Collapse
|
15
|
Hu A, Wang H, Ding J. Preparation of an Ionic Liquid Based on Polystyrene Microspheres to Catalyze the Conversion of Furfuryl Alcohol to Ethyl Levulinate. ChemistrySelect 2022. [DOI: 10.1002/slct.202202447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aiyun Hu
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
- Jiangsu Key Construction Laboratory of IOT Application Technology College of Internet of Things Engineering Wuxi Taihu University Wuxi 214000 China
| | - Haijun Wang
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| | - Jian Ding
- School of Biotechnology Jiangnan University Wuxi 214122 China
| |
Collapse
|
16
|
Sathesh-Prabu C, Tiwari R, Lee SK. Substrate-inducible and antibiotic-free high-level 4-hydroxyvaleric acid production in engineered Escherichia coli. Front Bioeng Biotechnol 2022; 10:960907. [PMID: 36017349 PMCID: PMC9398171 DOI: 10.3389/fbioe.2022.960907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we developed a levulinic acid (LA)-inducible and antibiotic-free plasmid system mediated by HpdR/PhpdH and infA-complementation to produce 4-hydroxyvaleric acid (4-HV) from LA in an engineered Escherichia coli strain. The system was efficiently induced by the addition of the LA substrate and resulted in tight dose-dependent control and fine-tuning of gene expression. By engineering the 5′ untranslated region (UTR) of hpdR mRNA, the gene expression of green fluorescent protein (GFP) increased by at least two-fold under the hpdH promoter. Furthermore, by evaluating the robustness and plasmid stability of the proposed system, the engineered strain, IRV750f, expressing the engineered 3-hydroxybutyrate dehydrogenase (3HBDH∗) and formate dehydrogenase (CbFDH), produced 82 g/L of 4-HV from LA, with a productivity of 3.4 g/L/h and molar conversion of 92% in the fed-batch cultivation (5 L fermenter) without the addition of antibiotics or external inducers. Overall, the reported system was highly beneficial for the large-scale and cost-effective microbial production of value-added products and bulk chemicals from the renewable substrate, LA.
Collapse
|
17
|
Martina A, van de Bovenkamp HH, Noordergraaf IW, Winkelman JGM, Picchioni F, Heeres HJ. Kinetic Study on the Sulfuric Acid-Catalyzed Conversion of d-Galactose to Levulinic Acid in Water. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angela Martina
- Department of Chemical Engineering, Parahyangan Catholic University, Ciumbuleuit 94, Bandung 40141, Indonesia
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Henk H. van de Bovenkamp
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Inge W. Noordergraaf
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jozef G. M. Winkelman
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Francesco Picchioni
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hero J. Heeres
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
18
|
Canadell E, Badia JH, Ramírez E, Fité C, Iborra M, Tejero J. Determination of Thermodynamic Properties for the Esterification of Levulinic Acid with 1-Butene. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eloi Canadell
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Jordi H. Badia
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Eliana Ramírez
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Carles Fité
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Montserrat Iborra
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Javier Tejero
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Catalytic conversion of glucose to methyl levulinate over metal-modified Beta zeolites. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractMethyl levulinate was selectively formed from glucose and methanol over a copper modified Beta zeolite bifunctional catalyst at 180 °C under argon atmosphere. The selectivity to methyl levulinate substantially exceeded previously reported in the open literature results. The copper modification was done through an ion-exchange method using a solution of copper nitrate, followed by drying and calcination of the catalyst. Copper modification changed the distribution of acid sites namely, less Brønsted and more Lewis sites were observed with FTIR using pyridine adsorption. Application of the proton form H-Beta-25 gave the methyl levulinate yield of ca. 89%, which could be elevated with the addition of copper, as the apparent selectivity exceeds 99%, assuming that methyl glucosides are eventually transformed to methyl levulinate. The non-acidic Cu/SiO2 catalyst was completely inactive in methyl levulinate formation. Metal modification of Beta zeolite with Sn and Zn did not perform as well as Cu in the formation of methyl levulinate during glucose transformation.
Collapse
|
20
|
Morales G, Melero JA, Paniagua M, López-Aguado C, Vidal N. Beta zeolite as an efficient catalyst for the synthesis of diphenolic acid (DPA) from renewable levulinic acid. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Jimenez Forero JA, Deshan ADK, Beltramini J, Bartley J, Estrounina E, Doherty WOS. Closing the loop: Valorizing pyrolyzed waste tyre residue into functional carbon materials, SiO 2 with exceptionally high silanol groups, and Zn salt. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:110-120. [PMID: 35078075 DOI: 10.1016/j.wasman.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
This study aims to identify suitable processing conditions for converting pyrolytic solid residue from off-the-road tyres (OTR) to improve carbon materials properties that can be used in multiple applications and the recovery of minerals from OTR. Pyrolysis of OTR at 800 °C and a heating rate 2 °C.min-1 gave a carbon material with the highest surface area, most defective carbon structures, and the highest micro-porosity. This operating condition was used to compare the conventional three-step carbonization approach, which involves a demineralization stage that produces high volumes of toxic wastewater, with a two-step approach that bypasses this stage. Analysis of the carbon structures showed that the quality of the carbon material from the two-step approach is similar to the three-step approach. This two-step approach resulted in a solid and a liquid phase, in which ∼ 93.4% of Zn was selectively fractionated to the liquid phase. The wastewater from the acid wash of the carbonized OTR was neutralized to recover the SiO2, of which 55.5% was reactive SiO2. The SiO2 was found to have an exceptionally high cross-linking ratio of 5.94, achievable only when SiO2 is reacted with silane groups. The study demonstrated that the engineered carbon material from OTR has a H2 uptake of 1.03 wt% at 77 K and 1.2 bar, and the sulfonated counterpart was an effective catalyst (64% conversion) for the Aldol condensation of levunilic acid to two dimer products [tetrahydro-2- methyl-5,γ-dioxo-2-furanpentanoic acid (TMDFA) and 3-(2-methyl-5-oxo- tetrahydrofuran-2-yl)-4-oxopentanoic acid (MOTOA)] that are precursors for fuels and chemicals.
Collapse
Affiliation(s)
- Javier A Jimenez Forero
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia; Faculty of Science and Natural Resources, University of Los Llanos, Villavicencio 500017, Colombia
| | | | - Jorge Beltramini
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia; IROAST, Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - John Bartley
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Ekaterina Estrounina
- Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| | - William O S Doherty
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia.
| |
Collapse
|
22
|
Vidil T, Llevot A. Fully Biobased Vitrimers: Future Direction Towards Sustainable Cross‐Linked Polymers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Vidil
- University of Bordeaux CNRS Bordeaux INP Laboratoire de Chimie des Polymères Organiques UMR 5629, ENSCBP, 16 avenue Pey‐Berland Pessac cedex F‐33607 France
| | - Audrey Llevot
- University of Bordeaux CNRS Bordeaux INP Laboratoire de Chimie des Polymères Organiques UMR 5629, ENSCBP, 16 avenue Pey‐Berland Pessac cedex F‐33607 France
| |
Collapse
|
23
|
MacKinnon D, Zhao T, Becer CR. Tuneable
N
‐Substituted Polyamides with High Biomass Content via Ugi 4 Component Polymerization. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Daniel MacKinnon
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Tieshuai Zhao
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - C. Remzi Becer
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
24
|
Sathesh-Prabu C, Ryu YS, Lee SK. Levulinic Acid-Inducible and Tunable Gene Expression System for Methylorubrum extorquens. Front Bioeng Biotechnol 2022; 9:797020. [PMID: 34976985 PMCID: PMC8714952 DOI: 10.3389/fbioe.2021.797020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Methylorubrum extorquens AM1 is an efficient platform strain possessing biotechnological potential in formate- and methanol-based single carbon (C1) bioeconomy. Constitutive expression or costly chemical-inducible expression systems are not always desirable. Here, several glucose-, xylose-, and levulinic acid (LA)-inducible promoter systems were assessed for the induction of green fluorescent protein (GFP) as a reporter protein. Among them, the LA-inducible gene expression system (HpdR/P hpdH ) showed a strong expression of GFP (51-fold) compared to the control. The system was induced even at a low concentration of LA (0.1 mM). The fluorescence intensity increased with increasing concentrations of LA up to 20 mM. The system was tunable and tightly controlled with meager basal expression. The maximum GFP yield obtained using the system was 42 mg/g biomass, representing 10% of the total protein content. The efficiency of the proposed system was nearly equivalent (90%-100%) to that of the widely used strong promoters such as P mxaF and P L/O4 . The HpdR/P hpdH system worked equally efficiently in five different strains of M. extorquens. LA is a low-cost, renewable, and sustainable platform chemical that can be used to generate a wide range of products. Hence, the reported system in potent strains of M. extorquens is highly beneficial in the C1-biorefinery industry to produce value-added products and bulk chemicals.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Young Shin Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.,Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
25
|
Modugno P, Titirici MM. Influence of Reaction Conditions on Hydrothermal Carbonization of Fructose. CHEMSUSCHEM 2021; 14:5271-5282. [PMID: 34542237 DOI: 10.1002/cssc.202101348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal carbonization is a powerful way to convert cellulosic waste into valuable platform chemicals and carbonaceous materials. In this study, to optimize the process, fructose was chosen as the carbon precursor and the influence of reaction time, acid catalysis, feed gas and pressure on the conversion products is evaluated. 5-hydroxymethylfurfural (HMF) is produced in high amounts in relatively short time. Both strong and weak acids accelerate fructose conversion. Levulinic acid (LevA) formation is faster than that of hydrothermal (HT) carbon in acidic conditions. Strong acid catalysts should be considered to target preferentially LevA production, whereas milder conditions should be preferred for HMF production. Moreover, a slight initial overpressure of the reactor is always beneficial in terms of conversion. FT-IR and 13 C ss-NMR spectroscopy and SEM showed that HT carbon evolves through time from a furanic-based structure with alkylic linkers to an increasingly cross-linked condensed structure. MALDI-ToF mass spectrometry showed the existence of a series of oligomers in a mass range within 650 Da and 1500 Da formed by condensation of repeating units.
Collapse
Affiliation(s)
- Pierpaolo Modugno
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E14NS, London, UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, SE7 2AZ, London, UK
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aobaku, 980-8577, Sendai, Miyagi, Japan
| |
Collapse
|
26
|
Lai ZI, Lee LQ, Li H. Electroreforming of Biomass for Value-Added Products. MICROMACHINES 2021; 12:1405. [PMID: 34832816 PMCID: PMC8619709 DOI: 10.3390/mi12111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Humanity's overreliance on fossil fuels for chemical and energy production has resulted in uncontrollable carbon emissions that have warranted widespread concern regarding global warming. To address this issue, there is a growing body of research on renewable resources such as biomass, of which cellulose is the most abundant type. In particular, the electrochemical reforming of biomass is especially promising, as it allows greater control over valorization processes and requires milder conditions. Driven by renewable electricity, electroreforming of biomass can be green and sustainable. Moreover, green hydrogen generation can be coupled to anodic biomass electroforming, which has attracted ever-increasing attention. The following review is a summary of recent developments related to electroreforming cellulose and its derivatives (glucose, hydroxymethylfurfural, levulinic acid). The electroreforming of biomass can be achieved on the anode of an electrochemical cell through electrooxidation, as well as on the cathode through electroreduction. Recent advances in the anodic electroreforming of cellulose and cellulose-derived glucose and 5-hydrooxylmethoylfurural (5-HMF) are first summarized. Then, the key achievements in the cathodic electroreforming of cellulose and cellulose-derived 5-HMF and levulinic acid are discussed. Afterward, the emerging research focusing on coupling hydrogen evolution with anodic biomass reforming for the cogeneration of green hydrogen fuel and value-added chemicals is reviewed. The final chapter of this paper provides our perspective on the challenges and future research directions of biomass electroreforming.
Collapse
Affiliation(s)
- Zi Iun Lai
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (Z.I.L.); (L.Q.L.)
| | - Li Quan Lee
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (Z.I.L.); (L.Q.L.)
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (Z.I.L.); (L.Q.L.)
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore
| |
Collapse
|
27
|
Qiu Y, Feng Y, Lindsay AC, Zeng X, Sperry J. Synthesis of bio-based 2-thiothiophenes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200350. [PMID: 34510923 DOI: 10.1098/rsta.2020.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 06/13/2023]
Abstract
While the synthesis of bio-based compounds containing carbon, oxygen and (to a lesser extent) nitrogen is well studied, the production of organosulfur compounds from biomass has received virtually no attention, despite their widespread application throughout the chemical industry. Herein, we demonstrate that a range of bio-based 2-thiothiophenes are available from the biopolymer cellulose, proving that functionally diverse small-molecule organosulfurs can be prepared independent of fossil carbon. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.
Collapse
Affiliation(s)
- Yichen Qiu
- Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
- College of Energy, Xiamen University, Xiamen 361102, People's Republic of China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen 361102, People's Republic of China
| | - Yunchao Feng
- College of Energy, Xiamen University, Xiamen 361102, People's Republic of China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen 361102, People's Republic of China
| | - Ashley C Lindsay
- Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen 361102, People's Republic of China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen 361102, People's Republic of China
| | - Jonathan Sperry
- Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
28
|
Shi S, Wu Y, Zhang M, Zhang Z, Oderinde O, Gao L, Xiao G. Direct conversion of cellulose to levulinic acid using SO3H-functionalized ionic liquids containing halogen-anions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Sathesh-Prabu C, Tiwari R, Kim D, Lee SK. Inducible and tunable gene expression systems for Pseudomonas putida KT2440. Sci Rep 2021; 11:18079. [PMID: 34508142 PMCID: PMC8433446 DOI: 10.1038/s41598-021-97550-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
Inducible and tunable expression systems are essential for the microbial production of biochemicals. Five different carbon source- and substrate-inducible promoter systems were developed and further evaluated in Pseudomonas putida KT2440 by analyzing the expression of green fluorescent protein (GFP) as a reporter protein. These systems can be induced by low-cost compounds such as glucose, 3-hydroxypropionic acid (3HP), levulinic acid (LA), and xylose. 3HP-inducible HpdR/PhpdH was also efficiently induced by LA. LvaR/PlvaA and XutR/PxutA systems were induced even at low concentrations of LA (0.1 mM) and xylose (0.5 mM), respectively. Glucose-inducible HexR/Pzwf1 showed weak GFP expression. These inducer agents can be used as potent starting materials for both cell growth and the production of a wide range of biochemicals. The efficiency of the reported systems was comparable to that of conventional chemical-inducible systems. Hence, the newly investigated promoter systems are highly useful for the expression of target genes in the widely used synthetic biology chassis P. putida KT2440 for industrial and medical applications.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Rameshwar Tiwari
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Doyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
30
|
Mini-Review on the Synthesis of Furfural and Levulinic Acid from Lignocellulosic Biomass. Processes (Basel) 2021. [DOI: 10.3390/pr9071234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed.
Collapse
|
31
|
Jeong GT, Kim SK. Platform chemicals production from lipid-extracted Chlorella vulgaris through an eco-friendly catalyst. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0764-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Direct Alcoholysis of Carbohydrate Precursors and Real Cellulosic Biomasses to Alkyl Levulinates: A Critical Review. Catalysts 2020. [DOI: 10.3390/catal10101221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alkyl levulinates (ALs) represent outstanding bio-fuels and strategic bio-products within the context of the marketing of levulinic acid derivatives. However, their synthesis by acid-catalyzed esterification of pure levulinic acid, or by acid-catalyzed alcoholysis of furfuryl alcohol, although relatively simple, is still economically disadvantageous, due to the high costs of the pure precursors. The direct one-pot alcoholysis of model C6 carbohydrates and raw biomass represents an alternative approach for the one-step synthesis of ALs. In order to promote the market for these bio-products and, concurrently, the immediate development of new applications, it is necessary to speed up the intensification of their production processes, and this important achievement is onlypossible by using low-cost or, even better, waste biomasses, as starting feedstocks. This review provides an overview of the most recent and promising advances on the one-pot production of ALs from model C6 carbohydrates and real biomasses, in the presence of homogeneous or heterogeneous acid catalysts. The use of model C6 carbohydrates allows for the identification of the best obtainable ALs yields, resulting in being strategic for the development of new smart catalysts, whose chemical properties must be properly tuned, taking into account the involved reaction mechanism. On the other hand, the transition to the real biomass now represents a necessary choice for allowing the next ALs production on a larger scale. The improvement of the available synthetic strategies, the use of raw materials and the development of new applications for ALs will contribute to develop more intensified, greener, and sustainable processes.
Collapse
|
33
|
Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems. Catalysts 2020. [DOI: 10.3390/catal10091006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The reasonable and effective use of lignocellulosic biomass is an important way to solve the current energy crisis. Cellulose is abundant in nature and can be hydrolyzed to a variety of important energy substances and platform compounds—for instance, glucose, 5-hydroxymethylfurfural (HMF), levulinic acid (LA), etc. As a chemical linker between biomass and petroleum processing, LA has become an ideal feedstock for the formation of liquid fuels. At present, some problems such as low yield, high equipment requirements, difficult separation, and serious environmental pollution in the production of LA from cellulose have still not been solved. Thus, a more efficient and green catalytic system of this process for industrial production is highly desired. Herein, we focus on the reaction mechanism, pretreatment, and catalytic systems of LA from cellulose and cellulosic biomass, and a series of existing technologies for producing LA are reviewed. On the other hand, the industrial production of LA is discussed in depth to improve the yield of LA and make the process economical and energy efficient. Additionally, practical suggestions for the enhancement of the stability and efficiency of the catalysts are also proposed. The use of cellulose to produce LA is consistent with the concept of sustainable development, and the dependence on fossil resources will be greatly reduced through the realization of this process route.
Collapse
|