1
|
Lu H, Wang J, Wu Z, Yang M, Zhou W, Li Y, Li H, Zhang Y, Yang J, Yu G, Liu S. Constructing an electrochemical sensor with screen-printed electrodes incorporating Ti 3C 2T x-PDA-AgNPs for lactate detection in sweat. Talanta 2025; 285:127423. [PMID: 39718302 DOI: 10.1016/j.talanta.2024.127423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Sweat lactate levels are closely related to an individual's physiological state and serve as critical indicators for assessing exercise intensity, muscle fatigue, and certain pathological conditions. Screen-printed electrodes (SPEs) offer a promising avenue for the development of low-cost, high-performance wearable devices for electrochemical sweat analysis. The material composition of SPEs significantly impacts their detection sensitivity and stability. In this study, we designed a screen-printed carbon electrode (SPCE) modified with Ti3C2Tx Polydopamine (PDA), and silver nanoparticles (AgNPs) (Ti3C2Tx-PDA-AgNPs) for lactate detection in sweat. The accordion-like structure of Ti3C2Tx provides a large specific surface area and exceptional electrical conductivity. PDA, acting as both a reducing agent and binder, supports the in-situ formation of AgNPs on the Ti3C2Tx nanosheets. These AgNPs prevent the restacking of Ti3C2Tx layers, further improving conductivity. The sensor exhibited sensitivities of 0.145 μA mM-1, with limit of detection (LOD) of 0.181 mM (S/N = 3) in phosphate-buffered saline (PBS), meeting the requirements for for sweat lactate detection. The sensor was integrated into a wearable micro-electrochemical platform paired with a custom Android application for real-time sweat analysis. Testing on human sweat demonstrated the platform's potential for practical fitness monitoring and healthcare diagnostics applications.
Collapse
Affiliation(s)
- Haozi Lu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Junhua Wang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ziyi Wu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Meiqing Yang
- Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
| | - Wei Zhou
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors(College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Ye Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huimin Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Zhang
- School of Physical Education, Hunan First Normal University, Changsha, 410221, China
| | - Jifei Yang
- Changsha Sunjeen Electronics Technology Co., Ltd., Changsha, 410205, China
| | - Gang Yu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Beitollahi H, Tajik S, Garkani Nejad F. MIL-101 (Fe)-NH 2 metal-organic framework/graphene oxide nanocomposite modified screen-printed carbon electrode for electrochemical sensing of 2,4-dichlorophenol in water samples. Heliyon 2025; 11:e42285. [PMID: 39968152 PMCID: PMC11834035 DOI: 10.1016/j.heliyon.2025.e42285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
In the present study, we report the synthesis of MIL-101 (Fe)-NH2 metal-organic framework/graphene oxide (MIL-101 (Fe)-NH2 MOF/GO) nanocomposite, which was synthesized through simple solvothermal method. Various characterization techniques including Field-emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) were employed for the morphological and structural characterization of the synthesized nanocomposite. Then, the prepared MIL-101 (Fe)-NH2/GO nanocomposite was drop-casted on the screen-printed carbon electrode (SPCE) to fabricate a simple, rapid, and sensitive electrochemical sensing platform for 2,4-dichlorophenol (2,4-DCP) determination in the water samples. Comparative analysis using cyclic voltammetry (CV) showed that the MIL-101 (Fe)-NH2/GO/SPCE significantly improved the oxidation reaction of 2,4-DCP with observation of higher detection current at lower over-potential compared to unmodified SPCE. This observation can be related to the synergistic combination of MIL-101 (Fe)-NH2 MOF and GO sheets. The linear response of MIL-101 (Fe)-NH2/GO/SPCE sensor for determining 2,4-DCP using voltammetric measurements was observed in the range of 0.001-440.0 μM with a low detection limit (LOD) of 0.5 nM and a high sensitivity of 0.2026 μA μM-1. Finally, the modified SPCE efficiently exhibits its high accuracy in detecting 2,4-DCP in water samples, demonstrating remarkable recovery percentages of 97.5-104.4 %.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
3
|
Kumar P, Ali S, Ahmad K, Raza W, Khan RA. Construction of a hydrazine electrochemical sensor using Ag@ZIF as the electrode material. RSC Adv 2025; 15:3089-3097. [PMID: 39885856 PMCID: PMC11780489 DOI: 10.1039/d4ra07849g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
In recent years, the fabrication of hydrazine sensors has received extensive attention because of the toxicity of hydrazine to the environment and human beings. It is thus important to design and develop efficient electrode modifiers for the construction of hydrazine electrochemical sensors. Herein, we reported the benign synthesis of a silver (Ag)-doped zinc-based zeolitic imidazolate framework (ZIF-8). The synthesized Ag@ZIF-8 was characterized by various advanced physiochemical characterization methods, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). A screen-printed electrode (SPE) was modified with the prepared Ag@ZIF-8. The cyclic voltammetry (CV) and linear sweep voltammetry (LSV) methods were used for assessing its sensing towards hydrazine. The obtained results showed a reasonable detection limit (0.1 μM), sensitivity (1.98 μA μM cm-2), stability, selectivity, and repeatability using Ag@ZIF-8/SPE as a hydrazine sensor. The real-sample investigations demonstrated recovery rates of 96-97%.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Indore Simrol, Khandwa Road MP 453552 India
| | - Saood Ali
- School of Mechanical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Waseem Raza
- Department of Materials Science and Engineering, WW4-LKO, University of ErlangenNuremberg Martensstrasse 7 91058 Erlangen Germany
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Vasu S, Verma D, Souraph S OS, Anki Reddy K, Packirisamy G, S UK. In Situ Ag-Seeded Lamellar Ti 3C 2 Nanosheets: An Electroactive Interface for Noninvasive Diagnosis of Oral Carcinoma via Salivary TNF-α Sensing. ACS APPLIED BIO MATERIALS 2025; 8:420-434. [PMID: 39787292 DOI: 10.1021/acsabm.4c01379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In the fast-paced quest for early cancer detection, noninvasive screening techniques have emerged as game-changers, offering simple and accessible avenues for precession diagnostics. In line with this, our study highlights the potential of silver nanoparticle-decorated titanium carbide MXene nanosheets (Ti3C2_AgNPs) as an electroactive interface for the noninvasive diagnosis of oral carcinoma based on the prevalence of the salivary biomarker, tumor necrosis factor-α (TNF-α). An in situ reduction was utilized to synthesize the Ti3C2_AgNPs nanohybrid, wherein Ti3C2 acts as the reducing agent, and the resulting nanohybrid was subjected to various characterization techniques to examine the optical, structural, and morphological attributes. The results revealed that spherical AgNPs formed on the surface of Ti3C2 MXene nanosheets by virtue of the low-valent Ti species present in Ti3C2, which facilitated the reduction of AgNO3 to AgNPs. Furthermore, the electrochemical characterization of the nanohybrid-modified screen-printed electrode (Ti3C2_AgNPs/SPE) indicated enhanced heterogeneous electron transfer kinetics. With these encouraging results, the Ti3C2_AgNPs nanohybrid was employed as an immobilization matrix for TNF-α antibodies and applied for electrochemical sensing. Analytical studies of the fabricated immunosensor, conducted by differential pulse voltammetry (DPV), exhibited a broader linear range (1 to 180 pg mL-1), a low limit of detection (0.97 pg mL-1), and high sensitivity (1.214 μA mL pg-1 cm-2) and specificity, even in artificial saliva, indicating its reliability for oral carcinoma diagnosis. Therefore, the Ti3C2_AgNP nanohybrid seems a promising candidate for the effective sensing of TNF-α and could also be explored for other biomarkers.
Collapse
Affiliation(s)
- Sunil Vasu
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Damini Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Omal Surya Souraph S
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Katha Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Gopinath Packirisamy
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Uday Kumar S
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| |
Collapse
|
5
|
Roy S, Singh S, Rawat R, Wadhwa S, Munthala D, Pojprapai S, Mathur A, Avasthi DK. Exploiting the Electrostatic Binding of Ruthenium Hexamine Molecular Redox Nanowires onto DNA/OGCN Biohybrid Electrodes toward the Electrochemical Detection of COVID-19. ACS APPLIED BIO MATERIALS 2025; 8:715-725. [PMID: 39772401 DOI: 10.1021/acsabm.4c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The Coronavirus Disease 2019 (COVID-19) recently emerged as a life-threatening global pandemic that has ravaged millions of lives. The affected patients are known to frequently register numerous comorbidities induced by COVID-19 such as diabetes, asthma, cardiac arrest, hypertension, and neurodegenerative diseases, to name a few. The expensiveness and probability of false negative results of conventional screening tests often delay timely diagnosis and treatment. In such cases, the deployment of a suitable biosensing platform can readily expedite the rapid diagnosis process for enhanced patient outcomes. We report the development of an electrochemical genosensor based on DNA/OGCN (DNA/oxygenated graphitic carbon nitride) nanohybrids for the quantification of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) DNA─the key biomarker for COVID-19. This is achieved by exploiting the molecular nanowire-formation capability of the [Ru(NH3)6]2+/3+ redox probe onto the DNA phosphate backbone via electrostatic interactions. The microstructural characterization of OGCN was performed using scanning electron microscopy (SEM) coupled with an energy-dispersive X-ray (EDX) module, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. The electrochemical analyses were performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), while the analytical performance of the sensor was evaluated using square wave voltammetry (SWV). The developed sensor exhibited a wide linear detection range within 10 fM-10 μM, with a limit of detection (LoD) of ∼7.23 fM with a high degree of selectivity toward SARS-CoV-2 target DNA, thereby indicating its potential to be employed in a point-of-care scenario toward providing affordable healthcare to the global populace.
Collapse
Affiliation(s)
- Souradeep Roy
- Health Technology Cluster, School of Health Sciences and Technology, UPES (Bidholi), Dehradun, Uttarakhand 248007, India
| | - Sonam Singh
- Department of Chemistry, School of Advanced Engineering, UPES (Bidholi), Dehradun, Uttarakhand 248007, India
| | - Reema Rawat
- Health Technology Cluster, School of Health Sciences and Technology, UPES (Bidholi), Dehradun, Uttarakhand 248007, India
| | - Shikha Wadhwa
- Department of Chemistry, School of Advanced Engineering, UPES (Bidholi), Dehradun, Uttarakhand 248007, India
| | - Dhanunjaya Munthala
- School of Ceramic Engineering, Suranaree University of Technology, Mueang Nakhon Ratchasima District, Nakhon Ratchasima 30000, Thailand
| | - Soodkhet Pojprapai
- School of Ceramic Engineering, Suranaree University of Technology, Mueang Nakhon Ratchasima District, Nakhon Ratchasima 30000, Thailand
| | - Ashish Mathur
- Centre for Interdisciplinary Research and Innovation (CIDRI), UPES (Bidholi), Dehradun, Uttarakhand 248007, India
| | - Devesh Kumar Avasthi
- Centre for Interdisciplinary Research and Innovation (CIDRI), UPES (Bidholi), Dehradun, Uttarakhand 248007, India
| |
Collapse
|
6
|
Yu P, Li M, Wang S, Li S, Cui J, Yang J, Liu S, Kong L, Chen Z. Bi 2S 3/BiOCl heterojunction-based photoelectrochemical aptasensor for ultrasensitive assay of fumonisin B 1 via signal amplification with in situ grown Ag 2S quantum dots. Mikrochim Acta 2024; 191:762. [PMID: 39589431 DOI: 10.1007/s00604-024-06846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Fumonisin B1 (FB1) is a mycotoxin mainly found in corn, peanuts, and wheat crops, which affects human health. Based on bismuth sulfide/bismuth oxychloride (Bi2S3/BiOCl) composite material, silver sulfide (Ag2S) was grown in situ as a quantum dot sensitization signal, and a photoelectrochemical (PEC) aptasensor was designed by layer upon layer modification to detect FB1. Bi2S3/BiOCl has a wide range of visible light absorption, stable chemical properties, and a simple synthesis method. In the construction process, L-ascorbic acid (AA) is selected to provide electrons and inhibit photogenerated electron-hole (e-/h+) recombination. Under the optimal experimental conditions, the detection range of the fabricated PEC aptasensor was 0.001 ~ 100 ng/mL, and the detection limit was 0.016 pg/mL. The prepared PEC aptasensor has high sensitivity, stability, and reproducibility. The combination of aptamer and PEC sensor provides a novel method for the application of PEC sensor in mycotoxin detection.
Collapse
Affiliation(s)
- Pengfei Yu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Meixin Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Shun Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Shanshan Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Jiaqi Cui
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Jun Yang
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Shuang Liu
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Ling Kong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Zhiwei Chen
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China.
- Shandong Provincial Innovation Center for Dairy Technology, Zibo, 255000, People's Republic of China.
- Shandong Engineering Research Center for Food Rapid Analysis Technology, Zibo, 255000, People's Republic of China.
| |
Collapse
|
7
|
Tajik S, Beitollahi H, Garkani Nejad F, Zaimbashi R. CoWO 4/Reduced Graphene Oxide Nanocomposite-Modified Screen-Printed Carbon Electrode for Enhanced Voltammetric Determination of 2,4-Dichlorophenol in Water Samples. MICROMACHINES 2024; 15:1360. [PMID: 39597172 PMCID: PMC11596183 DOI: 10.3390/mi15111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Water pollution with phenolic compounds is a serious environmental issue that can pose a major threat to the water sources. This pollution can come from various agricultural and industrial activities. Phenolic compounds can have detrimental effects on both human health and the environment. Therefore, it is essential to develop and improve analytical methods for determination of these compounds in the water samples. In this work, the aim was to design and develop an electrochemical sensing platform for the determination of 2,4-dichlorophenol (2,4-DCP) in water samples. In this regard, a nanocomposite consisting of CoWO4 nanoparticles (NPs) anchored on reduced graphene oxide nanosheets (rGO NSs) was prepared through a facile hydrothermal method. The formation of the CoWO4/rGO nanocomposite was confirmed via different characterization techniques. Then, the prepared CoWO4/rGO nanocomposite was used to modify the surface of a screen-printed carbon electrode (SPCE) for enhanced determination of 2,4-DCP. The good electrochemical response of the modified SPCE towards the oxidation of 2,4-DCP was observed by using cyclic voltammetry (CV) due to the good properties of CoWO4 NPs and rGO NSs along with their synergistic effects. Under optimized conditions, the CoWO4/rGO/SPCE sensor demonstrated a broad linear detection range (0.001 to 100.0 µM) and low limit of detection (LOD) (0.0007 µM) for 2,4-DCP determination. Also, the sensitivity of CoWO4/rGO/SPCE for detecting 2,4-DCP was 0.3315 µA/µM. In addition, the good recoveries for determining spiked 2,4-DCP in the water samples at the surface of CoWO4/rGO/SPCE showed its potential for determination of this compound in real samples.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran; (F.G.N.); (R.Z.)
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran; (F.G.N.); (R.Z.)
| | - Reza Zaimbashi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran; (F.G.N.); (R.Z.)
| |
Collapse
|
8
|
Mazlan NF, Sage EE, Mohamad NS, Mackeen MM, Tan LL. On-site sensing for aflatoxicosis poisoning via ultraviolet excitable aptasensor based on fluorinated ethylene propylene strip: a promising forensic tool. Sci Rep 2024; 14:17357. [PMID: 39075202 PMCID: PMC11286874 DOI: 10.1038/s41598-024-68264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
The environmental contamination by extremophile Aspergillus species, i.e., Aflatoxin B1, is hardly controllable in Southeast Asia and Sub-Saharan Africa, which lack handling resources and controlled storage facilities. Acute aflatoxicosis poisoning from aflatoxin-prone dietary staples could cause acute hepatic necrosis, acute liver failure, and death. Here, as the cheaper, more straightforward, and facile on-site diagnostic kit is needed, we report an ultraviolet-excitable optical aptasensor based on a fluorinated ethylene propylene film strip. Molecular dynamics on the aptamer.AFB1 complex revealed that the AFB1 to the aptamer increases the overall structural stability, suggesting that the aptamer design is suitable for the intended application. Under various influencing factors, the proposed label-free strategy offers a fast 20-min on-site fabrication simplicity and 19-day shelf-life. The one-pot incubation provides an alternative to catalytic detection and exhibited 4 times reusability. The recovery of crude brown sugar, processed peanuts, and long-grain rice were 102.74 ± 0.41 (n = 3), 86.90 ± 3.38 (n = 3), and 98.50 ± 0.42 (n = 3), comparable to High-Performance Liquid Chromatography-Photodiode Array Detector results. This study is novel owing to the peculiar UV-active spectrum fingerprint and the convenient use of hydrophobic film strips that could promote breakthrough innovations and new frontiers for on-site/forensic detection of environmental pollutants.
Collapse
Affiliation(s)
- Nur-Fadhilah Mazlan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Edison Eukun Sage
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nur Syamimi Mohamad
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mukram Mohamed Mackeen
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
9
|
Oguz M, Erdemir S, Malkondu S. Engineering a "turn-on" NIR fluorescent sensor-based hydroxyphenyl benzothiazole with a cinnamoyl unit for hydrazine and its environmental and in-vitro applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123193. [PMID: 38142810 DOI: 10.1016/j.envpol.2023.123193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Hydrazine (N2H4), a chemical compound widely used in various industrial applications, causes significant environmental and biological hazards. Therefore, it is crucial to develop methodologies for the visualization and real time tracking of N2H4. In this regard, we have constructed a novel near-infrared fluorescent probe (HBT-Cy) that can effectively detect N2H4 in various samples. HBT-Cy contains 2-(2'-hydroxyphenyl)benzothiazole (HBT), cinnamoyl (Cy), and pyridinium (Py) moieties. Importantly, HBT-Cy exhibits a rapid, selective, and highly sensitive response to N2H4. This response results in the release of HBT-Py and the generation of considerable colorimetric changes along with a significant NIR (near infrared) fluorescence signal, peaking at 685 nm. Advantages of this system include turn on NIR fluorescence with large Stokes shift, (approximately 171 nm), low limit of detection (LOD = 0.11 μM) and quantum yield (0.211). The probe with low cytotoxic behavior demonstrates strong NIR fluorescence imaging capabilities to visualize endogenous and exogenous N2H4 in live cells. This mitochondria-targetable probe shows effective subcellular localization. These results suggest that HBT-Cy is a valuable probe for tracking and investigating the behavior of N2H4 in biological systems and environmental samples.
Collapse
Affiliation(s)
- Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42250, Turkey.
| | - Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42250, Turkey
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun 28200, Turkey
| |
Collapse
|
10
|
Nde DT, Park J, Lee SH, Lee J, Lee HJ. Ultrawide Hydrazine Concentration Monitoring Sensor Comprising Ir-Ni Nanoparticles Decorated with Multi-Walled Carbon Nanotubes in On-Site Alkaline Fuel Cell Operation. CHEMSUSCHEM 2023; 16:e202201608. [PMID: 36480310 DOI: 10.1002/cssc.202201608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Indexed: 06/17/2023]
Abstract
A highly sensitive amperometric hydrazine monitoring sensor offering an ultrawide dynamic range of 5 μM to 1 M in alkaline media (e. g., 1 M KOH) was developed via co-electrodepositing iridium-nickel alloy nanoparticles (NPs) functionalized with multi-walled carbon nanotubes (Ir-Ni-MWCNTs) on a disposable screen-printed carbon electrode. The synergistic interaction of MWCNTs with Ir-Ni alloy NPs resulted in enlarged active surface area, rapid electron transfer, and alkaline media stability with an onset potential of -0.12 V (vs. Ag/AgCl) toward hydrazine oxidation. A limit of detection for hydrazine was 0.81 μM with guaranteed reproducibility, repeatability, and storage stability alongside a superb selectivity toward ethanolamine, urea, dopamine, NaBH4 , NH4 OH, NaNO2 , and Na2 CO3 . The sensor was finally applied to on-site monitoring of the carbon-free hydrazine concentration at the anode and cathode of a hydrazine fuel cell, providing more insight into the hydrazine oxidation process during cell operation.
Collapse
Affiliation(s)
- Dieudonne Tanue Nde
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea
| | - Jihyeon Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- International Future Research Center of Chemical Energy Storage and Conversion Processes (iFRC-CHESS), Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sang Hyuk Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea
| | - Jaeyoung Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- International Future Research Center of Chemical Energy Storage and Conversion Processes (iFRC-CHESS), Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Ertl Center for Electrochemical and Catalysis, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea
| |
Collapse
|
11
|
Teradale AB, Chadchan KS, Ganesh PS, Das SN, Ebenso EE. Synergetic effects of a poly-tartrazine/CTAB modified carbon paste electrode sensor towards simultaneous and interference-free determination of benzenediol isomers. REACT CHEM ENG 2023; 8:3071-3081. [DOI: 10.1039/d3re00318c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Simultaneous and selective detection of dihydroxy benzene isomers by the synergistic effect of CTAB and tartrazine on a carbon paste electrode (poly-TZ/CTAB/MCPE) sensor by CV and DPV techniques.
Collapse
Affiliation(s)
- Amit B. Teradale
- PG Department of Chemistry, BLDEA's S.B. Arts and K.C.P. Science College, Vijayapur, Karnataka, 586103, India
| | - Kailash S. Chadchan
- Department of Chemistry, BLDEA's V. P. Dr. P. G. Halakatti College of Engineering and Technology, Vijayapur-586103, Karnataka, India
| | - Pattan-Siddappa Ganesh
- Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 31253, Republic of Korea
| | - Swastika N. Das
- Department of Chemistry, BLDEA's V. P. Dr. P. G. Halakatti College of Engineering and Technology, Vijayapur-586103, Karnataka, India
| | - Eno E. Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
- Institute of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| |
Collapse
|
12
|
Ramya M, Senthil Kumar P, Rangasamy G, Uma Shankar V, Rajesh G, Nirmala K, Saravanan A, Krishnapandi A. A recent advancement on the applications of nanomaterials in electrochemical sensors and biosensors. CHEMOSPHERE 2022; 308:136416. [PMID: 36099991 DOI: 10.1016/j.chemosphere.2022.136416] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Industrialization and globalization, both on an international and local scale, have caused large quantities of toxic chemicals to be released into the environment. Thus, developing an environmental pollutant sensor platform that is sensitive, reliable, and cost-effective is extremely important. In current years, considerable progress has been made in the expansion of electrochemical sensors and biosensors to monitor the environment using nanomaterials. A large number of emerging biomarkers are currently in existence in the biological fluids, clinical, pharmaceutical and bionanomaterial-based electrochemical biosensor platforms have drawn much attention. Electrochemical systems have been used to detect biomarkers rapidly, sensitively, and selectively using biomaterials such as biopolymers, nucleic acids, proteins etc. In this current review, several recent trends have been identified in the growth of electrochemical sensor platforms using nanotechnology such as carbon nanomaterials, metal oxide nanomaterials, metal nanoparticles, biomaterials and polymers. The integration strategies, applications, specific properties and future projections of nanostructured materials for emerging progressive sensor platforms are also observed. The objective of this review is to provide a comprehensive overview of nanoparticles in the field of electrochemical sensors and biosensors.
Collapse
Affiliation(s)
- M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - V Uma Shankar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - G Rajesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - K Nirmala
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | | |
Collapse
|
13
|
Chen C, Wang C, Zhao P, Zhang J, Hu Y, Fei J. A novel temperature-responsive electrochemical sensing platform for reversible switch-sensitive detection of acetamidophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4730-4738. [PMID: 36373567 DOI: 10.1039/d2ay01280d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A novel facile, quick, and temperature-controlled sensor was constructed based on a polystyrene-poly-N,N-diethyl acrylamide-polystyrene (PS-PDEAM)/carboxylated multi-walled carbon nanotube (MWCNT) composite modified glass carbon electrode. The sensor achieves acetaminophen (AP) reversibility through better temperature sensitivity. PS-PDEAM shrinks when the temperature exceeds its lower critical temperature (LCST). When AP molecules pass through the modified interface, the electron transfer rate is accelerated, and the sensor is turned on. In the off state, the electrochemical response of AP cannot be detected. Under ideal experimental conditions, for composite modified films, there is a wide detection range of AP between 1.5-85.1 μM and 85.1-235.1 μM, and the limit of detection of acetaminophen is as low as 0.57 μM (S/N = 3). This method has been successfully applied to the determination of AP in tablets, and shows high stability, good reproducibility and excellent anti-interference ability. The on-off sensor opens up a wide range of possibilities for the use of temperature-sensitive polymers in electro-catalysis, sensors, and environmental pollutant monitoring.
Collapse
Affiliation(s)
- Chao Chen
- School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, People's Republic of China.
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Chenxi Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Pengcheng Zhao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China.
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Jin Zhang
- School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, People's Republic of China.
| | - Yongjun Hu
- School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, People's Republic of China.
| | - Junjie Fei
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
14
|
Yu J, Zhang H, Tam CF, Wong W. Synthesis of Pyridyl‐Imine Complex of Iron(III) as a Fluorescent Sensor for Hydrazine Detection Based on Redox Chemistry. ChemistrySelect 2022. [DOI: 10.1002/slct.202202530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Yu
- Department of Applied Biology and Chemical Technology State Key Laboratory of Chemical Biology and Drug Discovery The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| | - Haiqi Zhang
- Department of Applied Biology and Chemical Technology State Key Laboratory of Chemical Biology and Drug Discovery The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| | - Chun Fai Tam
- Department of Applied Biology and Chemical Technology State Key Laboratory of Chemical Biology and Drug Discovery The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| | - Wing‐Leung Wong
- Department of Applied Biology and Chemical Technology State Key Laboratory of Chemical Biology and Drug Discovery The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| |
Collapse
|
15
|
Kolhe P, Roberts A, Gandhi S. Fabrication of an ultrasensitive electrochemical immunosensor coupled with biofunctionalized zero-dimensional graphene quantum dots for rapid detection of cephalexin. Food Chem 2022; 398:133846. [DOI: 10.1016/j.foodchem.2022.133846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/05/2022] [Accepted: 07/31/2022] [Indexed: 12/18/2022]
|
16
|
Veerakumar P, Hung ST, Hung PQ, Lin KC. Review of the Design of Ruthenium-Based Nanomaterials and Their Sensing Applications in Electrochemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8523-8550. [PMID: 35793416 DOI: 10.1021/acs.jafc.2c01856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this review, ruthenium nanoparticles (Ru NPs)-based functional nanomaterials have attractive electrocatalytic characteristics and they offer considerable potential in a number of fields. Ru-based binary or multimetallic NPs are widely utilized for electrode modification because of their unique electrocatalytic properties, enhanced surface-area-to-volume ratio, and synergistic effect between two metals provides as an effective improved electrode sensor. This perspective review suggests the current research and development of Ru-based nanomaterials as a platform for electrochemical (EC) sensing of harmful substances, biomolecules, insecticides, pharmaceuticals, and environmental pollutants. The advantages and limitations of mono-, bi-, and multimetallic Ru-based nanocomposites for EC sensors are discussed. Besides, the relevant EC properties and analyte sensing approaches are also presented. On the basis of these insights, we highlighted recent results for synthesizing techniques and EC environmental pollutant sensors from the perspectives of diverse supports, including graphene, carbon nanotubes, silica, semiconductors, metal sulfides, and polymers. Finally, this work overviews the modern improvements in the utilization of Ru-based nanocomposites on the basis for electroanalytical sensors as well as suggestions for the field's future development.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shih-Tung Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Pei-Qi Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Azimzadeh M, Aghili Z, Jannat B, Jafari S, Rafizadeh Tafti S, Nasirizadeh N. Nanocomposite of electrochemically reduced graphene oxide and gold nanourchins for electrochemical DNA detection. IET Nanobiotechnol 2022; 16:190-198. [PMID: 35442560 PMCID: PMC9178657 DOI: 10.1049/nbt2.12086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 12/19/2022] Open
Abstract
A nanocomposite of graphene oxide and gold nanourchins has been used here to modify the surface of a screen‐printed carbon electrode to enhance the sensitivity of the electrochemical DNA detection system. A specific single‐stranded DNA probe was designed based on the target DNA sequence and was thiolated to be self‐assembled on the surface of the gold nanourchins placed on the modified electrode. Doxorubicin was used as an electrochemical label to detect the DNA hybridisation using differential pulse voltammetry (DPV). The assembling process was confirmed using scanning electron microscopy (SEM) imaging, cyclic voltammetry (CV), and the EIS method. The high sensitivity of the proposed system led to a low detection limit of 0.16 fM and a wide linear range from 0.5 to 950.0 fM. The specificity of the DNA hybridisation and the signalling molecule (haematoxylin) caused very high selectivity towards the target DNA than other non‐specific sequences.
Collapse
Affiliation(s)
- Mostafa Azimzadeh
- Halal Research Center of IRI, MOH, Tehran, Iran.,Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Aghili
- Food & Drug Control Reference Laboratories Center, FDA, MOH, Tehran, Iran
| | | | - Saeid Jafari
- Department of Textile and Polymer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Saeed Rafizadeh Tafti
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Navid Nasirizadeh
- Halal Research Center of IRI, MOH, Tehran, Iran.,Department of Textile and Polymer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| |
Collapse
|
18
|
Sohrabi H, Arbabzadeh O, Falaki M, Majidi MR, Han N, Yoon Y, Khataee A. Electrochemical layered double hydroxide (LDH)-based biosensors for pesticides detection in food and environment samples: A review of status and prospects. Food Chem Toxicol 2022; 164:113010. [DOI: 10.1016/j.fct.2022.113010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/27/2022]
|
19
|
|
20
|
A new phenothiazine-based fluorescent probe for detection of hydrazine with naked-eye color change properties. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Singh S, Yadav M, Singh DK, Yadav DK, Sonkar PK, Ganesan V. One step synthesis of a bimetallic (Ni and Co) metal–organic framework for the efficient electrocatalytic oxidation of water and hydrazine. NEW J CHEM 2022. [DOI: 10.1039/d2nj00773h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of metal–organic frameworks (MOFs) with varying Ni : Co ratios are synthesized by an easy one-step solvothermal method using trimesic acid as an organic linker.
Collapse
Affiliation(s)
- Smita Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India
| | - Mamta Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India
| | - Devesh Kumar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India
| | | | - Piyush Kumar Sonkar
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India
| |
Collapse
|
22
|
Bharti K, Sadhu KK. Syntheses of metal oxide-gold nanocomposites for biological applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Sadok I, Staniszewska M. Electrochemical Determination of Kynurenine Pathway Metabolites-Challenges and Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:7152. [PMID: 34770460 PMCID: PMC8588338 DOI: 10.3390/s21217152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/23/2022]
Abstract
In recent years, tryptophan metabolism via the kynurenine pathway has become one of the most active research areas thanks to its involvement in a variety of physiological processes, especially in conditions associated with immune dysfunction, central nervous system disorders, autoimmunity, infection, diabetes, and cancer. The kynurenine pathway generates several metabolites with immunosuppressive functions or neuroprotective, antioxidant, or toxic properties. An increasing body of work on this topic uncovers a need for reliable analytical methods to help identify and quantify tryptophan metabolites at physiological concentrations in biological samples of different origins. Recent methodological advances in the fabrication and application of electrochemical sensors promise a rise in the future generation of novel analytical systems. This work summarizes current knowledge and provides important suggestions with respect to direct electrochemical determinations of kynurenine pathway metabolites (kynurenines) in complex biological matrices. Measurement challenges, limitations, and future opportunities of electroanalytical methods to advance study of the implementation of kynurenines in disease conditions are discussed.
Collapse
Affiliation(s)
- Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| | | |
Collapse
|
24
|
Zhang X, Cao Q, Guo Z, Zhang M, Zhou M, Zhai Z, Xu Y. Self-assembly of MoS2 nanosheet on functionalized pomelo peel derived carbon and its electrochemical sensor behavior toward taxifolin. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Ariga K, Fakhrullin R. Nanoarchitectonics on living cells. RSC Adv 2021; 11:18898-18914. [PMID: 35478610 PMCID: PMC9033578 DOI: 10.1039/d1ra03424c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
In this review article, the recent examples of nanoarchitectonics on living cells are briefly explained. Not limited to conventional polymers, functional polymers, biomaterials, nanotubes, nanoparticles (conventional and magnetic ones), various inorganic substances, metal-organic frameworks (MOFs), and other advanced materials have been used as components for nanoarchitectonic decorations for living cells. Despite these artificial processes, the cells can remain active or remain in hibernation without being killed. In most cases, basic functions of the cells are preserved and their resistances against external assaults are much enhanced. The possibilities of nanoarchitectonics on living cells would be high, equal to functional modifications with conventional materials. Living cells can be regarded as highly functionalized objects and have indispensable contributions to future materials nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University Kreml uramı 18 Kazan 42000 Republic of Tatarstan Russian Federation
| |
Collapse
|
26
|
Tajik S, Beitollahi H, Hosseinzadeh R, Aghaei Afshar A, Varma RS, Jang HW, Shokouhimehr M. Electrochemical Detection of Hydrazine by Carbon Paste Electrode Modified with Ferrocene Derivatives, Ionic Liquid, and CoS 2-Carbon Nanotube Nanocomposite. ACS OMEGA 2021; 6:4641-4648. [PMID: 33644570 PMCID: PMC7905812 DOI: 10.1021/acsomega.0c05306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 05/05/2023]
Abstract
The electrocatalytic performance of carbon paste electrode (CPE) modified with ferrocene-derivative (ethyl2-(4-ferrocenyl[1,2,3]triazol-1-yl)acetate), ionic liquid (n-hexyl-3-methylimidazolium hexafluorophosphate), and CoS2-carbon nanotube nanocomposite (EFTA/IL/CoS2-CNT/CPE) was investigated for the electrocatalytic detection of hydrazine. CoS2-CNT nanocomposite was characterized by field emission scanning electron microscopy, X-ray powder diffraction, and transmission electron microscopy. According to the results of cyclic voltammetry, the EFTA/IL/CoS2-CNT-integrated CPE has been accompanied by greater catalytic activities for hydrazine oxidation compared to the other electrodes in phosphate buffer solution at a pH 7.0 as a result of the synergistic impact of fused ferrocene-derivative, IL, and nanocomposite. The sensor responded linearly with increasing concentration of hydrazine from 0.03 to 500.0 μM with a higher sensitivity (0.073 μA μM-1) and lower limit of detection (LOD, 0.015 μM). Furthermore, reasonable reproducibility, lengthy stability, and excellent selectivity were also attained for the proposed sensor. Finally, EFTA/IL/CoS2-CNT/CPE was applied for the detection of hydrazine in water samples, and good recoveries varied from 96.7 to 103.0%.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center
for Tropical and Infectious Diseases, Kerman
University of Medical Sciences, Kerman 7617934111, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High
Technology and Environmental Sciences, Graduate
University of Advanced Technology, Kerman 7631818356, Iran
| | - Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-1467, Iran
| | - Abbas Aghaei Afshar
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 1234, Iran
| | - Rajender S. Varma
- Regional Center of Advanced Technologies
and Materials, Palacky University, Š lechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research
Institute of Advanced Materials, Seoul National
University, Seoul 08826, Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research
Institute of Advanced Materials, Seoul National
University, Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Tajik S, Dourandish Z, Jahani PM, Sheikhshoaie I, Beitollahi H, Shahedi Asl M, Jang HW, Shokouhimehr M. Recent developments in voltammetric and amperometric sensors for cysteine detection. RSC Adv 2021; 11:5411-5425. [PMID: 35423079 PMCID: PMC8694840 DOI: 10.1039/d0ra07614g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/06/2020] [Indexed: 12/27/2022] Open
Abstract
This review article aims to provide an overview of the recent advances in the voltammetric and amperometric sensing of cysteine (Cys). The introduction summarizes the important role of Cys as an essential amino acid, techniques for its sensing, and the utilization of electrochemical methods and chemically modified electrodes for its determination. The main section covers voltammetric and amperometric sensing of Cys based on glassy carbon electrodes, screen printed electrodes, and carbon paste electrodes, modified with various electrocatalytic materials. The conclusion section discusses the current challenges of Cys determination and the future perspectives.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman Iran
| | - Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman Kerman 76175-133 Iran
| | | | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman Kerman 76175-133 Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Mehdi Shahedi Asl
- Marine Additive Manufacturing Centre of Excellence (MAMCE), University of New Brunswick Fredericton NB E3B 5A1 Canada
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
28
|
Kondori T, Tajik S, Akbarzadeh-T N, Beitollahi H, Graiff C, Jang HW, Shokouhimehr M. Synthesis and characterization of bipyridine cobalt(ii) complex modified graphite screen printed electrode: an electrochemical sensor for simultaneous detection of acetaminophen and naproxen. RSC Adv 2021; 11:3049-3057. [PMID: 35424218 PMCID: PMC8693888 DOI: 10.1039/d0ra08126d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/27/2020] [Indexed: 11/25/2022] Open
Abstract
The new Co(ii) compound [Co(5,5'-dmbpy)2(NCS)2] (a1) was prepared by reacting Co(NO3)2·6H2O, 5,5'-dimethyl-2,2'-bipyridine ligand, and Na(SCN). The nano-scale size of [Co(5,5'-dmbpy)2(NCS)2] (a1) was synthesized using sonochemical process. The size of the nanoparticles (a2) was ∼13 ± 2 nm. We have also provided a new platform of electrochemical sensing for simultaneous detection of acetaminophen and naproxen using (a2) surface modified graphite screen printed electrode (SPE) in 0.1 M phosphate buffer solution (PBS, pH 7.0). In contrast to bare SPE, the modified SPE could significantly improve the electrooxidation activity of acetaminophen along with the rise in the current of an anodic peak. The peak currents acquired using differential pulse voltammetry (DPV) raised linearly with the raising of acetaminophen concentration and the sensor had a detection range over the concentration range of 0.009-325.0 μM, with a detection limit of 5.0 nM (S/N = 3). In the case of naproxen peak, currents of naproxen oxidation at the modified SPE were linearly dependent on the naproxen amounts in the range of 1.0-500.0 μM. The detection limit (S/N = 3) was calculated to be 0.03 μM. The DPV responses show that the peaks of acetaminophen and naproxen oxidation were vividly separated from one other with a potential difference of 410 mV between them. The low detection limit, high sensitivity, and stability made the relevant electrode applicable for the analysis of acetaminophen and naproxen in real samples. Further, its practical applicability was reliable and desirable in the analysis of pharmaceutical compounds and biological fluids. The benefits of using this modified electrode for the determination of analytes are compared with other works in the manuscript.
Collapse
Affiliation(s)
- Tahere Kondori
- Department of Chemistry, University of Sistan and Baluchestan P.O. Box 98135-674 Zahedan Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman Iran
| | - Niloufar Akbarzadeh-T
- Department of Chemistry, University of Sistan and Baluchestan P.O. Box 98135-674 Zahedan Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Cloudia Graiff
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma Parco Area delleScienze 17/A 43124 Parma Italy
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materias, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materias, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
29
|
Tajik S, Beitollahi H, Garkani Nejad F, Dourandish Z, Khalilzadeh MA, Jang HW, Venditti RA, Varma RS, Shokouhimehr M. Recent Developments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Ind Eng Chem Res 2021; 60:1112-1136. [PMID: 35340740 PMCID: PMC8943708 DOI: 10.1021/acs.iecr.0c04952] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human population is generally subjected to diverse pollutants and contaminants in the environment like those in the air, soil, foodstuffs, and drinking water. Therefore, the development of novel purification techniques and efficient detection devices for pollutants is an important challenge. To date, experts in the field have designed distinctive analytical procedures for the detection of pollutants including gas chromatography/mass spectrometry and atomic absorption spectroscopy. While the mentioned procedures enjoy high sensitivity, they suffer from being laborious, expensive, require advanced skills for operation, and are inconvenient to deploy as a result of their massive size. Therefore, in response to the above-mentioned limitations, electrochemical sensors are being developed that enjoy robustness, selectivity, sensitivity, and real-time measurements. Considerable advancements in nanomaterials-based electrochemical sensor platforms have helped to generate new technologies to ensure environmental and human safety. Recently, investigators have expanded considerable effort to utilize polymer nanocomposites for building the electrochemical sensors in view of their promising features such as very good electrocatalytic activities, higher electrical conductivity, and effective surface area in comparison to the traditional polymers. Herein, the first section of this review briefly discusses the most important methods for polymer nanocomposites synthesis, such as in situ polymerization, direct mixing of polymer and nanofillers (melt-mixing and solution-mixing), sol-gel, and electrochemical methods. It then summarizes the current utilization of polymer nanocomposites for the preparation of electrochemical sensors as a novel approach for monitoring and detecting environmental pollutants which include heavy metal ions, pesticides, phenolic compounds, nitroaromatic compounds, nitrite, and hydrazine in different mediums. Finally, the current challenges and future directions for the polymer nanocomposites-based electrochemical sensing of environmental pollutants are outlined.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7518934119, Iran
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7518934119, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7518934119, Iran
| | - Mohammad A Khalilzadeh
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Richard A Venditti
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States; Regional Center of Advanced Technologies and Materials, Palacky University, Olomouc 783 71, Czech Republic
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
30
|
Tajik S, Beitollahi H, Jang HW, Shokouhimehr M. A simple and sensitive approach for the electrochemical determination of amaranth by a Pd/GO nanomaterial-modified screen-printed electrode. RSC Adv 2020; 11:278-287. [PMID: 35423012 PMCID: PMC8690309 DOI: 10.1039/d0ra08723h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/21/2020] [Indexed: 11/30/2022] Open
Abstract
It is essential to develop easy-to-use sensors towards a better monitoring of food additives so that human health can be positively influenced. A type of critical food additive that is widely used in making soft drinks and diverse foodstuff is called amaranth. This study aimed at presenting a novel Pd/GO nanomaterial-modified screen-printed electrode (Pd/GO/SPE), which is responsible for providing a sensing interface during the process of specifying the electrochemical features of amaranth. The morphology and structure of the Pd/GO nanomaterial was investigated by Fourier-transform infrared spectroscopy, thermal gravimetric analysis, X-ray photoelectron spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning transmission electron microscopy, and high-resolution transmission electron microscopy. When the optimized conditions was adjusted, Pd/GO/SPE proved to be a capable sensor for conducting a very sensitive sensing towards the amaranth under a common working situation of 575 mV. In this regard, it was embarked on measuring some of the sensor features, including its sensitivity, linear dynamic range, and detection limit for amaranth with the values of 0.0948 μA μM-1, 0.08 μM-360.0 μM and 30.0 nM were obtained, respectively.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
31
|
Tajik S, Beitollahi H, Nejad FG, Shoaie IS, Khalilzadeh MA, Asl MS, Van Le Q, Zhang K, Jang HW, Shokouhimehr M. Recent developments in conducting polymers: applications for electrochemistry. RSC Adv 2020; 10:37834-37856. [PMID: 35515168 PMCID: PMC9057190 DOI: 10.1039/d0ra06160c] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
Scientists have categorized conductive polymers as materials having strongly reversible redox behavior and uncommon combined features of plastics and metal. Because of their multifunctional characteristics, e.g., simplistic synthesis, acceptable environmental stability, beneficial optical, electronic, and mechanical features, researchers have largely considered them for diverse applications. Therefore, their capability of catalyzing several electrode reactions has been introduced as one of their significant features. A thin layer of the conducting polymer deposited on the substrate electrode surface can augment the electrode process kinetics of several solution species. Such electrocatalytic procedures with modified conducting polymer electrodes can create beneficial utilization in diverse fields of applied electrochemistry. This review article explores typical recent applications of conductive polymers (2016–2020) as active electrode materials for energy storage applications, electrochemical sensing, and conversion fields such as electrochemical supercapacitors, lithium-ion batteries, fuel cells, and solar cells. Scientists have categorized conductive polymers as materials having strongly reversible redox behavior and uncommon combined features of plastics and metal.![]()
Collapse
|