1
|
Schmidt RDCDR, Oliveira TED, Deon M. Polymeric nanocomposites in a biological interface: From a molecular view to final applications. Colloids Surf B Biointerfaces 2025; 251:114605. [PMID: 40073629 DOI: 10.1016/j.colsurfb.2025.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Polymeric nanocomposites have been valuable materials for the pharmaceutical and biomedical fields because they associate the unique properties of a material on a nanoscale with a polymeric matrix, with a synergistic outcome that improves their physical, chemical, and mechanical properties. Understanding the nature of the physical and chemical interactions and effects that take place at the polymer-nanomaterial interface is crucial to predict and explain how the nanocomposite behaves when set forth a health-related application and faces a biological interface. Therefore, this review aimed to assemble and examine experimental articles in which the molecular-level interaction between nanomaterials and polymer matrices were determinants of the biological outcome. For health applications, the nanocomposite systems were found to be most applied as antimicrobials, for tissue engineering, and for drug delivery. A plethora of biocompatible polymers have been reported, although for nanomaterials the most distinguished effects were attained with metal and metal oxide nanoparticles. The bioactivity of the nanocomposite was found to be dependent on features such as: colloidal size, release, and disintegration of the nanoparticle, controlled by the polymer matrix; hydrophilicity, degree of crosslinking, porosity, mechanical strength, and stability/responsiveness of the polymer, modified by the nanofiller; and the final charge and functional groups available at the whole nanocomposite surface. As a result, researchers can gather insights to design and characterize advanced polymeric nanocomposites with optimized performance for use in biomedical devices, drug delivery systems, and other therapeutic applications.
Collapse
Affiliation(s)
- Rita de Cássia Dos Reis Schmidt
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Tiago Espinosa de Oliveira
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| | - Monique Deon
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| |
Collapse
|
2
|
Liu J, Liu J, Wang Y, Chen F, He Y, Xie X, Zhong Y, Yang C. Bioactive mesoporous silica materials-assisted cancer immunotherapy. Biomaterials 2025; 315:122919. [PMID: 39481339 DOI: 10.1016/j.biomaterials.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Immunotherapy is initially envisioned as a powerful approach to train immune cells within the tumor microenvironment (TME) and lymphoid tissues to elicit strong anti-tumor responses. However, clinical cancer immunotherapy still faces challenges, such as limited immunogenicity and insufficient immune response. Leveraging the advantages of mesoporous silica (MS) materials in controllable drug and immunomodulator release, recent efforts have focused on engineering MS with intrinsic immunoregulatory functions to promote robust, systemic, and safe anti-tumor responses. This review discusses advances in bioactive MS materials that address the challenges of immunotherapy. Beyond their role in on-demand delivery and drug release in response to the TME, we highlight the intrinsic functions of bioactive MS in orchestrating localized immune responses by inducing immunogenic cell death in tumor cells, modulating immune cell activity, and facilitating tumor-immune cell interactions. Additionally, we emphasize the advantages of bioactive MS in recruiting and activating immune cells within lymphoid tissues to initiate anti-tumor vaccination. The review also covers the challenges of MS-assisted immunotherapy, potential solutions, and future outlooks. With a deeper understanding of material-bio interactions, the rational design of MS with sophisticated bioactivities and controllable responsiveness holds great promise for enhancing the outcomes of personalized immunotherapy.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Jiying Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yaxin Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Pandhare AB, Mulik SV, Malavekar DB, Kim JH, Khot VM, Kumar P, Sutar SS, Dongale TD, Patil RP, Delekar SD. Chitosan-Functionalized Lithium Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25902-25918. [PMID: 39576180 DOI: 10.1021/acs.langmuir.4c03228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
In this study, various compositions of α-Fe2O3, Li3xFe2-xO3, where x = 0.1, 0.3, and 0.5, along with chitosan (CTS)-coated Li1.5Fe1.5O3 nanomaterials (NMs), were synthesized using a sol-gel method. Rietveld refinement analysis indicated a predominance of the rhombohedral phase for lower Li-doped content (x = 0.1) and a transition to cubic crystal structures at higher Li-doped content (x = 0.3 and 0.5) within the host lattice. Field emission scanning electron microscopy (FE-SEM) images revealed irregular spherical morphologies, while transmission electron microscopy (TEM) images showed average particle sizes ranging from 19 to 40 nm across the various NMs. Superconducting quantum interference device (SQUID) analysis demonstrated a ferromagnetic nature with the highest saturation magnetization measured at 49.84 emu/g for Li1.5Fe1.5O3 NMs. X-ray photoelectron spectra (XPS) exhibited Fe 2p3/2 and Fe 2p1/2 peaks at 712.60 and 726.13 eV, respectively, Li 1s at 57.58 eV, and O 1s at 533.44 eV for the representative samples; these characteristic XPS peaks shifted to a lower binding energy for CTS-coated Li1.5Fe1.5O3 NMs. Hyperthermia studies demonstrated that the Li-doped samples reached a temperature range between 42 and 44 °C under an alternating current (AC) magnetic field applied at 167.6 to 335.2 Oe, with a constant frequency of 278 kHz. The specific absorption rate (SAR) was recorded as 265.11 W/g for Li1.5Fe1.5O3 and 153.48 W/g for CTS-coated Li1.5Fe1.5O3 NMs, both surpassing the SAR values of the other samples. Furthermore, various machine learning techniques were utilized to analyze how different synthesis conditions and material properties affected the heating efficiency and SAR values of the synthesized materials. The study also suggests an optimized set of guidelines and heuristics to enhance the heating performance and SAR values of these materials. Finally, magnetic CTS-coated Li1.5Fe1.5O3 NMs exhibited a higher cell viability, as confirmed by MTT assays conducted on the NRK 52 E normal cell line.
Collapse
Affiliation(s)
- Amol B Pandhare
- Department of Chemistry, Shivaji University, Kolhapur 416 004, MS, India
- Department of Chemistry, M.H. Shinde Mahavidyalaya, Tisangi, Gaganbavda, Kolhapur 416 206, MS, India
| | - Swapnajit V Mulik
- Department of Chemistry, Shivaji University, Kolhapur 416 004, MS, India
| | - Dhanaji B Malavekar
- Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Jin H Kim
- Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Vishwajeet M Khot
- Center for Interdisciplinary Research, D.Y. Patil Education Society Deemed University, Kolhapur 416 006, MS, India
| | - Pawan Kumar
- Department of Physics, Mahatma Gandhi Central University, Motihari 845 401, BR, India
| | - Santosh S Sutar
- Yashwantrao Chavan School of Rural Development, Shivaji University, Kolhapur 416 004, India
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416 004, MS, India
| | - Rajendra P Patil
- Department of Chemistry, M.H. Shinde Mahavidyalaya, Tisangi, Gaganbavda, Kolhapur 416 206, MS, India
| | - Sagar D Delekar
- Department of Chemistry, Shivaji University, Kolhapur 416 004, MS, India
| |
Collapse
|
4
|
Pourmadadi M, Garousi NA, Abdouss M, Rahdar A, Fathi-Karkan S, Pandey S. PEG-modified Fe 2O 3 coated agarose hydrogel: A synthesized nanocomposite for regulated 5-fluorouracil delivery. Int J Biol Macromol 2024; 276:133900. [PMID: 39019377 DOI: 10.1016/j.ijbiomac.2024.133900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
An innovative pH-responsive nanocomposite, comprising agarose (AGA) modified with polyethylene glycol (PEG) hydrogel and coated with ferric oxide (Fe2O3), has been formulated to facilitate the precise administration of 5-fluorouracil (5-Fu) to breast cancer cells. By utilizing a double emulsion technique, the size of the nanocomposites was significantly reduced through the application of almond oil; the inclusion of span 80 further improved their uniformity. The physiochemical properties of the nanocomposite were thoroughly examined by Fourier Transformed Infrared (FT-IR), X-ray diffraction (XRD), Field Emission-Scanning Electron Microscope (FE-SEM), Vibrating Sample Magnetometer (VSM), dynamic light scattering (DLS), and zeta potential tests. The verification of the uniform particle distribution was achieved by employing FE-SEM and VSM analyses. The average diameter of the particles was 223 nm, and their zeta potential was -47.6 mV. In addition, the nanocomposite exhibited a regulated release of 5-Fu at pH 5.4 and pH 7.4, as indicated by an in vitro drug release profile. PEG-AGA- Fe2O3@5-Fu exhibited biocompatibility, as indicated by the lack of deleterious effects observed in tumor cells. This revolutionary nanocomposite demonstrates exceptional promise for breast cancer treatment, underscoring its significance as a major advancement in the pursuit of novel nanotechnologies for cancer therapy.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, GC, Tehran 1983963113, Iran
| | | | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran; Key Labratory of Modeling and Simulation-based Reliability and Optimizition, University of Zabol, Zabol, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran
| | - Sadanand Pandey
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India.
| |
Collapse
|
5
|
Patri S, Thanh NTK, Kamaly N. Magnetic iron oxide nanogels for combined hyperthermia and drug delivery for cancer treatment. NANOSCALE 2024; 16:15446-15464. [PMID: 39113663 DOI: 10.1039/d4nr02058h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Hyperthermia and chemotherapy represent potential modalities for cancer treatments. However, hyperthermia can be invasive, while chemotherapy drugs often have severe side effects. Recent clinical investigations have underscored the potential synergistic efficacy of combining hyperthermia with chemotherapy, leading to enhanced cancer cell killing. In this context, magnetic iron oxide nanogels have emerged as promising candidates as they can integrate superparamagnetic iron oxide nanoparticles (IONPs), providing the requisite magnetism for magnetic hyperthermia, with the nanogel scaffold facilitating smart drug delivery. This review provides an overview of the synthetic methodologies employed in fabricating magnetic nanogels. Key properties and designs of these nanogels are discussed and challenges for their translation to the clinic and the market are summarised.
Collapse
Affiliation(s)
- Sofia Patri
- Department of Materials, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, UK.
| | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- Biophysic Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, UK.
| |
Collapse
|
6
|
Jahan MN, Alam MA, Rahman MM, Hoque SM, Ahmad H. Mesoporous Fe 3O 4/SiO 2/poly(2-carboxyethyl acrylate) composite polymer particles for pH-responsive loading and targeted release of bioactive molecules. RSC Adv 2024; 14:23560-23573. [PMID: 39071478 PMCID: PMC11276395 DOI: 10.1039/d4ra03160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
pH-responsive polymer microspheres undergoing reversible changes in their surface properties have been proved useful for drug delivery to targeted sites. This paper is aimed at preparing pH-responsive polymer-modified magnetic mesoporous SiO2 particles. First, mesoporous magnetic (Fe3O4) core-particles are prepared using a one-pot solvothermal method. Then, magnetic Fe3O4 particles are covered with a C[double bond, length as m-dash]C functional mesoporous SiO2 layer before seeded emulsion polymerization of 2-carboxyethyl acrylate (2-CEA). The composite polymer particles are named Fe3O4/SiO2/P(2-CEA). The average diameters of the Fe3O4 core and Fe3O4/SiO2/P(2-CEA) composite polymer particles are 414 and 595 nm, respectively. The mesoporous (pore diameter = 3.41 nm) structure of Fe3O4/SiO2/P(2-CEA) composite polymer particles is confirmed from Brunauer-Emmett-Teller (BET) surface analysis. The synthesized Fe3O4/SiO2/P(2-CEA) composite polymer exhibited pH-dependent changes in volume and surface charge density due to deprotonation of the carboxyl group under alkaline pH conditions. The change in the surface properties of Fe3O4/SiO2/P(2-CEA) composite polymer particles following pH change is confirmed from the pH-dependent sorption of cationic methylene blue (MB) and anionic methyl orange (MO) dye molecules. The opening of the pH-responsive P(2-CEA) gate valve at pH 10.0 allowed the release of loaded vancomycin up to 99% after 165 min and p-acetamido phenol (p-AP) up to 46% after 225 min. Comparatively, the amount of release is lower at pH 8.0 but still suitable for drug delivery applications. These results suggested that the mesoporous Fe3O4/SiO2 composite seed acted as a microcapsule, while P(2-CEA) functioned as a gate valve across the porous channel. The prepared composite polymer can therefore be useful for treating intestine/colon cancer, where the pH is comparatively alkaline.
Collapse
Affiliation(s)
- Most Nusrat Jahan
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Ashraful Alam
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Mahabur Rahman
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
- Department of Chemistry, Pabna University of Science and Technology 6600 Pabna Bangladesh
| | - S Manjura Hoque
- Materials Science Division, Bangladesh Atomic Energy Commission Dhaka Bangladesh
| | - Hasan Ahmad
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| |
Collapse
|
7
|
Razmimanesh F, Sodeifian G. Evaluation of a temperature-responsive magnetotocosome as a magnetic targeting drug delivery system for sorafenib tosylate anticancer drug. Heliyon 2023; 9:e21794. [PMID: 38027677 PMCID: PMC10658271 DOI: 10.1016/j.heliyon.2023.e21794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/15/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
In this investigation, a polymeric fusion of chitosan (CS) and thermosensitive poly (N-isopropyl acrylamide) - PNIPAAm - encapsulated a magnetotocosome, biocompatible nanocarrier. This encapsulation strategy demonstrated improved drug entrapment efficiency, achieving up to 98.8 %. Additionally, it exhibited extended stability, optimal particle dimensions, and the potential for industrial scaling, thus facilitating controlled drug delivery of sorafenib tosylate to cancerous tissue. Reversible Addition-Fragmentation Chain Transfer (RAFT) techniques were employed to synthesize PNIPAAm. The effects of polymer molecular weight and polydispersity index on the lower critical solution temperature (LCST) were evaluated. The resulting polymeric amalgamation, involving the thermosensitive PNIPAAm synthesized using RAFT techniques and CS that coated the magnetotocosome (CS-Raft PNIPAAm-magnetotocosome) with an LCST approximately at 45 °C, holds the potential to enhance drug bioavailability and enable applications in hyperthermia treatment, controlled release, and targeted drug delivery.
Collapse
Affiliation(s)
- Fariba Razmimanesh
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Laboratory of Biotechnology and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran
- Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| | - Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Laboratory of Biotechnology and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran
- Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| |
Collapse
|
8
|
Farjadian F, Faghih Z, Fakhimi M, Iranpour P, Mohammadi-Samani S, Doroudian M. Glucosamine-Modified Mesoporous Silica-Coated Magnetic Nanoparticles: A "Raisin-Cake"-like Structure as an Efficient Theranostic Platform for Targeted Methotrexate Delivery. Pharmaceutics 2023; 15:2491. [PMID: 37896251 PMCID: PMC10610088 DOI: 10.3390/pharmaceutics15102491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
This study presents the synthesis of glucosamine-modified mesoporous silica-coated magnetic nanoparticles (MNPs) as a therapeutic platform for the delivery of an anticancer drug, methotrexate (MTX). The MNPs were coated with mesoporous silica in a templated sol-gel process to form MNP@MSN, and then chloropropyl groups were added to the structure in a post-modification reaction. Glucosamine was then reacted with the chloro-modified structure, and methotrexate was conjugated to the hydroxyl group of the glucose. The prepared structure was characterized using techniques such as Fourier transform infrared (FT-IR) spectroscopy, elemental analysis (CHN), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), a vibrating sample magnetometer (VSM), and X-ray diffraction (XRD). Good formation of nano-sized MNPs and MNP@MSN was observed via particle size monitoring. The modified glucosamine structure showed a controlled release profile of methotrexate in simulated tumor fluid. In vitro evaluation using the 4T1 breast cancer cell line showed the cytotoxicity, apoptosis, and cell cycle effects of methotrexate. The MTT assay showed comparable toxicity between MTX-loaded nanoparticles and free MTX. The structure could act as a glucose transporter-targeting agent and showed increased uptake in cancer cells. An in vivo breast cancer model was established in BALB/C mice, and the distribution of MTX-conjugated MNP@MSN particles was visualized using MRI. The MTX-conjugated particles showed significant anti-tumor potential together with MRI contrast enhancement.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Canter, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45550, Iran; (Z.F.); (M.F.)
| | - Maryam Fakhimi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45550, Iran; (Z.F.); (M.F.)
| | - Pooya Iranpour
- Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz 71936-13311, Iran;
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Canter, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| |
Collapse
|
9
|
Chen H, Qiu X, Xia T, Li Q, Wen Z, Huang B, Li Y. Mesoporous Materials Make Hydrogels More Powerful in Biomedicine. Gels 2023; 9:gels9030207. [PMID: 36975656 PMCID: PMC10048667 DOI: 10.3390/gels9030207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Scientists have been attempting to improve the properties of mesoporous materials and expand their application since the 1990s, and the combination with hydrogels, macromolecular biological materials, is one of the research focuses currently. Uniform mesoporous structure, high specific surface area, good biocompatibility, and biodegradability make the combined use of mesoporous materials more suitable for the sustained release of loaded drugs than single hydrogels. As a joint result, they can achieve tumor targeting, tumor environment stimulation responsiveness, and multiple therapeutic platforms such as photothermal therapy and photodynamic therapy. Due to the photothermal conversion ability, mesoporous materials can significantly improve the antibacterial ability of hydrogels and offer a novel photocatalytic antibacterial mode. In bone repair systems, mesoporous materials remarkably strengthen the mineralization and mechanical properties of hydrogels, aside from being used as drug carriers to load and release various bioactivators to promote osteogenesis. In hemostasis, mesoporous materials greatly elevate the water absorption rate of hydrogels, enhance the mechanical strength of the blood clot, and dramatically shorten the bleeding time. As for wound healing and tissue regeneration, incorporating mesoporous materials can be promising for enhancing vessel formation and cell proliferation of hydrogels. In this paper, we introduce the classification and preparation methods of mesoporous material-loaded composite hydrogels and highlight the applications of composite hydrogels in drug delivery, tumor therapy, antibacterial treatment, osteogenesis, hemostasis, and wound healing. We also summarize the latest research progress and point out future research directions. After searching, no research reporting these contents was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Correspondence: (B.H.); (Y.L.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
- Correspondence: (B.H.); (Y.L.)
| |
Collapse
|
10
|
Kim S, Lee Y, Park J, So Y, Jung HT, Ko MJ, Won JC, Jeong S, Kim YH. Green and Facile Synthesis of Hybrid Composites with Ultralow Dielectric Properties from Water-Soluble Polyimide and Dual-Porous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4408-4418. [PMID: 36520088 DOI: 10.1021/acsami.2c16197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here, we proposed an eco-friendly synthetic method for synthesizing hybrid composites with ultralow dielectric properties at high frequencies up to 28 GHz for true 5G communication from aqueous aromatic polyimide (PI) polymers and dual-porous silica nanoparticles (DPS). The "one-step" water-based emulsion template method was used to synthesize the macroporous silica nanoparticles (MPS). A substantially negative ζ potential was produced along the surface of MPS by the poly(vinylpyrrolidone)-based chemical functionalization, enabling excellent aqueous dispersion stability. The water-soluble poly(amic acid) (PAA), as a precursor to PI, was also "one-step" polymerized in an aqueous solution. The MPS were dispersed in a water-soluble PAA matrix to create the hybrid composite films using an entirely water-based approach. The compatibility between the PAA matrix and MPS was elucidated by investigating relatively diverse end-terminated PAAs (with either amine or carboxyl group). It was also discovered that, during a thermally activated imidization reaction, the MPS are in situ converted into the DPS with macro- and microporous structures (with a surface area of 1522.4 m2/g). The thermal, dielectric, mechanical, and morphological characteristics of each composite film were examined, while the amount of DPS in the PI matrix varied from 1 to 20 wt %. With the addition of 5 wt % DPS as an optimum condition, it showed ultralow dielectric properties, with the Dk and Df being 1.615 and 0.003 at a frequency of 28 GHz, respectively, and compatible mechanical properties, with the tensile strength and elastic modulus being 78.2 MPa and 0.32 GPa, respectively. These results can comprehensively satisfy various physical properties required as a substrate material for 5G communication devices.
Collapse
Affiliation(s)
- Sunkyu Kim
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Yeongje Lee
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, Yongin-si 17104, Korea
| | - Jongmin Park
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Yujin So
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Deajeon 34141, Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Deajeon 34141, Korea
| | - Min Jae Ko
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jong Chan Won
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- KRICT School, University of Science and Technology, Daejeon 34113, Korea
| | - Sunho Jeong
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, Yongin-si 17104, Korea
- Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yun Ho Kim
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- KRICT School, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
11
|
Choudhary N, Abdelgaid M, Mpourmpakis G, Mobin SM. CuNi bimetallic nanocatalyst enables sustainable direct carboxylation reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
13
|
Włodarczyk A, Gorgoń S, Radoń A, Bajdak-Rusinek K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. NANOMATERIALS 2022; 12:nano12111807. [PMID: 35683663 PMCID: PMC9182445 DOI: 10.3390/nano12111807] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Until now, strategies used to treat cancer are imperfect, and this generates the need to search for better and safer solutions. The biggest issue is the lack of selective interaction with neoplastic cells, which is associated with occurrence of side effects and significantly reduces the effectiveness of therapies. The use of nanoparticles in cancer can counteract these problems. One of the most promising nanoparticles is magnetite. Implementation of this nanoparticle can improve various treatment methods such as hyperthermia, targeted drug delivery, cancer genotherapy, and protein therapy. In the first case, its feature makes magnetite useful in magnetic hyperthermia. Interaction of magnetite with the altered magnetic field generates heat. This process results in raised temperature only in a desired part of a patient body. In other therapies, magnetite-based nanoparticles could serve as a carrier for various types of therapeutic load. The magnetic field would direct the drug-related magnetite nanoparticles to the pathological site. Therefore, this material can be used in protein and gene therapy or drug delivery. Since the magnetite nanoparticle can be used in various types of cancer treatment, they are extensively studied. Herein, we summarize the latest finding on the applicability of the magnetite nanoparticles, also addressing the most critical problems faced by smart nanomedicine in oncological therapies.
Collapse
Affiliation(s)
- Agnieszka Włodarczyk
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Szymon Gorgoń
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, 901 87 Umeå, Sweden;
| | - Adrian Radoń
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100 Gliwice, Poland;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
- Correspondence: ; Tel.: +48-32-208-8382
| |
Collapse
|
14
|
Rashidi Z, Bagheri Marandi G, Taghvay Nakhjiri M. Carboxymethyl cellulose-based nanocomposite hydrogel grafted with vinylic comonomers: synthesis, swelling behavior and drug delivery investigation. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2056049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zahra Rashidi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | | |
Collapse
|
15
|
Smart Nanocarrier Based on Poly(oligo(ethylene glycol) methyl ether acrylate) Terminated pH-Responsive Polymer Brushes Grafted Mesoporous Silica Nanoparticles. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A platform technology based on inorganic/organic nanoparticles for carrying drugs could be of enormous potential benefit in treating cancer. Surface modification of the nanoparticles with pH-responsive and biocompatible polymers can improve the selectivity and targeting toward the tumor cells. Polyethylene glycol (PEG) and its derivatives being present on the surface could enhance the ability to tailor nanomaterial hydrophilicity and to resist the adhesion of proteins and/or cells. Herein, we report a new nanoplatform based on mesoporous silica nanoparticles (MSNs) conjugated with poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) brushes as a candidate for stimuli-responsive intracellular drug delivery system. Alkyl bromide functional initiators (end-functionalized PDEAEMA brushes) were derivatized to amine, followed by the reaction with ethylene sulfide and poly(oligo(ethylene glycol) methyl ether acrylate (POEGMEA). Using X-ray photoelectron spectroscopy (XPS) to examine the attachment of POEGMEA, it was found that the POEGMEA molecules in the outer surface of PDEAEMA brushes have been successfully reacted with thiol groups, as indicated by the increase in the peak intensity of the C–O group at 286.5 eV. Brush-modified silica hybrids have an average diameter of ca. 250 nm, as estimated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Rhodamine B dye was loaded into the brush-modified silica hybrids nanoparticles with loading capacity of ca. 74%. The accumulated dye released from brush-modified particles in acidic media was approximately 60%, whereas the dye amount release in basic media was less than 15% after 10 h exposure time. Alamar Blue assay was used to assess the cytotoxicity of MSNs–PDEAEMA, MSNs–PDEAEMA–SH, and MSNs–PDEAEMA–POEGMEA. The results show that all three nanosystems were non-toxic to hMSC with an increase in cell proliferation for MSNs–PDEAEMA–POEGMEA at 50 µg/mL after both 24 and 48 h of incubation.
Collapse
|
16
|
Surendhiran D, Roy VC, Park JS, Chun BS. Fabrication of chitosan-based food packaging film impregnated with turmeric essential oil (TEO)-loaded magnetic-silica nanocomposites for surimi preservation. Int J Biol Macromol 2022; 203:650-660. [PMID: 35122800 DOI: 10.1016/j.ijbiomac.2022.01.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
Abstract
Successful modification of chitosan (CS) film using magnetic-silica nanocomposite to encapsulate turmeric essential oil (TEO) obtained by super critical CO2 extraction for enhanced preservation of surimi was performed. TEO exhibited antioxidant and antibacterial activities against Bacillus cereus. The core magnetic nanoparticles (MNPs) were capped with porous silica (Si) to form core-shell nanocomposites, into which TEO was loaded with 75.24% encapsulation efficiency. The fabricated nanocomposite was characterized, blended with CS to cast a bionanocomposite active film and characterized for efficient impregnation of bionanocomposite. The physical and mechanical properties of film were significantly improved after adding MNPs/Si/TEO nanocomposite. Uncontrolled release of TEO from CS film resulted in bacterial growth after 6 days of storage whereas bionanocomposites exhibited a sustained release of TEO that controlled the microbial load from 4.0 log CFU/g to 2.78 log CFU/g over 14 days. The overall study demonstrated that the CS/MNPs/Si/TEO bionanocomposite film was efficient as a packaging material for prolonged shelf-life of surimi.
Collapse
Affiliation(s)
| | - Vikash Chandra Roy
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea; Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
17
|
Kuang Y, Zhai J, Xiao Q, Zhao S, Li C. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review. Int J Biol Macromol 2021; 193:457-473. [PMID: 34710474 DOI: 10.1016/j.ijbiomac.2021.10.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have been well-researched in the design and fabrication of advanced drug delivery systems (DDSs) due to their advantages such as good biocompatibility, large specific surface area and pore volume for drug loading, easily surface modification, adjusted size and good thermal/chemical stability. For MSN-based DDSs, gate materials are also necessary. And natural polysaccharides, one kind of the most abundant natural resource, have been widely applied as the "gatekeepers" in MSN-based DDSs. Polysaccharides are cheap and rich in sources with good biocompatibility, and some of them have important biological functions. In this review article, polysaccharides including chitosan, hyaluronic acid, sodium alginate and dextran, et al. are briefly introduced. And the preparation processes and properties such as controlled drug release, cancer targeting and disease diagnosis of functional polysaccharide/MSN-based DDSs are discussed.
Collapse
Affiliation(s)
- Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Junjun Zhai
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qinjian Xiao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Si Zhao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| |
Collapse
|
18
|
Theodorakis N, Saravanou SF, Kouli NP, Iatridi Z, Tsitsilianis C. pH/Thermo-Responsive Grafted Alginate-Based SiO 2 Hybrid Nanocarrier/Hydrogel Drug Delivery Systems. Polymers (Basel) 2021; 13:1228. [PMID: 33920243 PMCID: PMC8069398 DOI: 10.3390/polym13081228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/27/2022] Open
Abstract
We report the preparation of mesoporous silica nanoparticles covered by layer by layer (LbL) oppositely charged weak polyelectrolytes, comprising poly(allylamine hydrochloride) (PAH) and a sodium alginate, highly grafted by N-isopropylacrylamide/N-tert-butylacrylamide random copolymers, NaALG-g-P(NIPAM90-co-NtBAM10) (NaALG-g). Thanks to the pH dependence of the degree of ionization of the polyelectrolytes and the LCST-type thermosensitivity of the grafting chains of the NaALG-g, the as-prepared hybrid nanoparticles (hNP) exhibit pH/thermo-responsive drug delivery capabilities. The release kinetics of rhodamine B (RB, model drug) can be controlled by the number of PAH/NaALG-g bilayers and more importantly by the environmental conditions, namely, pH and temperature. As observed, the increase of pH and/or temperature accelerates the RB release under sink conditions. The same NaALG-g was used as gelator to fabricate a hNP@NaALG-g hydrogel composite. This formulation forms a viscous solution at room temperature, and it is transformed to a self-assembling hydrogel (sol-gel transition) upon heating at physiological temperature provided that its Tgel was regulated at 30.7 °C, by the NtBAM hydrophobic monomer incorporation in the side chains. It exhibits excellent injectability thanks to its combined thermo- and shear-responsiveness. The hNP@NaALG-g hydrogel composite, encapsulating hNP covered with one bilayer, exhibited pH-responsive sustainable drug delivery. The presented highly tunable drug delivery system (DDS) (hNP and/or composite hydrogel) might be useful for biomedical potential applications.
Collapse
Affiliation(s)
| | | | | | - Zacharoula Iatridi
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece; (N.T.); (S.-F.S.); (N.-P.K.)
| | - Constantinos Tsitsilianis
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece; (N.T.); (S.-F.S.); (N.-P.K.)
| |
Collapse
|
19
|
Mohebbi S, Shariatipour M, Shafie B, Amini MM. Encapsulation of tamoxifen citrate in functionalized mesoporous silica and investigation of its release. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Zeleňáková A, Szűcsová J, Nagy Ľ, Girman V, Zeleňák V, Huntošová V. Magnetic Characterization and Moderate Cytotoxicity of Magnetic Mesoporous Silica Nanocomposite for Drug Delivery of Naproxen. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:901. [PMID: 33915918 PMCID: PMC8066468 DOI: 10.3390/nano11040901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
In this study, we describe the magnetic and structural properties and cytotoxicity of drug delivery composite (DDC) consisting of hexagonally ordered mesoporous silica, iron oxide magnetic nanoparticles (Fe2O3), and the drug naproxen (Napro). The nonsteroidal anti-inflammatory drug (NSAID) naproxen was adsorbed into the pores of MCM-41 silica after the ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) encapsulation. Our results confirm the suppression of the Brownian relaxation process caused by a "gripping effect" since the rotation of the whole particle encapsulated in the porous system of mesoporous silica was disabled. This behavior was observed for the first time, to the best of our knowledge. Therefore, the dominant relaxation mechanism in powder and liquid form is the Néel process when the rotation of the nanoparticle's magnetic moment is responsible for the relaxation. The in vitro cytotoxicity tests were performed using human glioma U87 MG cells, and the moderate manifestation of cell death, although at high concentrations of studied systems, was observed with fluorescent labeling by AnnexinV/FITC. All our results indicate that the as-prepared MCM-41/Napro/Fe2O3 composite has a potential application as a drug nanocarrier for magnetic-targeted drug delivery.
Collapse
Affiliation(s)
- Adriana Zeleňáková
- Institute of Physics, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 040 01 Košice, Slovakia; (J.S.); (Ľ.N.); (V.G.)
| | - Jaroslava Szűcsová
- Institute of Physics, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 040 01 Košice, Slovakia; (J.S.); (Ľ.N.); (V.G.)
| | - Ľuboš Nagy
- Institute of Physics, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 040 01 Košice, Slovakia; (J.S.); (Ľ.N.); (V.G.)
| | - Vladimír Girman
- Institute of Physics, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 040 01 Košice, Slovakia; (J.S.); (Ľ.N.); (V.G.)
| | - Vladimír Zeleňák
- Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia;
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Pavol Jozef Šafárik University in Košice, Jesenna 5, 040 01 Košice, Slovakia;
| |
Collapse
|
21
|
Alotaibi KM, Almethen AA, Beagan AM, Alfhaid LH, Ahamed M, El-Toni AM, Alswieleh AM. Poly(oligo(ethylene glycol) methyl ether methacrylate) Capped pH-Responsive Poly(2-(diethylamino)ethyl methacrylate) Brushes Grafted on Mesoporous Silica Nanoparticles as Nanocarrier. Polymers (Basel) 2021; 13:823. [PMID: 33800258 PMCID: PMC7962535 DOI: 10.3390/polym13050823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
In this paper, a new pH-responsive nanosystem based on mesoporous silica nanoparticles (MSNs) was developed for cancer therapy. Poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) was grafted on their outer surface and acts as a gatekeeper, followed by subsequent modification of the polymer by cysteine (MSN-PDEAEMA-Cys) and poly(oligo(ethylene glycol) methyl ether methacrylate) (MSN-PDEAEMA-Cys-POEGMEMA). The physicochemical properties of these nanocarriers were characterized using scanning and transmission electron microscopies (SEM and TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and dynamic light scattering (DLS). The synthesized nanoparticles were well-dispersed with a diameter of ca. 200 nm. The obtained XPS results confirm the successful modification of MSN-PDEAEMA with Cys and POEGMEMA by increasing the peak intensity of C-O and C=O groups at 286.5 and 288.5 eV, respectively. An anti-cancer drug, doxorubicin (DOX), was encapsulated into the fabricated nanoplatform. The DOX release amount at physiological pH of 7.4 was limited (10%), while an accumulation drug release of ca. 35% was accomplished after 30 h in acidic media. The MTT cell line was used to assess the cytotoxicity of the unloaded and DOX-loaded fabricated nanoplatforms. Upon loading of DOX on these nanomaterials, they showed significant toxicity to human liver cancer cells. These results suggest that the prepared nano-structured materials showed good biocompatibility as well, and they can serve as nanocarriers for the delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Khalid M Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Abeer M Beagan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Latifah H Alfhaid
- Department of Physics, College of Science, University of Ha'il, Ha'il 2240, Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M El-Toni
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Alswieleh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|