1
|
Suhaimi A, Jawad AH, Yusoff MZM, Wilson LD, ALOthman ZA. Design of composite chitosan/algae/zeolite by freeze- or air-drying: A comparative adsorbent analysis for optimized removal of brilliant green dye. Int J Biol Macromol 2025; 288:138650. [PMID: 39674466 DOI: 10.1016/j.ijbiomac.2024.138650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
A bio-composite material was developed that contains chitosan, food-grade algae, and zeolite for the removal of brilliant green (BG) dye. The synthesized bio-composite was dried via two different methods (air-drying; AD, and freeze-drying; FD). The physicochemical characterization of air-dried chitosan-algae-zeolite (Cs-Alg-Zl-AD) and freeze-dried chitosan-algae-zeolite (Cs-Alg-Zl-FD) were investigated by spectroscopy (FTIR, SEM-EDX, and XPS), diffraction (XRD), surface charge via pHpzc, specific surface area (SSA) and elemental analyses. The utilization of Box-Behnken Design (BBD) was intended to optimize the three input variables, which are adsorbent dosage, pH of medium, and contact time. The adsorption optimization process yielded optimal conditions, which were verified through a desirability test and implemented in batch-mode equilibrium experiments. The Cs-Alg-Zl-FD has a higher specific surface area (SSA = 3.29 m2/g) compared to Cs-Alg-Zl-AD (SSA = 1.79 m2/g). The Cs-Alg-Zl-FD shows greater adsorptive removal of BG (98.6 %) over Cs-Alg-Zl-AD (88.6 %), in parallel agreement with differences in the SSA. Moreover, the maximum BG dye adsorption capacities of Cs-Alg-Zl-FD (119.5 mg/g) and Cs-Alg-Zl-AD (108 mg/g) at pH = 8.1 and 25 °C. The Freundlich model fits best with Cs-Alg-Zl-AD while Langmuir and Temkin models account for the Cs-Alg-Zl-FD dye adsorption. The Cs-Alg-Zl-FD shows greater dye adsorption over four adsorption cycles, as compared with the Cs-Alg-Zl-AD.
Collapse
Affiliation(s)
- Aiman Suhaimi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Mohd Zaki Mohd Yusoff
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Zeid A ALOthman
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Abdulhameed AS, Al Omari RH, Abualhaija M, Algburi S. Novel bionanocomposite of grafted chitosan-phthalic anhydride/Co 2O 3 nanoparticles for efficient removal of brilliant green dye: Adsorption optimization using Box-Behnken design. Int J Biol Macromol 2024; 283:137645. [PMID: 39571865 DOI: 10.1016/j.ijbiomac.2024.137645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
A novel bionanocomposite of grafted chitosan-phthalic anhydride/Co2O3 nanoparticles (CHT-PHT/Co2O3) was synthesized and used for the elimination of brilliant green (BG) dye from aquatic systems. The CHT-PHT/Co2O3 material underwent several instrumental characterizations including, XRD, BET, FTIR, FESEM-EDX, and pHpzc examinations. The impact of the key uptake factors, namely A: CHT-PHT/Co2O3 dose, B: starting solution pH, and C: contact duration, on the effectiveness of BG removal, was mathematically optimized using the response surface methodology (RSM). The ideal conditions of the maximum BG elimination (96.05 %) according to the desirability function are as follows: A: CHT-PHT/Co2O3 dose (0.044 g); B: pH ∼ 10; and C: contact duration (34.6 min). The analysis of adsorption kinetics and equilibrium demonstrates a strong fit to the pseudo-first-order model, and the Freundlich isotherm model confirms the occurrence of multilayer adsorption. The highest adsorption capacity of CHT-PHT/Co2O3 for BG was determined to be 425.09 mg/g at a temperature of 25 °C. This study highlights the development of a practical bionanocomposite adsorbent that has a favorable ability to absorb organic dyes from wastewater. The current work offers a sustainable and efficient method of reducing the environmental impact of industrial dye pollutants by utilizing the distinctive properties of CHT-PHT/Co2O3 bionanocomposite.
Collapse
Affiliation(s)
- Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq.
| | - Rima Heider Al Omari
- Medical Lab Sciences Department, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mahmoud Abualhaija
- Water, Energy and Environment Center, The University of Jordan, Amman 11942, Jordan
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk 36015, Iraq
| |
Collapse
|
3
|
Zhu GF, Vidyarthi SK, Zhou XQ, Zhang YL, Lei DW, Li LX, Shi JF, Chen PX, Xie QZ, Xiao HW. Multiphysical field and multiobjective mathematical modeling of grain-oilseed storage: Current status and future trends. Compr Rev Food Sci Food Saf 2024; 23:e13432. [PMID: 39289792 DOI: 10.1111/1541-4337.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024]
Abstract
Storage is an important process involved in the postharvest treatment of grain-oilseed and is necessary for maintaining high quality and ensuring the long-term supply of these commodities in the food industry. Proper storage practices help prevent spoilage, maintain nutritional value, and preserve marketable quality. It is of great interest for storage to investigate flow, heat and mass transfer processes, and quality change for optimizing the operation parameters and ensuring the quality of grain-oilseed. This review discusses the mathematical models developed and applied to describe the physical field, biological field, and quality change during the storage of grain-oilseed. The advantages, drawbacks, and industrial relevance of the existing mathematical models were also critically evaluated, and an organic system was constructed by correlating them. Finally, the future research trends of the mathematical models toward the development of multifield coupling models based on biological fields to control quality were presented to provide a reference for further directions on the application of numerical simulations in this area. Meanwhile, artificial intelligence (AI) can greatly enhance our understanding of the coupling relationships within grain-oilseed storage. AI's strengths in both qualitative and quantitative analysis, as well as its effectiveness, make it an invaluable tool for this purpose.
Collapse
Affiliation(s)
- Guang-Fei Zhu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Sriram K Vidyarthi
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| | - Xin-Qun Zhou
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yong-Li Zhang
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Deng-Wen Lei
- College of Engineering, China Agricultural University, Beijing, China
| | - Lan-Xin Li
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jian-Fang Shi
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Peng-Xiao Chen
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Qi-Zhen Xie
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hong-Wei Xiao
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
4
|
Kanwal A, Rehman R, Imran M, Alakhras F, T Al-Thagafi Z, E Al-Hazemi M, Akram M, Dar A, Ali S. Mechanistic studies of phytoremediative eradication of brilliant green dye from water by acid-treated Acacia concinna lignocellulosic waste. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2034-2047. [PMID: 38963333 DOI: 10.1080/15226514.2024.2372848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A rapidly growing problem for life on earth is contamination of fresh water which is addressed in this article. By taking a glimpse on the causes of contaminations, persistent organic pollutants, especially synthetic dyes got prominent role. Here, out of commonly used techniques, adsorption using plant wastes was chosen for phytofiltration of such dyes. A natural adsorbent from plant source was selected and processed with acid, characterized with FTIR and SEM and then checked the efficacy on cationic dye brilliant green. Phytofiltration of dye was done to check the effectivity of both untreated (OA) and acid treated (OA-AC) form of Acacia concinna biowaste. Results were obtained, evaluated and presented here, giving maximum adsorption capacities (Qm) of AC and OA-AC 95.24 and 909.09 mg.g-1, respectively following Langmuir, pseudo second order kinetics and spontaneous exothermic nature, indicating their suitability to adopt on larger scale wastewater treatment effectively using green technology.
Collapse
Affiliation(s)
- Ayesha Kanwal
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Rabia Rehman
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Fadi Alakhras
- College of Pharmacy, Middle East University, Amman, Jordan
| | - Zahrah T Al-Thagafi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Maha E Al-Hazemi
- Department of Chemistry, College of Science and Art at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Mehwish Akram
- Institute of Geology, University of the Punjab, Lahore, Pakistan
| | - Amara Dar
- Centre for Analytical Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Saadat Ali
- Department of Engineering, University of Engineering and Technology, Pakistan
| |
Collapse
|
5
|
Chauhan H, Ansari K, Alam MS, Tanweer MS, Ahmedi S, Manzoor N, Alam M. Enhancing environmental sustainability: Butea monosperma leaves as a key component in WO 3-based composites for water purification and therapeutic applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47378-47393. [PMID: 39002083 DOI: 10.1007/s11356-024-34336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
In this research, a novel nano-biocomposite material, namely, tungsten trioxide-Butea monosperma leaf powder (WO3@BLP), is an effective and eco-friendly adsorbent used for the mitigation of congo red (CR) and crystal violet (CV) dyes from its aqueous phase. The as-prepared WO3@BLP was characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), DLS analysis, and TGA. Many factors such as solution pH, WO3@BLP dose, temperature, contact time, and initial CR/CV dye concentrations were exploited to monitor the adsorption efficiency of WO3@BLP composites. The biosorption of both CR and CV dyes followed the Langmuir isotherm, with maximum adsorption capacities (qmax) reaching 84.91 mg g-1 for CR at pH 2.3 and 162.75 mg g-1 for CV at pH 8, fitting of kinetics data to the PSO model with closed values of qeexp (mg g-1) and qecal (mg g-1), i.e., 25.69 to 25.38 mg g-1 for CR dye and 29.06 to 29.08 mg g-1 for CV dye. The interaction mechanism behind the adsorption of CR and CV dyes onto the WO3@BLP bionanocomposite includes electrostatic interaction and surface complexation. The synthesized materials were tested for antifungal activity against three different Candida cells, i.e., C. albicans ATCC 90028, C. glabrata ATCC 90030, and C. tropicalis ATCC 750, by using broth dilution method on the minimum inhibiting concentration (MIC). Furthermore, the cytotoxicity of nano-formulated WO3@BLP was studied by in vitro hemolytic assay on a human host. Overall, this research presents a pioneering nano-biocomposite, WO3@BLP, as a sustainable adsorbent for CR and CV dye removal, adhering to Langmuir isotherm and pseudo-second-order kinetics. Its multifaceted approach includes elucidating interaction mechanisms, demonstrating antifungal activity, and assessing cytotoxicity, marking a significant advancement in environmental remediation.
Collapse
Affiliation(s)
- Harshvardhan Chauhan
- Environmental Science Research Lab, Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Khalid Ansari
- Department of Applied Chemistry, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh, UP, 202002, India
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Md Shahid Alam
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Pin, 247667, India
| | - Mohd Saquib Tanweer
- Environmental Science Research Lab, Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Saiema Ahmedi
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Nikhat Manzoor
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Masood Alam
- Environmental Science Research Lab, Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
6
|
Karaaslan Ayhan N. Lanthanum-based magnetic biopolymers for brilliant green removal from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47714-47726. [PMID: 39007971 DOI: 10.1007/s11356-024-34274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
In this study, lanthanum (La)-based magnetic biopolymers were synthesized, and the first adsorption study was conducted on the removal of brilliant green dye from aqueous water with these biopolymers. For the adsorption study, adsorption parameters were investigated and the ideal adsorption conditions determined for the removal of brilliant green dye from aqueous solutions are pH 11, t 60 min, m 10 mg, C0 25 mg/L, T 298 K. It was determined that the adsorption process was compatible with the single-layer Langmuir isotherm, and maximum adsorption capacity obtained according to the Langmuir isotherm was calculated as 256.41 mg/g. The adsorption process was found to be in accordance with the pseudo-second-order, and the adsorption process was explained by intra-particle diffusion. According to studies of adsorption thermodynamics, it has been established that the nature of the adsorption reaction is spontaneous, and this process is endothermic and has increasing randomness. Moreover, the reusability of magnetic lanthanum/alginate (La/Alg) biopolymers was investigated, and it was determined that the biopolymers could be used successfully. In summary, brilliant green dye has been successfully removed with simple, low-cost, environmentally friendly, and easily obtained magnetic La/Alg biopolymers. It can be stated that even low amounts of these biopolymers can be effective in the treatment of highly concentrated dye wastewaters.
Collapse
Affiliation(s)
- Nagihan Karaaslan Ayhan
- Tunceli Vocational School, Department of Chemistry and Chemical Processing Technologies, Munzur University, Tunceli, Turkey.
| |
Collapse
|
7
|
Sorour FH, Aboeleneen NM, Abd El-Monem NM, Ammar YA, Mansour RA. Removal of malachite green from wastewater using date seeds as natural adsorbent; isotherms, kinetics, Thermodynamic, and batch adsorption process design. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1321-1335. [PMID: 38409765 DOI: 10.1080/15226514.2024.2316315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This research explores the feasibility of using date seeds (DS), an agricultural waste, for the adsorption of malachite green (MG) dye from synthesized wastewater. The characterization of the DS before and after adsorption was accomplished by FTIR, SEM, BET, and EDX measurements. Batch adsorption experiments were investigated for MG dye adsorption from aqueous solution onto the DS. The effect of different parameters such as solution pH, adsorbent dose, contact time, temperature, and the initial dye concentration were studied. The optimum pH, adsorbent dose, temperature, and contact time for the dye removal were found to be 5, 0.1 g, 25 °C, and 30 min, respectively. The equilibrium studies for the data with Langmuir, Freundlich, and Temkin isotherms showed that Freundlich isotherm is the best model to describe the adsorption of MG onto the DS particles which has a heterogeneous surface. It was found that the adsorption process follows a pseudo-second-order kinetic model which revealed that the intra-particle diffusion stage is the rate-controlling stage for the process. The thermodynamic parameters ΔG, ΔS, and ΔH suggest the possibility of chemisorption and physisorption simultaneously and indicate the exothermic and spontaneous characters of the adsorption of MG dye on DS with negative values of ΔH and ΔG.
Collapse
Affiliation(s)
- Faisal Hassan Sorour
- Chemical Engineering Department, Canal High Institute for Engineering and Technology, Suez, Egypt
| | - N M Aboeleneen
- Chemical Engineering Department, Higher Institute of Engineering and Technology, New Damietta, Egypt
| | - N M Abd El-Monem
- Chemical Engineering Department, Faculty of Engineering, Cairo University, Cairo, Egypt
| | - Yara A Ammar
- Chemical Engineering Department, Faculty of Engineering, Cairo University, Cairo, Egypt
| | - R A Mansour
- Chemical Engineering Department, Higher Institute of Engineering and Technology, New Damietta, Egypt
| |
Collapse
|
8
|
Khan MKA, Abdulhameed AS, Alshahrani H, Algburi S. Chitosan/functionalized fruit stones as a highly efficient adsorbent biomaterial for adsorption of brilliant green dye: Comprehensive characterization and statistical optimization. Int J Biol Macromol 2024; 263:130465. [PMID: 38423427 DOI: 10.1016/j.ijbiomac.2024.130465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
In this research, a highly efficient adsorbent biomaterial (hereinafter, CTS/PPS-HS) of chitosan/functionalized fruit stones (peach and plum) with H2SO4 was produced for the adsorption of brilliant green (BG) dye from aquatic systems. The developed biomaterial was characterized by several techniques like SEM-EDX, FTIR, XRD, BET, and pHpzc. To systematically optimize the adsorption performance of CTS/PPS-HS, the Box-Behnken design (BBD) based on response surface methodology (RSM) was attained. The factors considered for optimization included A: CTS/PPS-HS dosage (0.02-0.08 g), B: pH (4-10), and C: removal time (10-60 min). The pseudo-first-order and Langmuir isotherm models exhibited excellent agreement with the experimental results of BG adsorption by CTS/PPS-HS. The outstanding adsorption capacity (409.63 mg/g) of CTS/PPS-HS was obtained. The remarkable adsorption of BG onto CTS/PPS-HS can be primarily attributed to electrostatic forces between the acidic sites of CTS/PPS-HS and the BG cations, accompanied by interactions such as π-π, Yoshida H-bonding, n-π, and H-bond interactions. The current data underscores the significant potential inherent in combining biomass with CTS polymer to create an exceptionally effective adsorbent biomaterial tailored for the elimination of cationic dyes.
Collapse
Affiliation(s)
- Mohammad K A Khan
- Department of Mechanical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq.
| | - Hassan Alshahrani
- Department of Mechanical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk 36015, Iraq
| |
Collapse
|
9
|
Rashid M, Rehman R, E Al-Hazemi M, Jahangir MM, T Al-Thagafi Z, I Alsantali R, Akram M. Process optimization of adsorptive phytoremediation of mutagenic brilliant green dye for health risk management using chemically activated Symplocos racemosa agro-waste. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:626-638. [PMID: 37735932 DOI: 10.1080/15226514.2023.2259987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Textile industries use large amounts of water as well as dyes. These dyes containing water are then discharged into the water bodies causing a significant role in water pollution. Brilliant Green dye contributes to many harmful diseases related to the respiratory and gastrointestinal tract. In this study, Symplocos racemosa (SR) agro-waste was chemically treated with acid (SR-HCl) and base (SR-NaOH) and then used for removing Brilliant Green Dye (BGD) on the batch scale. They were characterized by SEM, EDX, FTIR, XRD, TGA and DSC. Optimized conditions were 30 °C temperature, pH 6, adsorbent dose of 0.10 g/25 ml dye solution, shaking speed of 100 revolutions per minute, initial dye concentration of 50 ppm and 35 min time for shaking adsorbent and dye solution. Adsorption data obtained were analyzed using isotherms. The experimental data was found to fit well with the Langmuir model and the maximum adsorption capacity (qmax) of BGD on the SR, SR-HCl, and SR-NaOH was revealed to be 62.90, 65.40, and 71 mg/g respectively. Kinetic data (pseudo-first-order and pseudo-second-order) were evaluated and adsorption tends to follow the pseudo-2nd-order, which indicated the chemisorption mechanism. The results revealed that Symplocos racemosa agro-waste can be considered as the potential biosorbent.
Collapse
Affiliation(s)
- Muhammad Rashid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Rabia Rehman
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Maha E Al-Hazemi
- Department of Chemistry, College of Science and Art at khulis, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Zahrah T Al-Thagafi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mehwish Akram
- Institute of Geology, University of the Punjab, Lahore,- Pakistan
| |
Collapse
|
10
|
Allafchian A, Gharaati AR. Efficient removal of methylene blue from water using magnetic Alyssum homolocarpum seed gum-based matrix. Int J Biol Macromol 2023; 242:125027. [PMID: 37244339 DOI: 10.1016/j.ijbiomac.2023.125027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
In this study, we fabricated magnetic Fe3O4 nanoparticles conjugated with anionic hydroxypropyl starch-graft-acrylic acid (Fe3O4@AHSG) for the efficient removal of methylene blue (MB) dye from aqueous solutions. The synthesized nanoconjugates were characterized using various techniques. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analysis revealed that the particles exhibited homogeneously distributed nanosized spherical shapes with a mean diameter of 41.72 ± 6.81 nm. The EDX analysis confirmed the absence of impurities, with the Fe3O4 particles comprising 64.76 % iron and 35.24 % atomic oxygen. Dynamic light scattering (DLS) measurements showed a monodisperse particle system with a mean hydrodynamic size of 135.4 nm (polydispersity index, PI = 0.530) for the Fe3O4 nanoparticles and 163.6 nm (PI = 0.498) for the Fe3O4@AHSG adsorbent. Vibrating sample magnetometer (VSM) analysis indicated superparamagnetic behavior for both Fe3O4 and Fe3O4@AHSG, with higher saturation magnetization (Ms) observed for Fe3O4. The dye adsorption studies demonstrated that the adsorbed dye capacity increased with increasing initial MB concentration and adsorbent dose. The pH of the dye solution significantly influenced the adsorption, with the highest adsorption observed at basic pH values. The presence of NaCl reduced the adsorption capacity due to increased ionic strength. Thermodynamic analysis indicated the thermodynamically favorable and spontaneous nature of the adsorption process. Kinetic studies revealed that the pseudo-second-order model provided the best fit to the experimental data, suggesting chemisorption as the rate-limiting step. Overall, Fe3O4@AHSG nanoconjugates exhibited excellent adsorption capacity and could be a promising material for effective removal of MB dye from wastewater.
Collapse
Affiliation(s)
- Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Ahmad Reza Gharaati
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
11
|
Chowdhury MF, Kim CM, Jang A. High-efficient and rapid removal of anionic and cationic dyes using a facile synthesized sole adsorbent NiAlFe-layered triple hydroxide (LTH). CHEMOSPHERE 2023; 332:138878. [PMID: 37172625 DOI: 10.1016/j.chemosphere.2023.138878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
It would be extremely momentous to familiarize a low-cost sole adsorbent NiAlFe-layered triple hydroxides (LTHs) having a strong sorption affinity towards both anionic and cationic dyes. Using the urea hydrolysis hydrothermal method LTHs were fabricated and by altering the ratio of participant metal cations the adsorbent was optimized. BET analysis revealed that the optimized LTHs possess an elevated surface area (160.04 m2/g) while TEM and FESEM analysis portrayed the stacked sheets-like 2D morphology. LTHs were employed for the amputation of anionic congo red (CR) and cationic brilliant green (BG) dye. The adsorption study showed that within 20 and 60 min, respectively, maximum adsorption capacities were achieved at 57.47 mg/g and 192.30 mg/g for CR and BG dye. Adsorption isotherm, kinetics, and thermodynamics study revealed that both chemisorptions with physisorptions were the assertive factor for the dye encapsulation. This enhanced adsorption performance of the optimized LTH for the anionic dye is attributed to its inherent anions exchange properties and new bond formation with the adsorbent skeleton. Whereas for the cationic dye, it was because of the formation of strong hydrogen bonds, and electrostatic interaction. Morphological manipulation of LTHs, formulates the optimized adsorbent LTH111, provokes the adsorbent for this elevated adsorption performance. Overall, this study revealed that LTHs have a high potential for the effectual remediation of dyes from wastewater as a sole adsorbent at a low cost.
Collapse
Affiliation(s)
- Mir Ferdous Chowdhury
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Chang-Min Kim
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
12
|
Iqbal Z, Tanweer MS, Alam M. Reduced Graphene Oxide-Modified Spinel Cobalt Ferrite Nanocomposite: Synthesis, Characterization, and Its Superior Adsorption Performance for Dyes and Heavy Metals. ACS OMEGA 2023; 8:6376-6390. [PMID: 36844590 PMCID: PMC9948210 DOI: 10.1021/acsomega.2c06636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
This work is dedicated to the synthesis, characterization, and adsorption performance of reduced graphene oxide-modified spinel cobalt ferrite nanoparticles. The as-synthesized reduced graphene oxide cobalt ferrite (RGCF) nanocomposite has been characterized using FTIR spectroscopy, FESEM coupled with EDXS, XRD, HRTEM, zeta potential, and vibrating sample magnetometer (VSM) measurements. FESEM proves the particle size in the range of 10 nm. FESEM, EDX, TEM, FTIR, and XPS analyses provide the proof of successful incorporation of rGO sheets with cobalt ferrite nanoparticles. The crystallinity and spinel phase of cobalt ferrite nanoparticles have been shown by XRD results. The saturation magnetization (M s) was measured as 23.62 emu/g, proving the superparamagnetic behavior of RGCF. The adsorption abilities of the synthesized nanocomposite have been tested using cationic crystal violet (CV) and brilliant green (BG) and anionic methyl orange (MO) and Congo red (CR) dyes. The adsorption trend for MO, CR, BG, and As(V) follows RGCF > rGO > CF at neutral pH. Adsorption studies have been accomplished by optimizing parameters like pH (2-8), adsorbent dose (1-3 mg/25 mL), initial concentration (10-200 mg/L), and contact time at constant room temperature (RT). To further investigate the sorption behavior, isotherm, kinetics, and thermodynamic studies have been conducted. Langmuir isotherm and pseudo-second-order kinetic models suited better for the adsorption of dyes and heavy metals. The maximum adsorption capacities (q m) obtained have been found as 1666.7, 1000, 416.6, and 222.2 mg/g for MO, CR, BG, and As, respectively, with operational parameters such as T = 298.15 K; RGCF dose: 1 mg for MO and 1.5 mg each for CR, BG, and As. Thus, the RGCF nanocomposite was found to be an excellent adsorbent for the removal of dyes and heavy metals.
Collapse
|
13
|
Alkhabbas M, Al-Ma’abreh AM, Edris G, Saleh T, Alhmood H. Adsorption of Anionic and Cationic Dyes on Activated Carbon Prepared from Oak Cupules: Kinetics and Thermodynamics Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3280. [PMID: 36833975 PMCID: PMC9965680 DOI: 10.3390/ijerph20043280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In this study, activated carbon produced from oak cupules (ACOC) was prepared using chemical activation with H3PO4. ACOC is subsequently used as an adsorbent to facilitate the removal of an acidic dye, naphthol blue black (NBB), and basic dye crystal violet (CV) from aqueous solutions. The ACOC was characterized by FTIR spectroscopy, XRD, and SEM. The adsorption isotherm data fits well with the Langmuir model for NBB and CV. The kinetic models of adsorption of NBB and CV by ACOC were pseudo-first order and pseudo-second order, respectively. Thermodynamic parameters were evaluated and indicated that the adsorption of both dyes onto ACOC was endothermic and spontaneous. The adsorption capacity of ACOC reached 208 mg g-1 for NBB and 658 mg g-1 for CV. ACOC was shown to be a promising adsorbent for the removal of NBB and CV from aqueous solutions.
Collapse
Affiliation(s)
- Manal Alkhabbas
- Department of Chemistry, Faculty of Science, Isra University, Amman 11622, Jordan
| | - Alaa M. Al-Ma’abreh
- Department of Chemistry, Faculty of Science, Isra University, Amman 11622, Jordan
| | | | | | | |
Collapse
|
14
|
Althomali RH, Alamry KA, Hussein MA, Guedes RM. An investigation on the adsorption and removal performance of a carboxymethylcellulose-based 4-aminophenazone@MWCNT nanocomposite against crystal violet and brilliant green dyes. RSC Adv 2023; 13:4303-4313. [PMID: 36760307 PMCID: PMC9891083 DOI: 10.1039/d2ra07321h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
The multistep chemical modification of carboxymethylcellulose (CMC) in the presence of 4-aminophenazone (A-PH) and multiwall carbon nanotubes (MWCNTs) has been successfully conducted. The environmental performance of this material has been thoroughly investigated. Crystal violet (CV) and brilliant green (BG) were eliminated by utilising a new hybrid nanocomposite material (A-PH-CMC/MWCNTs) from a simulated textile wastewater solution. Using SEM, EDX, XRD and FTIR spectroscopy methods, the detailed characterisation of A-PH-CMC/MWCNT nanocomposites was investigated. The results indicated that the adsorption capacity was dependent on six factors (e.g., contact duration, starting concentration, adsorbent mass, the effect of the solution pH, temperature and the effect of KNO3). In addition, thermodynamic and regeneration studies have been reported. According to the theories of pseudo-second-order kinetics, the removal process involves chemical adsorption. The experimental results were best suited by the Langmuir model, in which maximum adsorption capacities of 20.83 and 22.42 mg g-1 were predicted for the BG and CV dyes, respectively. The research is a preliminary case study demonstrating the excellent potential of A-PH-CMC/MWCNT nanocomposites as a material for CV and BG dye removal.
Collapse
Affiliation(s)
- Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - R M Guedes
- LAETA-INEGI, DEMec, Mechanical Engineering Department, Faculty of Engineering of University of Porto (FEUP) Rua Dr Roberto Frias s/n 4200-465 Porto Portugal
| |
Collapse
|
15
|
Gul S, Gul A, Gul H, Khattak R, Ismail M, Khan SU, Khan MS, Aouissi HA, Krauklis A. Removal of Brilliant Green Dye from Water Using Ficus benghalensis Tree Leaves as an Efficient Biosorbent. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020521. [PMID: 36676258 PMCID: PMC9866320 DOI: 10.3390/ma16020521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 05/29/2023]
Abstract
The presence of dyes in water stream is a major environmental problem that affects aquatic and human life negatively. Therefore, it is essential to remove dye from wastewater before its discharge into the water bodies. In this study, Banyan (Ficus benghalensis, F. benghalensis) tree leaves, a low-cost biosorbent, were used to remove brilliant green (BG), a cationic dye, from an aqueous solution. Batch model experiments were carried out by varying operational parameters, such as initial concentration of dye solution, contact time, adsorbent dose, and pH of the solution, to obtain optimum conditions for removing BG dye. Under optimum conditions, maximum percent removal of 97.3% and adsorption capacity (Qe) value of 19.5 mg/g were achieved (at pH 8, adsorbent dose 0.05 g, dye concentration 50 ppm, and 60 min contact time). The Langmuir and Freundlich adsorption isotherms were applied to the experimental data. The linear fit value, R2 of Freundlich adsorption isotherm, was 0.93, indicating its best fit to our experimental data. A kinetic study was also carried out by implementing the pseudo-first-order and pseudo-second-order kinetic models. The adsorption of BG on the selected biosorbent follows pseudo-second-order kinetics (R2 = 0.99), indicating that transfer of internal and external mass co-occurs. This study surfaces the excellent adsorption capacity of Banyan tree leaves to remove cationic BG dye from aqueous solutions, including tap water, river water, and filtered river water. Therefore, the selected biosorbent is a cost-effective and easily accessible approach for removing toxic dyes from industrial effluents and wastewater.
Collapse
Affiliation(s)
- Salma Gul
- Department of Chemistry, Women University Swabi, Swabi 22101, Pakistan
| | - Azra Gul
- Department of Chemistry, Women University Swabi, Swabi 22101, Pakistan
| | - Hajera Gul
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Rozina Khattak
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Muhammad Ismail
- Department of Chemistry, Women University Swabi, Swabi 22101, Pakistan
| | - Sana Ullah Khan
- Department of Chemistry, Women University Swabi, Swabi 22101, Pakistan
| | | | - Hani Amir Aouissi
- Scientific and Technical Research Center on Arid Regions (CRSTRA), Biskra 07000, Algeria
- Laboratoire de Recherche et d’Etude en Aménagement et Urbanisme (LREAU), Université des Sciences et de la Technologie (USTHB), Algiers 16000, Algeria
- Environmental Research Center (CRE), Badji-Mokhtar Annaba University, Annaba 23000, Algeria
| | - Andrejs Krauklis
- Institute for Mechanics of Materials, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| |
Collapse
|
16
|
Bir R, Tanweer MS, Singh M, Alam M. Multifunctional Ternary NLP/ZnO@l-cysteine- grafted-PANI Bionanocomposites for the Selective Removal of Anionic and Cationic Dyes from Synthetic and Real Water Samples. ACS OMEGA 2022; 7:44836-44850. [PMID: 36530240 PMCID: PMC9753193 DOI: 10.1021/acsomega.2c04936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The development of competent adsorbents based on agro-waste materials with multifunctional groups and porosity for the removal of toxic dyes from aqueous solutions is still a challenge. Herein, a bionanocomposite made up of neem leaf powder (NLP), zinc oxide (ZnO), and amino acid (l-cysteine)-functionalized polyaniline (PANI), namely, NLP/ZnO@l-cysteine-grafted-PANI (NZC-g-PANI), has been prepared by an in situ polymerization method. The as-prepared bionanocomposite was tested for the adsorptive removal of three anionic dyes, namely, methyl orange (MO), amido black 10B (AB 10B), and eriochrome black T (EBT), as well as three cationic dyes, namely, brilliant green (BG), crystal violet (CV), and methylene blue (MB), from synthetic aqueous medium. The morphological and structural characteristics of the NZC-g-PANI nanocomposite were examined with the help of HR field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopy. FTIR and Raman studies show that the formulated NZC-g-PANI have an ample number of functional moieties such as carboxyl (-COOH), hydroxyl (-OH), amines (-NH2), and imines (-N=), thus demonstrating outstanding dye removal capacity. C-S linkage helps to attach l-cysteine with polyaniline. Moreover, the predominance of chemisorption via ionic/pi-pi interaction and hydrogen bonding between the NZC-g-PANI nanocomposite and dyes (BG and MO) has been realized by FTIR and fitting of kinetics data to the PSO model. For both BG and MO dyes, the biosorption isotherm was precisely accounted for by the Langmuir isotherm with q max values of up to 218.27 mg g-1 for BG at pH 6 and 558.34 mg g-1 for MO at pH 1. Additionally, thermodynamic studies revealed the endothermic and spontaneous nature of adsorption. NZC-g-PANI showed six successive regeneration cycles for cationic (MO: from 96.3 to 90.4%) and anionic (BG: from 94.7 to 88.7%) dyes. Also, batch adsorption operations were validated to demonstrate dye biosorption from real wastewater, such as tap water, river water, and laundry wastewater. Overall, this study indicates that the prepared NZC-g-PANI biosorbent could be used as an effective adsorbent for the removal of various types of anionic as well as cationic dyes from different aqueous solutions.
Collapse
Affiliation(s)
- Ritu Bir
- Department
of Chemistry, Galgotias University, Gautam Buddh Nagar, Noida203201, Uttar Pradesh, India
| | - Mohd Saquib Tanweer
- Environmental
Science Research Lab, Department of Applied Sciences & Humanities,
Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi110025, India
| | - Meenakshi Singh
- Department
of Chemistry, Galgotias University, Gautam Buddh Nagar, Noida203201, Uttar Pradesh, India
| | - Masood Alam
- Environmental
Science Research Lab, Department of Applied Sciences & Humanities,
Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi110025, India
| |
Collapse
|
17
|
Márquez AA, Coreño O, Nava JL. A hybrid process combining electrocoagulation and active chlorine-based photoelectro-Fenton-like methods during the removal of Acid Blue 29 dye. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Adsorptive Detoxification of Congo Red and Brilliant Green Dyes Using Chemically Processed Brassica Oleracea Biowaste from Waste Water. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/9995335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water pollution being a potential risk to mankind is treated in several ways which includes chemical treatments. Among them, adsorption took a prominent position for the removal of many hazardous dyes from waste water. Here in this study, an environment-friendly, inexpensive, and broadly available leaves of Brassica oleracea were utilized for adsorption of two carcinogenic dyes, i.e., Congo red and brilliant green. The adsorbent Brassica oleracea leaves were collected, dried, and characterized by FTIR and SEM and then utilized in batch manner for dye removal. Isothermal modeling was carried out on data obtained after experiment which show the best fitting of Langmuir with
42.553 and 103.093 mg.g-1 for Congo red (CR) and brilliant green (BG), respectively. Consequently, a homogenous, monolayer mode of adsorption was followed. Kinetic modeling supported pseudosecond order and Elovich model in most suitable manner. It was also found that a spontaneous, exothermic process provided by the values of thermodynamic parameters (
,
, and
) was calculated.
Collapse
|
19
|
Awasthi A, Datta D. Treatment of Reactive dyes using Amberlite Resin Functionalized with Amine based Solvent ‐ Batch and Continuous Studies. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anjali Awasthi
- Department of Chemical Engineering Malaviya National Institute of Technology Jaipur 302017 India
| | - Dipaloy Datta
- Department of Chemical Engineering Malaviya National Institute of Technology Jaipur 302017 India
| |
Collapse
|
20
|
Miyah Y, Benjelloun M, Salim R, Nahali L, Mejbar F, Lahrichi A, Iaich S, Zerrouq F. Experimental and DFT theoretical study for understanding the adsorption mechanism of toxic dye onto innovative material Fb-HAp based on fishbone powder. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Popoola SA, Al Dmour H, Rakass S, Fatimah I, Liu Y, Mohmoud A, Kooli F. Enhancement Properties of Zr Modified Porous Clay Heterostructures for Adsorption of Basic-Blue 41 Dye: Equilibrium, Regeneration, and Single Batch Design Adsorber. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5567. [PMID: 36013704 PMCID: PMC9413743 DOI: 10.3390/ma15165567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Zirconium porous clay heterostructures (Zr-PCH) were synthesized using intercalated clay minerals by zirconium species with different contents of zirconium. The presence of zirconium and silica species was confirmed by X-ray diffraction, X-ray fluorescence, and magic-angle spinning nuclear magnetic resonance. The insertion of zirconium improved the thermal stability, the specific surface area with a maximum of 950 m2/g, and the acidity concentration of 0.993 mol of protons per g of solid. These materials were used to adsorb the basic blue-41 from aqueous solution. The adsorption efficiency was examined at different conditions, with a maximum adsorbed amount of 346 mg/g as estimated from Langmuir model. This value was dependent on zirconium content in the PCHs. The adsorption process was found to be favorable and spontaneous. The efficiency of the spent materials was maintained after five reuse cycles with a decrease by 15% of the original value for a particular Zr-PCH material with a Zr content of 6.82%. Single stage batch adsorber was suggested using the mass balance equation and Langmuir isotherm model. The amount of PCH materials required depended on the target percentage of adsorption at specific volume and initial concentration of the basic-blue-41 dye solution.
Collapse
Affiliation(s)
- Saheed A. Popoola
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Hmoud Al Dmour
- Department of Physics, Faculty of Science, Mu’tah University, Mu’tah 6170, Jordan
| | - Souad Rakass
- Laboratory of Applied Organic Chemistry (LCOA), Chemistry Department, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez 30000, Morocco
| | - Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta 55584, Indonesia
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Ahmed Mohmoud
- Petroleum Technology, Operated Offshore Oil Field Development, Qatar Energy, Doha 3212, Qatar
| | - Fethi Kooli
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| |
Collapse
|
22
|
Pai S, Kini MS, Mythili R, Selvaraj R. Adsorptive removal of AB113 dye using green synthesized hydroxyapatite/magnetite nanocomposite. ENVIRONMENTAL RESEARCH 2022; 210:112951. [PMID: 35183516 DOI: 10.1016/j.envres.2022.112951] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
In the present study, magnetite nanoparticles (Fe3O4NPs) synthesized using Thunbergia grandiflora leaf extract as a reducing agent were doped with hydroxyapatite sourced from waste bivalve clamshells to produce hydroxyapatite/magnetite nanocomposite (HA/Fe3O4NPs). The magnetic nanocomposite was examined using several characterization techniques. The results of XRD and FESEM, analysis showed HA/Fe3O4NPs have a crystalline phase and irregular spherical particles respectively. EDAX and FTIR confirmed the presence of specific elements and functional groups of both iron oxide and hydroxyapatite nanoparticles respectively. The surface area and superparamagnetic property of the composite were determined by BET and VSM analysis. Central Composite Design (CCD) was used to optimize the adsorption process to remove of AB113 from aqueous solutions. The optimal adsorption efficiency was found out to be 94.38% at pH 8, AB113 dye concentration 54 ppm, HA/Fe3O4NPs dose 84 mg, and an agitation speed of 174 rpm. The monolayer Langmuir isotherm was the best model with a sorption capacity of 109.98 mg/g which was higher than the reported values. The pseudo-second-order kinetic model displayed a good fit with an R2 = 0.99. Thermodynamic parameters were assessed which confirmed the exothermic adsorption process. Therefore, the synthesized magnetic nanocomposite can be employed as a novel nanoadsorbent for the removal of anionic dyes from waste effluents.
Collapse
Affiliation(s)
- Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - M Srinivas Kini
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Raja Mythili
- PG & Research Department of Biotechnology, Mahendra Arts & Science College, Kalippatti, 637501, Namakkal, Tamil Nadu, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
23
|
Comparative Evaluation of the Adsorption Performance of Citric Acid-Treated Peels of Trapa natans and Citrullus lanatus for Cationic Dyes Degradation from Water. J CHEM-NY 2022. [DOI: 10.1155/2022/1109376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Various chemicals were explored in chemical combinations with two selected agrowastes in order to optimize, enhance, and improve their biosorption potential for the optimal and effective eradication of noxious, carcinogenic, and malignant cationic and basic dyes from wastewater. In this project, environmentally safe, economic, inexpensive, and widely available peels of Trapa natans (TP) and Citrullus lanatus (CP) were collected, dried, and pretreated with citric acid, revealing promising results. FT-IR and SEM characterizations of chemically changed biosorbents (C-TP and C-CP) have evidenced the presence of more secondary adsorption sites on their surfaces. These acid-modified biosorbents were employed to eliminate the hazardous and toxic basic dyes such as Rhodamine B (RAD) and Brilliant Green Dye (BLG) in batch mode processing. The Langmuir model was best fitted to equilibrium experimental data as compared to Freundlich and Temkin isothermal mathematical models with Qmax of 15.63 and 27.55 mg/g for RAD using C-TP and C-CP, respectively, whereas, for BLG on C-TP and C-CP, it was 128 and 189 mg/g, respectively. Therefore, the mechanism is related to chelation and ion exchange modes between adsorbate molecules and adsorbent surfaces, leading to homogeneous and monolayer adsorption and following pseudo-2nd-order kinetics in the best way. Thermodynamic parameters such as ΔG0, ΔS0, ΔH0, and ΔE0 are determined statistically for the adsorption performance of both novel chemically mutant biosorbents, which reflect that biosorption mechanisms are exothermic as well as spontaneous.
Collapse
|
24
|
Atef R, Aboeleneen NM, AbdelMonem NM. Preparation and characterization of low-cost nano-particle material using pomegranate peels for brilliant green removal. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:36-46. [PMID: 35369820 DOI: 10.1080/15226514.2022.2056133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A low-cost nano-particle material was successfully prepared using waste pomegranate peels. Batch adsorption experiments were carried out to investigate the effect of different operating conditions on the removal of brilliant green (BG) dye from an aqueous solution. SEM images of pomegranate peels nano-particles (PPNP) declared roughness of the surfaces and TEM images indicated a spheroid shape with an average particle size of 37 nm. The specific surface area of the PPNP was 354.46 m2/g and the particle size had a mean diameter of 613.4 nm. The active nano-particle suspension showed a net negative charge (-29 mV) at natural pH. The XRD pattern of PPNP displayed an average crystallite size of 13.50 nm and EDS analysis shows that the PPNP consists of 83% carbon. The experimental work showed that the removal of BG had optimum removal efficiency at 20 min, 0.3 g adsorbent mass, 25 °C, and pH 8. The kinetic data can be described well with the pseudo-second-order model and the isotherm data was found to fit the Dubinin model. The thermodynamic study proved that BG adsorption on PPNP was physisorption (ΔG = -5.949 kJ/mol) and spontaneous at low temperature (ΔH = -17.193 kJ/mol, ΔS = -0.0382 kJ/mol. k)This study used an agriculture waste (pomegranate peels) to prepare an environmentally friendly and low-cost adsorbent within the nano-scale by thermal activation. The nano-particles prepared were shown to be a promising adsorbent, demonstrating high surface area and well-developed porosity. The prepared adsorbent will have a great impact on wastewater treatment technology and possible applications at a large scale.
Collapse
Affiliation(s)
- Riham Atef
- Chemical Engineering Department, The High Institute of Engineering and Technology, New Damietta, Damietta Egypt
| | - N M Aboeleneen
- Faculty of Engineering, Chemical Engineering Department, Cairo University, Cairo, Egypt
| | - Nabil M AbdelMonem
- Faculty of Engineering, Chemical Engineering Department, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
A simple method for removal of toxic dyes such as brilliant green and acid red from the aquatic environment using halloysite nanoclay. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Márquez AA, Coreño O, Nava JL. Removal of brilliant green tannery dye by electrocoagulation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Synthesis and shaping of Zr-UiO-66 MOF applicable as efficient phosalone adsorbent in real samples. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Chang BP, Gupta A, Mekonnen TH. Flame synthesis of carbon nanoparticles from corn oil as a highly effective cationic dye adsorbent. CHEMOSPHERE 2021; 282:131062. [PMID: 34102492 DOI: 10.1016/j.chemosphere.2021.131062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 05/27/2023]
Abstract
Carbon nanoparticles (CNP) were synthesized through flame deposition method from a sustainable corn oil precursor. The morphology, particle size, surface chemistry, thermal stability, and zeta potential of the CNP were characterized. The batch adsorption of a cationic dye, methylene blue (MB), by the CNP at various concentrations, pH, and temperatures was evaluated to investigate the CNP's efficacy in industrial wastewater treatment applications. Results revealed the excellent adsorption of MB onto the CNP. The experimental data were then fitted into isotherm models, kinetic models, and thermodynamic models, and the model parameters, constants, Gibb free energy, enthalpy, and entropy were calculated and discussed. Hydrogen bonding and strong electrostatic interaction were the main adsorption mechanism for MB adsorption by the CNP. The CNP exhibited a maximum adsorption capacity of 138.89 mg/g, indicating superior adsorption of MB dye without the need for any further purification and activation steps. The adsorption efficiency did not compromise as the solution temperature increased up to 60 °C, and it can further be enhanced under alkaline conditions. To simulate the practical and industrial use of the developed CNP in textile effluent treatment, successful experiments were conducted in continuous flow adsorption by allowing concentrated MB solution to flow through a designed fixed bed purification system with a CNP filter bed.
Collapse
Affiliation(s)
- Boon Peng Chang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Arvind Gupta
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada; Institute of Polymer Research, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
29
|
Danish M, Parthasarthy V, Al Mesfer MK. CO 2 Capture by Low-Cost Date Pits-Based Activated Carbon and Silica Gel. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3885. [PMID: 34300802 PMCID: PMC8303792 DOI: 10.3390/ma14143885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
The rising levels of CO2 in the atmosphere are causing escalating average global temperatures. The capture of CO2 by adsorption has been carried out using silica gel type III and prepared activated carbon. The date pits-based activated carbon was synthesized using a tubular furnace by physical activation. The temperature of the sample was increased at 10 °C/min and the biomass was carbonized under N2 flow maintained continuously for 2 h at 600 °C. The activation was performed with the CO2 flow maintained constantly for 2 h at 600 °C. The temperature, feed flow and adsorbate volume were the parameters considered for CO2 adsorption. The success of CO2 capture was analyzed by CO2 uptake, efficiency based on column capacity, utilization factors and the mass transfer zone. The massively steep profiles of the breakthrough response of the AC demonstrate the satisfactory exploitation of CO2 uptake under the conditions of the breakthrough. The SG contributed to a maximal CO2 uptake of 8.61 mg/g at 298 K and Co = 5% with F = 5 lpm. The enhanced CO2 uptake of 73.1 mg/g was achieved with a column efficiency of 0.94 for the activated carbon produced from date pits at 298 K. The AC demonstrated an improved performance with a decreased mass transfer zone of 1.20 cm with an enhanced utilization factor f = 0.97 at 298 K. This finding suggests that a date pits-based activated carbon is suitable for CO2 separation by adsorption from the feed mixture.
Collapse
Affiliation(s)
- Mohd Danish
- Chemical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia;
- Chemical Engineering Department, University of Petroleum and Energy Studies, Dehradun 248001, India;
| | - Vijay Parthasarthy
- Chemical Engineering Department, University of Petroleum and Energy Studies, Dehradun 248001, India;
| | - Mohammed K. Al Mesfer
- Chemical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia;
| |
Collapse
|
30
|
Seto C, Chang BP, Tzoganakis C, Mekonnen TH. Lignin derived nano-biocarbon and its deposition on polyurethane foam for wastewater dye adsorption. Int J Biol Macromol 2021; 185:629-643. [PMID: 34216664 DOI: 10.1016/j.ijbiomac.2021.06.185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
Historically, lignin has been produced as a waste by-product in industrial processes. In this study, lignosulfonate nanoparticles were fabricated and freeze-dried for use as a precursor material for carbonization. The use of the carbonized lignins for the adsorption of textile effluent as a value-added application is demonstrated. Characterization of the as received lignin (LN) and the developed nano-based freeze-dried lignin (NFLN) were performed prior to and after carbonization at 600, 750, 900 and 1050 °C. Using probe sonication, lignosulfonates were broken down into nanoparticles with lower weight-average molecular weight as verified by dynamic and static light scattering techniques. The difference between the LN and the NFLN was determined to be primarily morphological as the sonication and freeze-drying process imparted a platelet-like shape to the NFLN biocarbons and an increased surface area, while the remaining functionality was similar. The adsorption behaviour of methylene blue (MB), a synthetic cationic dye, was investigated using adsorption isotherm and kinetic models, with the NFLN exhibiting a maximum adsorption capacity of 109.77 mg/g. Overall, electrostatic attraction and hydrogen bonding contribute significantly to the MB adsorption. Further preliminary work was also performed demonstrating the coating of polyurethane foam for the adsorption of MB. These renewable biocarbons show promising properties for use as additive in adsorbent, coating, pigment or as a filler in polymer composite applications.
Collapse
Affiliation(s)
- Curtis Seto
- Department of Chemical Engineering, Institute of Polymer Research, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Boon Peng Chang
- Department of Chemical Engineering, Institute of Polymer Research, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Costas Tzoganakis
- Department of Chemical Engineering, Institute of Polymer Research, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| |
Collapse
|
31
|
Effect of Pyrolysis Temperature during Valorization of Date Stones on Physiochemical Properties of Activated Carbon and Its Catalytic Activity for the Oxidation of Cycloalkenes. Catalysts 2021. [DOI: 10.3390/catal11060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study presents findings on the chemical synthesis of activated carbon from Saudi dates and its structural, chemical, and catalytic properties. Dates are among the top biowaste materials in the Kingdom of Saudi Arabia, and efforts are underway to utilize this resource. A chemical pyrolysis method was used to synthesize activated carbon from date stones. Synthesized activated carbon was calcined at different temperatures of 400, 500, 600, and 700 °C, and the impact of calcination temperature on the properties of activated carbon was investigated. For this purpose, contemporary characterization tools, namely, XRD, Raman spectroscopy, FTIR, SEM, TEM, TGA, DSC, and XPS, were employed. Results are discussed and compared with associated studies. Finally, the catalytic activity of gold-deposited activated carbon for the oxidation of cycloalkenes was evaluated, and it was found that the calcination temperature has a linear positive relationship with the catalytic activity.
Collapse
|
32
|
Al Dmour H, Kooli F, Mohmoud A, Liu Y, Popoola SA. Al and Zr Porous Clay Heterostructures as Removal Agents of Basic Blue-41 Dye from an Artificially Polluted Solution: Regeneration Properties and Batch Design. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2528. [PMID: 34068006 PMCID: PMC8152262 DOI: 10.3390/ma14102528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
The removal of Basic Blue-41 dye molecules was carried out by using two doped porous clay heterostructures by aluminum (Al) or zirconium (Zr) species. The proposed method of synthesis showed its efficiency, starting from Al or Zr intercalated hydrolyzed species, prior to its reaction with dodecylamine (C12 amine) and tetraethyl orthosilicate (TEOS) as a silica source. The intercalated precursors and their porous clay heterostructures (PCH) derivatives were characterized by different techniques. Solid NMR technique proved the presence of Al species into the intercalated silica between the clay sheets, and in addition to Si in different environments within the PCH materials. The Zr-PCH material exhibited a higher surface area and pore volume compared to its Al-PCH counterpart, with a mesoporous character for both materials. A maximum removed amount of 279 and 332 mg/g was achieved and deduced from the Langmuir equation. The regeneration tests revealed that the removal efficiency of Zr-PCH was retained after five regeneration runs, with a loss of 15% of the original value; meanwhile, the Al-PCH lost 45% of its efficiency after only three cycles. A single-stage batch design was proposed based on the Langmuir isotherm parameters. The increase of the removal capacity of Zr-PCH led to the reduction of the required amounts for the target removal of BB-41 dye compared to Al-PCH.
Collapse
Affiliation(s)
- Hmoud Al Dmour
- Department of Physics, Faculty of Science, Mu’tah University, Mu’tah 61710, Jordan;
| | - Fethi Kooli
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah 42351, Saudi Arabia;
| | - Ahmed Mohmoud
- Petroleum Technology, Operated Offshore Oil Field Development, Qatar Petroleum, Doha 3212, Qatar;
| | - Yan Liu
- Institute of Chemicals and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore;
| | - Saheed A. Popoola
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah 42351, Saudi Arabia;
| |
Collapse
|