1
|
Rial-Rodríguez E, Williams JD, Cantillo D, Fuchß T, Sommer A, Eggenweiler HM, Kappe CO, Laudadio G. An Automated Electrochemical Flow Platform to Accelerate Library Synthesis and Reaction Optimization. Angew Chem Int Ed Engl 2024; 63:e202412045. [PMID: 39317660 PMCID: PMC11627123 DOI: 10.1002/anie.202412045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Automated batch and flow setups are well-established for high throughput experimentation in both thermal chemistry and photochemistry. However, the development of automated electrochemical platforms is hindered by cell miniaturization challenges in batch and difficulties in designing effective single-pass flow systems. In order to address these issues, we have designed and implemented a new, slug-based automated electrochemical flow platform. This platform was successfully demonstrated for electrochemical C-N cross-couplings of E3 ligase binders with diverse amines (44 examples), which were subsequently transferred to a continuous-flow mode for confirmation and isolation, showing its applicability for medicinal chemistry purposes. To further validate the versatility of the platform, Design of Experiments (DoE) optimization was performed for an unsuccessful library target. This optimization process, fully automated by the platform, resulted in a remarkable 6-fold increase in reaction yield.
Collapse
Affiliation(s)
- Eduardo Rial-Rodríguez
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Jason D Williams
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - David Cantillo
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas Fuchß
- Medicinal Chemistry and Drug Design, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Alena Sommer
- Medicinal Chemistry and Drug Design, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Hans-Michael Eggenweiler
- Medicinal Chemistry and Drug Design, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - C Oliver Kappe
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Gabriele Laudadio
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
2
|
Chai Z. Heterogeneous Photocatalytic Strategies for C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2024; 63:e202316444. [PMID: 38225893 DOI: 10.1002/anie.202316444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Activation of ubiquitous C(sp3 )-H bonds is extremely attractive but remains a great challenge. Heterogeneous photocatalysis offers a promising and sustainable approach for C(sp3 )-H activation and has been fast developing in the past decade. This Minireview focuses on mechanism and strategies for heterogeneous photocatalytic C(sp3 )-H activation. After introducing mechanistic insights, heterogeneous photocatalytic strategies for C(sp3 )-H activation including precise design of active sites, regulation of reactive radical species, improving charge separation and reactor innovations are discussed. In addition, recent advances in C(sp3 )-H activation of hydrocarbons, alcohols, ethers, amines and amides by heterogeneous photocatalysis are summarized. Lastly, challenges and opportunities are outlined to encourage more efforts for the development of this exciting and promising field.
Collapse
Affiliation(s)
- Zhigang Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Hammer S, Nanto F, Canu P, Ötvös SB, Kappe CO. Application of an Oscillatory Plug Flow Reactor to Enable Scalable and Fast Reactions in Water Using a Biomass-Based Polymeric Additive. CHEMSUSCHEM 2024; 17:e202301149. [PMID: 37737522 DOI: 10.1002/cssc.202301149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
The utilization of water as a sustainable reaction medium has important advantages over traditional organic solvents. Hydroxypropyl methylcellulose has emerged as a biomass-based polymeric additive that enables organic reactions in water through hydrophobic effects. However, such conditions imply slurries as reaction mixtures, where the efficacy of mass transfer and mixing decreases with increasing vessel size. In order to circumvent this limitation and establish an effectively scalable platform for performing hydroxypropyl methylcellulose-mediated aqueous transformations, we utilized oscillatory plug flow reactors that feature a smart dimensioning design principle across different scales. Using nucleophilic aromatic substitutions as valuable model reactions, rapid parameter optimization was performed first in a small-scale instrument having an internal channel volume of 5 mL. The optimal conditions were then directly transferred to a 15 mL reactor, achieving a three-fold scale-up without re-optimizing any reaction parameters. By precisely fine-tuning the oscillation parameters, the system achieved optimal homogeneous suspension of solids, preventing settling of particles and clogging of process channels. Ultimately, this resulted in a robust and scalable platform for performing multiphasic reactions under aqueous conditions.
Collapse
Affiliation(s)
- Susanne Hammer
- Institute of Chemistry, University of Graz NAWI Graz, Heinrichstrasse 28, A-8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010, Graz, Austria
| | - Filippo Nanto
- Institute of Chemistry, University of Graz NAWI Graz, Heinrichstrasse 28, A-8010, Graz, Austria
- Industrial Engineering Department, University of Padova, via Marzolo 9, 35131, Padova, Italy
| | - Paolo Canu
- Industrial Engineering Department, University of Padova, via Marzolo 9, 35131, Padova, Italy
| | - Sándor B Ötvös
- Institute of Chemistry, University of Graz NAWI Graz, Heinrichstrasse 28, A-8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010, Graz, Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz NAWI Graz, Heinrichstrasse 28, A-8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010, Graz, Austria
| |
Collapse
|
4
|
Marchi M, Raciti E, Gali SM, Piccirilli F, Vondracek H, Actis A, Salvadori E, Rosso C, Criado A, D'Agostino C, Forster L, Lee D, Foucher AC, Rai RK, Beljonne D, Stach EA, Chiesa M, Lazzaroni R, Filippini G, Prato M, Melchionna M, Fornasiero P. Carbon Vacancies Steer the Activity in Dual Ni Carbon Nitride Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303781. [PMID: 37409444 PMCID: PMC10502671 DOI: 10.1002/advs.202303781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 07/07/2023]
Abstract
The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many CX (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.
Collapse
Affiliation(s)
- Miriam Marchi
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport "Giacomo Ciamician", INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| | - Edoardo Raciti
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons-UMONS, Mons, 7000, Belgium
| | - Sai Manoj Gali
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons-UMONS, Mons, 7000, Belgium
| | - Federica Piccirilli
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste, 34149, Italy
| | - Hendrik Vondracek
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste, 34149, Italy
| | - Arianna Actis
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, Torino, 10125, Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, Torino, 10125, Italy
| | - Cristian Rosso
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport "Giacomo Ciamician", INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| | - Alejandro Criado
- Centro Interdisciplinar de Química e Bioloxía-CICA, Universidade da Coruña, Rúa As Carballeiras, A Coruña, 15071, Spain
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum, University of Bologna, Via Terracini, 28, Bologna, 40131, Italy
| | - Luke Forster
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Daniel Lee
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104-6272, USA
| | - Rajeev Kumar Rai
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104-6272, USA
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons-UMONS, Mons, 7000, Belgium
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104-6272, USA
| | - Mario Chiesa
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, Torino, 10125, Italy
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons-UMONS, Mons, 7000, Belgium
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport "Giacomo Ciamician", INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport "Giacomo Ciamician", INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport "Giacomo Ciamician", INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport "Giacomo Ciamician", INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
- ICCOM-CNR, Unit of Trieste, via L. Giorgieri 1, Trieste, 34127, Italy
| |
Collapse
|
5
|
Diprima D, Gemoets H, Bonciolini S, Van Aken K. Selective and scalable oxygenation of heteroatoms using the elements of nature: air, water, and light. Beilstein J Org Chem 2023; 19:1146-1154. [PMID: 37560135 PMCID: PMC10407787 DOI: 10.3762/bjoc.19.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
Sustainable oxidation protocols aim to provide an environmentally friendly and cost-effective method for the production of various chemicals and materials. The development of such protocols can lead to reduced energy consumption, fewer harmful byproducts, and increased efficiency in industrial processes. As such, this field of research is of great importance and interest to both academia and industry. This work showcases a sustainable and catalyst-free oxidation method for heteroatoms (e.g., S, P, and Se) using only air, water and light. An additional reaction pathway is proposed in which the incorporated oxygen on the heteroatoms originates from water. Furthermore, the addition of certain additives enhances productivity by affecting kinetics. The industrial potential is demonstrated by conveniently transferring the batch protocol to continuous flow using the HANU flow reactor, indicating scalability and improving safety.
Collapse
Affiliation(s)
- Damiano Diprima
- Ecosynth, Industrielaan 12, 9800 Deinze, Belgium
- Flow Chemistry Group, Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | - Stefano Bonciolini
- Flow Chemistry Group, Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Zondag SDA, Mazzarella D, Noël T. Scale-Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production. Annu Rev Chem Biomol Eng 2023; 14:283-300. [PMID: 36913716 DOI: 10.1146/annurev-chembioeng-101121-074313] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
In the past two decades, we have witnessed a rapid emergence of new and powerful photochemical and photocatalytic synthetic methods. Although these methods have been used mostly on a small scale, there is a growing need for efficient scale-up of photochemistry in the chemical industry. This review summarizes and contextualizes the advancements made in the past decade regarding the scale-up of photo-mediated synthetic transformations. Simple scale-up concepts and important fundamental photochemical laws have been provided along with a discussion concerning suitable reactor designs that should facilitate scale-up of this challenging class of organic reactions.
Collapse
Affiliation(s)
- Stefan D A Zondag
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands;
| | - Daniele Mazzarella
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands;
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Timothy Noël
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
7
|
Capaldo L, Wen Z, Noël T. A field guide to flow chemistry for synthetic organic chemists. Chem Sci 2023; 14:4230-4247. [PMID: 37123197 PMCID: PMC10132167 DOI: 10.1039/d3sc00992k] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Flow chemistry has unlocked a world of possibilities for the synthetic community, but the idea that it is a mysterious "black box" needs to go. In this review, we show that several of the benefits of microreactor technology can be exploited to push the boundaries in organic synthesis and to unleash unique reactivity and selectivity. By "lifting the veil" on some of the governing principles behind the observed trends, we hope that this review will serve as a useful field guide for those interested in diving into flow chemistry.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Zhenghui Wen
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| |
Collapse
|
8
|
Zheng M, Yao W, Tian L, Zhao S, Zhou C, Zheng H, Yan Z. Characterization of macromixing and micromixing performance of unbaffled U-shaped mesoscale oscillatory flow reactor. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
9
|
Flow photochemistry — from microreactors to large-scale processing. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
An Electrochemical Oscillatory Flow Reactor with Pillar Array Electrodes Improving Mass Transfer in Electrosynthesis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Marchi M, Gentile G, Rosso C, Melchionna M, Fornasiero P, Filippini G, Prato M. The Nickel Age in Synthetic Dual Photocatalysis: A Bright Trip Toward Materials Science. CHEMSUSCHEM 2022; 15:e202201094. [PMID: 35789214 PMCID: PMC9804426 DOI: 10.1002/cssc.202201094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Indexed: 05/30/2023]
Abstract
Recently, the field of dual photocatalysis has grown rapidly, to become one of the most powerful tools for the functionalization of organic molecules under mild conditions. In particular, the merging of Earth-abundant nickel-based catalytic systems with visible-light-activated photoredox catalysts has allowed the development of a number of unique green synthetic approaches. This goes in the direction of ensuring an effective and sustainable chemical production, while safeguarding human health and environment. Importantly, this relatively new branch of catalysis has inspired an interdisciplinary stream of research that spans from inorganic and organic chemistry to materials science, thus establishing itself as one dominant trend in modern organic synthesis. This Review aims at illustrating the milestones on the timeline evolution of the photocatalytic systems used, with a critical analysis toward novel applications based on the use of photoactive two-dimensional carbon-based nanostructures. Lastly, forward-looking opportunities within this intriguing research field are discussed.
Collapse
Affiliation(s)
- Miriam Marchi
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Giuseppe Gentile
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Cristian Rosso
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Consorzio Interuniversitario Nazionale per laScienza e Tecnologia dei Materiali (INSTM)Unit of Triestevia L. Giorgieri 134127TriesteItaly
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Consorzio Interuniversitario Nazionale per laScienza e Tecnologia dei Materiali (INSTM)Unit of Triestevia L. Giorgieri 134127TriesteItaly
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo Miramón 19420014Donostia San SebastiánSpain
- Basque Fdn Sci, Ikerbasque48013BilbaoSpain
| |
Collapse
|
12
|
Grillo G, Cintas P, Colia M, Calcio Gaudino E, Cravotto G. Process intensification in continuous flow organic synthesis with enabling and hybrid technologies. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.966451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Industrial organic synthesis is time and energy consuming, and generates substantial waste. Traditional conductive heating and mixing in batch reactors is no longer competitive with continuous-flow synthetic methods and enabling technologies that can strongly promote reaction kinetics. These advances lead to faster and simplified downstream processes with easier workup, purification and process scale-up. In the current Industry 4.0 revolution, new advances that are based on cyber-physical systems and artificial intelligence will be able to optimize and invigorate synthetic processes by connecting cascade reactors with continuous in-line monitoring and even predict solutions in case of unforeseen events. Alternative energy sources, such as dielectric and ohmic heating, ultrasound, hydrodynamic cavitation, reactive extruders and plasma have revolutionized standard procedures. So-called hybrid or hyphenated techniques, where the combination of two different energy sources often generates synergistic effects, are also worthy of mention. Herein, we report our consolidated experience of all of these alternative techniques.
Collapse
|
13
|
Hsu WH, Reischauer S, Seeberger PH, Pieber B, Cambié D. Heterogeneous metallaphotoredox catalysis in a continuous-flow packed-bed reactor. Beilstein J Org Chem 2022; 18:1123-1130. [PMID: 36105732 PMCID: PMC9443413 DOI: 10.3762/bjoc.18.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 12/05/2022] Open
Abstract
Metallaphotoredox catalysis is a powerful and versatile synthetic platform that enables cross-couplings under mild conditions without the need for noble metals. Its growing adoption in drug discovery has translated into an increased interest in sustainable and scalable reaction conditions. Here, we report a continuous-flow approach to metallaphotoredox catalysis using a heterogeneous catalyst that combines the function of a photo- and a nickel catalyst in a single material. The catalyst is embedded in a packed-bed reactor to combine reaction and (catalyst) separation in one step. The use of a packed bed simplifies the translation of optimized batch reaction conditions to continuous flow, as the only components present in the reaction mixture are the substrate and a base. The metallaphotoredox cross-coupling of sulfinates with aryl halides was used as a model system. The catalyst was shown to be stable, with a very low decrease of the yield (≈1% per day) during a continuous experiment over seven days, and to be effective for C–O arylations when carboxylic acids are used as nucleophile instead of sulfinates.
Collapse
Affiliation(s)
- Wei-Hsin Hsu
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems Department, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Susanne Reischauer
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems Department, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H Seeberger
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems Department, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Bartholomäus Pieber
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems Department, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Dario Cambié
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems Department, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
14
|
Wang H, Han W, Noble A, Aggarwal VK. Dual Nickel/Photoredox-Catalyzed Site-Selective Cross-Coupling of 1,2-Bis-Boronic Esters Enabled by 1,2-Boron Shifts. Angew Chem Int Ed Engl 2022; 61:e202207988. [PMID: 35779000 PMCID: PMC9543306 DOI: 10.1002/anie.202207988] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Site-selective transition-metal-catalyzed mono-deboronative cross-couplings of 1,2-bis-boronic esters are valuable methods for the synthesis of functionalized organoboron compounds. However, such cross-couplings are limited to reaction of the sterically less hindered primary boronic ester. Herein, we report a nickel/photoredox-catalyzed mono-deboronative arylation of 1,2-bis-boronic esters that is selective for coupling of the more sterically hindered secondary/tertiary position. This is achieved by taking advantage of a 1,2-boron shift of primary β-boryl radicals to the thermodynamically favored secondary/tertiary radicals, which are subsequently intercepted by the nickel catalyst to enable arylation. The mild conditions are amenable to a broad range of aryl halides to give β-aryl boronic ester products in good yields and with high regioselectivity. This method also allows stereodivergent coupling of cyclic cis-1,2-bis-boronic esters to give trans-substituted products.
Collapse
Affiliation(s)
- Hui Wang
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Key Laboratory of Functional Molecular Solids (Ministry of Education)Anhui Key Laboratory of Molecular Based MaterialsCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002China
| | - Wangyujing Han
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
15
|
Wang H, Han W, Noble A, Aggarwal VK. Dual Nickel/Photoredox‐Catalyzed Site‐Selective Cross‐Coupling of 1,2‐Bis‐Boronic Esters Enabled by 1,2‐Boron Shifts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Wang
- University of Bristol School of Chemistry School of Chemistry UNITED KINGDOM
| | - Wangyujing Han
- University of Bristol School of Chemistry School of Chemistry UNITED KINGDOM
| | - Adam Noble
- University of Bristol School of Chemistry School of Chemistry UNITED KINGDOM
| | | |
Collapse
|
16
|
Williams JD, Pöchlauer P, Okumura Y, Inami Y, Kappe CO. Photochemical Deracemization of a Medicinally-Relevant Benzopyran using an Oscillatory Flow Reactor. Chemistry 2022; 28:e202200741. [PMID: 35293645 PMCID: PMC9321886 DOI: 10.1002/chem.202200741] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Dynamic deracemization processes, such as crystallization-induced diastereomer transformations (CIDTs), offer the opportunity to combine racemization and resolution processes, to provide high yields of enantiomerically pure compounds. To date, few of these processes have incorporated photochemical racemization. By combining batch crystallization with a flow photoreactor for efficient irradiation, it is possible to perform such deracemization in an effective, scalable and high yielding manner. After applying design of experiment (DoE) principles and mathematical modelling, the most efficient parameter set could be identified, leading to excellent results in just 4 h reaction time: isolated yield of 82 % and assay ee of 96 %. Such photochemical racemization methods can serve to open new avenues for preparation of enantiomerically pure functional molecules on both small and industrially-relevant scales.
Collapse
Affiliation(s)
- Jason D Williams
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria.,Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Peter Pöchlauer
- Thermo Fisher Scientific Linz, St.-Peter-Straße 25, 4020, Linz, Austria
| | - Yoshiyuki Okumura
- R&D and Business Promotion, AskAt Inc. 2F Dai-Tokai Building, 3-22-8 Meieki Nakamura-ku Nagoya, Aichi, 450-0002, Japan
| | - Yukari Inami
- R&D and Business Promotion, AskAt Inc. 2F Dai-Tokai Building, 3-22-8 Meieki Nakamura-ku Nagoya, Aichi, 450-0002, Japan
| | - C Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria.,Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria
| |
Collapse
|
17
|
Chaudhuri A, Zondag SDA, Schuurmans JHA, van der Schaaf J, Noël T. Scale-Up of a Heterogeneous Photocatalytic Degradation Using a Photochemical Rotor-Stator Spinning Disk Reactor. Org Process Res Dev 2022; 26:1279-1288. [PMID: 35464822 PMCID: PMC9017180 DOI: 10.1021/acs.oprd.2c00012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/28/2022]
Abstract
![]()
Many chemical reactions
contain heterogeneous reagents, products,
byproducts, or catalysts, making their transposition from batch to
continuous-flow processing challenging. Herein, we report the use
of a photochemical rotor–stator spinning disk reactor (pRS-SDR)
that can handle and scale solid-containing photochemical reaction
conditions in flow. Its ability to handle slurries was showcased for
the TiO2-mediated aerobic photodegradation of aqueous methylene
blue. The use of a fast rotating disk imposes high shear forces on
the multiphase reaction mixture, ensuring its homogenization, increasing
the mass transfer, and improving the irradiation profile of the reaction
mixture. The pRS-SDR performance was also compared to other lab-scale
reactors in terms of water treated per reactor volume and light power
input.
Collapse
Affiliation(s)
- Arnab Chaudhuri
- Department of Chemical Engineering and Chemistry, Sustainable Process Engineering, Eindhoven University of Technology (TU/e), 5612 AZ Eindhoven, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), 1098 XH Amsterdam, The Netherlands
| | - Jasper H A Schuurmans
- Department of Chemical Engineering and Chemistry, Sustainable Process Engineering, Eindhoven University of Technology (TU/e), 5612 AZ Eindhoven, The Netherlands
| | - John van der Schaaf
- Department of Chemical Engineering and Chemistry, Sustainable Process Engineering, Eindhoven University of Technology (TU/e), 5612 AZ Eindhoven, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
18
|
Schirmer TE, Abdellaoui M, Savateev A, Ollivier C, Antonietti M, Fensterbank L, König B. Mesoporous Graphitic Carbon Nitride as a Heterogeneous Organic Photocatalyst in the Dual Catalytic Arylation of Alkyl Bis(catecholato)silicates. Org Lett 2022; 24:2483-2487. [PMID: 35324213 DOI: 10.1021/acs.orglett.2c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mesoporous graphitic carbon nitride (mpg-CN) is introduced as a heterogeneous photocatalyst to perform dual photoredox- and nickel-catalyzed cross-coupling reactions between alkyl bis(catecholato)silicates as radical precursors and aryl or alkenyl bromides. The synergy between this recyclable photocatalyst and the broadly applied homogeneous nickel complex [Ni(dtbbpy)Br2] gives access to C(sp2)-C(sp3) cross-coupling products in a sustainable fashion. The recycled mpg-CN photocatalyst was analyzed by time-resolved emission spectroscopy and EPR spectroscopy.
Collapse
Affiliation(s)
- Tobias E Schirmer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Mehdi Abdellaoui
- CNRS, Institut Parisien de Chimie Moléculaire -4 Place Jussieu, CC 229, Sorbonne Université, Paris Cedex 05 F-75252, France
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Cyril Ollivier
- CNRS, Institut Parisien de Chimie Moléculaire -4 Place Jussieu, CC 229, Sorbonne Université, Paris Cedex 05 F-75252, France
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Louis Fensterbank
- CNRS, Institut Parisien de Chimie Moléculaire -4 Place Jussieu, CC 229, Sorbonne Université, Paris Cedex 05 F-75252, France
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| |
Collapse
|
19
|
Burek BO, Duong HT, Hochradel K, Sutor A, Rupp M, Heilmann EK, Lovis K, Bloh JZ. Photochemistry at Scale: Wireless Light Emitters Drive Sustainability in Process Research & Development. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bastien O. Burek
- Chemical Technology DECHEMA-Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Hong Thu Duong
- Chemical Technology DECHEMA-Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Klaus Hochradel
- Department Institute of Measurement and Sensor Technology UMIT – University for Health Sciences, Medical Informatics and Technology GmbH Eduard-Wallnöfer-Zentrum 1 16060 Hall in Tirol Austria
| | - Alexander Sutor
- Department Institute of Measurement and Sensor Technology UMIT – University for Health Sciences, Medical Informatics and Technology GmbH Eduard-Wallnöfer-Zentrum 1 16060 Hall in Tirol Austria
| | - Matthias Rupp
- Bayer AG Engineering & Technology 51368 Leverkusen Germany
| | - Eike K. Heilmann
- Bayer AG Research & Development Crop Science 40789 Monheim Germany
| | - Kai Lovis
- Bayer AG Research & Development Pharmaceuticals 42096 Wuppertal Germany
| | - Jonathan Z. Bloh
- Chemical Technology DECHEMA-Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| |
Collapse
|
20
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Den Haese M, Gemoets HPL, Van Aken K, Pitet LM. Fully biobased triblock copolymers generated using an unconventional oscillatory plug flow reactor. Polym Chem 2022. [DOI: 10.1039/d2py00600f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Producing block polymers in continuous flow offers significant advantages in terms of versatility, efficiency and scalability.
Collapse
Affiliation(s)
- Milan Den Haese
- Advanced Functional Polymers Laboratory, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | | | - Koen Van Aken
- Creaflow B.V., Industrielaan 12, 9800 Deinze, Belgium
| | - Louis M. Pitet
- Advanced Functional Polymers Laboratory, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| |
Collapse
|
22
|
Francis D, Blacker AJ, Kapur N, Marsden SP. Readily Reconfigurable Continuous-Stirred Tank Photochemical Reactor Platform. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel Francis
- Institute of Process Research and Development, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - A. John Blacker
- Institute of Process Research and Development, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Nikil Kapur
- Institute of Process Research and Development, University of Leeds, Leeds LS2 9JT, U.K
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Stephen P. Marsden
- Institute of Process Research and Development, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
23
|
Wen Z, Wan T, Vijeta A, Casadevall C, Buglioni L, Reisner E, Noël T. Photocatalytic C-H Azolation of Arenes Using Heterogeneous Carbon Nitride in Batch and Flow. CHEMSUSCHEM 2021; 14:5265-5270. [PMID: 34529334 PMCID: PMC9298336 DOI: 10.1002/cssc.202101767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/16/2021] [Indexed: 05/08/2023]
Abstract
The functionalization of aryl C(sp2 )-H bonds is a useful strategy for the late-stage modification of biologically active molecules, especially for the regioselective introduction of azole heterocycles to prepare medicinally-relevant compounds. Herein, we describe a practical photocatalytic transformation using a mesoporous carbon nitride (mpg-CNx ) photocatalyst, which enables the efficient azolation of various arenes through direct oxidation. The method exhibits a broad substrate scope and is amenable to the late-stage functionalization of several pharmaceuticals. Due to the heterogeneous nature and high photocatalytic stability of mpg-CNx , the catalyst can be easily recovered and reused leading to greener and more sustainable routes, using either batch or flow processing, to prepare these important compounds of interest in pharmaceutical and agrochemical research.
Collapse
Affiliation(s)
- Zhenghui Wen
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Ting Wan
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Arjun Vijeta
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUnited Kingdom
| | - Carla Casadevall
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUnited Kingdom
| | - Laura Buglioni
- Department of Chemical Engineering and ChemistrySustainable Process EngineeringEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUnited Kingdom
| | - Timothy Noël
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
24
|
Duvadie R, Pomberger A, Mo Y, Altinoglu EI, Hsieh HW, Nandiwale KY, Schultz VL, Jensen KF, Robinson RI. Photoredox Iridium–Nickel Dual Catalyzed Cross-Electrophile Coupling: From a Batch to a Continuous Stirred-Tank Reactor via an Automated Segmented Flow Reactor. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rohit Duvadie
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander Pomberger
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yiming Mo
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Erhan I. Altinoglu
- Chemical and Pharmaceutical Profiling, Novartis Global Drug Development, 700 Main Street South, Cambridge, Massachusetts 02139, United States
| | - Hsiao-Wu Hsieh
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kakasaheb Y. Nandiwale
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Victor L. Schultz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Richard I. Robinson
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Simon LL, Dieckmann M, Robinson A, Vent-Schmidt T, Marantelli D, Kohlbrenner R, Saint-Dizier A, Gribkov D, Krieger JP. Monte Carlo Analysis-Based CapEx Uncertainty Estimation of New Technologies: The Case of Photochemical Lamps. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Levente L. Simon
- Process Technology New Active Ingredients, Syngenta Crop Protection AG, Breitenloh 5, 4333 Münchwilen, Switzerland
| | - Michael Dieckmann
- Process Technology New Active Ingredients, Syngenta Crop Protection AG, Breitenloh 5, 4333 Münchwilen, Switzerland
| | - Alan Robinson
- Process Research Stein, Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4334 Münchwilen, Switzerland
| | - Thomas Vent-Schmidt
- Process Technology New Active Ingredients, Syngenta Crop Protection AG, Breitenloh 5, 4333 Münchwilen, Switzerland
| | - Dominique Marantelli
- Process Technology New Active Ingredients, Syngenta Crop Protection AG, Breitenloh 5, 4333 Münchwilen, Switzerland
| | - Ralf Kohlbrenner
- Process Technology New Active Ingredients, Syngenta Crop Protection AG, Breitenloh 5, 4333 Münchwilen, Switzerland
| | - Alexandre Saint-Dizier
- Process Technology New Active Ingredients, Syngenta Crop Protection AG, Breitenloh 5, 4333 Münchwilen, Switzerland
| | - Denis Gribkov
- Process Technology New Active Ingredients, Syngenta Crop Protection AG, Breitenloh 5, 4333 Münchwilen, Switzerland
| | - Jean-Philippe Krieger
- Process Technology New Active Ingredients, Syngenta Crop Protection AG, Breitenloh 5, 4333 Münchwilen, Switzerland
| |
Collapse
|
26
|
Zhu C, Yue H, Jia J, Rueping M. Nickel-Catalyzed C-Heteroatom Cross-Coupling Reactions under Mild Conditions via Facilitated Reductive Elimination. Angew Chem Int Ed Engl 2021; 60:17810-17831. [PMID: 33252192 DOI: 10.1002/anie.202013852] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The formation of C-heteroatom bonds represents an important type of bond-forming reaction in organic synthesis and often provides a fast and efficient access to privileged structures found in pharmaceuticals, agrochemical and materials. In contrast to conventional Pd- or Cu-catalyzed C-heteroatom cross-couplings under high-temperature conditions, recent advances in homo- and heterogeneous Ni-catalyzed C-heteroatom formations under mild conditions are particularly attractive from the standpoint of sustainability and practicability. The generation of NiIII and excited NiII intermediates facilitate the reductive elimination step to achieve mild cross-couplings. This review provides an overview of the state-of-the-art approaches for mild C-heteroatom bond formations and highlights the developments in photoredox and nickel dual catalysis involving SET and energy transfer processes; photoexcited nickel catalysis; electro and nickel dual catalysis; heterogeneous photoredox and nickel dual catalysis involving graphitic carbon nitride (mpg-CN), metal organic frameworks (MOFs) or semiconductor quantum dots (QDs); as well as more conventional zinc and nickel dual catalyzed reactions.
Collapse
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huifeng Yue
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jiaqi Jia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
27
|
Abstract
AbstractContinuous flow photochemistry as a field has witnessed an increasing popularity over the last decade in both academia and industry. Key drivers for this development are safety, practicality as well as the ability to rapidly access complex chemical structures. Continuous flow reactors, whether home-built or from commercial suppliers, additionally allow for creating valuable target compounds in a reproducible and automatable manner. Recent years have furthermore seen the advent of new energy efficient LED lamps that in combination with innovative reactor designs provide a powerful means to increasing both the practicality and productivity of modern photochemical flow reactors. In this review article we wish to highlight key achievements pertaining to the scalability of such continuous photochemical processes.
Graphical abstract
Collapse
|
28
|
Scale-up of micro- and milli-reactors: An overview of strategies, design principles and applications. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100097] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
29
|
Zou Y, Xiao K, Qin Q, Shi JW, Heil T, Markushyna Y, Jiang L, Antonietti M, Savateev A. Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime. ACS NANO 2021; 15:6551-6561. [PMID: 33822587 PMCID: PMC8155341 DOI: 10.1021/acsnano.0c09661] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Bioinspired nanoconfined catalysis has developed to become an important tool for improving the performance of a wide range of chemical reactions. However, photocatalysis in a nanoconfined environment remains largely unexplored. Here, we report the application of a free-standing and flow-through carbon nitride nanotube (CNN) membrane with pore diameters of 40 nm for confined photocatalytic reactions where reactants are in contact with the catalyst for <65 ms, as calculated from the flow. Due to the well-defined tubular structure of the membrane, we are able to assess quantitatively the photocatalytic performance in each of the parallelized single carbon nitride nanotubes, which act as spatially isolated nanoreactors. In oxidation of benzylamine, the confined reaction shows an improved performance when compared to the corresponding bulk reaction, reaching a turnover frequency of (9.63 ± 1.87) × 105 s-1. Such high rates are otherwise only known for special enzymes and are clearly attributed to the confinement of the studied reactions within the one-dimensional nanochannels of the CNN membrane. Namely, a concave surface maintains the internal electric field induced by the polar surface of the carbon nitride inside the nanotube, which is essential for polarization of reagent molecules and extension of the lifetime of the photogenerated charge carriers. The enhanced flow rate upon confinement provides crucial insight on catalysis in such an environment from a physical chemistry perspective. This confinement strategy is envisioned not only to realize highly efficient reactions but also to gain a fundamental understanding of complex chemical processes.
Collapse
Affiliation(s)
- Yajun Zou
- State
Key Laboratory of Electrical Insulation and Power Equipment, Center
of Nanomaterials for Renewable Energy, School
of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kai Xiao
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Qing Qin
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jian-Wen Shi
- State
Key Laboratory of Electrical Insulation and Power Equipment, Center
of Nanomaterials for Renewable Energy, School
of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Tobias Heil
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Yevheniia Markushyna
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Lei Jiang
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, People’s Republic
of China
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Aleksandr Savateev
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
30
|
Li M, Zhang Y, Zhang J, Peng M, Yan L, Tang Z, Wu Q. Continuous Gas–Liquid–Solid Slug Flow for Sustainable Heterogeneously Catalyzed PET-RAFT Polymerization. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Minglei Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
| | - Yaheng Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Jie Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Min Peng
- Analytical Instrumentation
Center, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People’s Republic of China
| | - Liuming Yan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Zhiyong Tang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People’s Republic of China
| | - Qing Wu
- Department of Science and Technology Development, China National Offshore Oil Corporation, Beijing, 100010, People’s Republic of China
| |
Collapse
|
31
|
Rosso C, Filippini G, Criado A, Melchionna M, Fornasiero P, Prato M. Metal-Free Photocatalysis: Two-Dimensional Nanomaterial Connection toward Advanced Organic Synthesis. ACS NANO 2021; 15:3621-3630. [PMID: 33715354 PMCID: PMC8041367 DOI: 10.1021/acsnano.1c00627] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two-dimensional (2D) nanostructures are a frontier in materials chemistry as a result of their extraordinary properties. Metal-free 2D nanomaterials possess extra appeal due to their improved cost-effectiveness and lower toxicity with respect to many inorganic structures. The outstanding electronic characteristics of some metal-free 2D semiconductors have projected them into the world of organic synthesis, where they can function as high-performance photocatalysts to drive the sustainable synthesis of high-value organic molecules. Recent reports on this topic have inspired a stream of research and opened up a theme that we believe will become one of the most dominant trends in the forthcoming years.
Collapse
Affiliation(s)
- Cristian Rosso
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Giacomo Filippini
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Alejandro Criado
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia San Sebastián, Spain
| | - Michele Melchionna
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Paolo Fornasiero
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
- ICCOM-CNR
Trieste Research Unit, University of Trieste, Trieste 34127, Italy
| | - Maurizio Prato
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia San Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, Bilbao 48013, Spain
| |
Collapse
|
32
|
Abstract
Visible light photocatalysis has become a powerful tool in organic synthesis that uses photons as traceless, sustainable reagents. Most of the activities in the field focus on the development of new reactions via common photoredox cycles, but recently a number of exciting new concepts and strategies entered less charted territories. We survey approaches that enable the use of longer wavelengths and show that the wavelength and intensity of photons are import parameters that enable tuning of the reactivity of a photocatalyst to control or change the selectivity of chemical reactions. In addition, we discuss recent efforts to substitute strong reductants, such as elemental lithium and sodium, by light and technological advances in the field.
Collapse
Affiliation(s)
- Susanne Reischauer
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimalle 22, 14195 Berlin, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
33
|
García-Lacuna J, Fleiß T, Munday R, Leslie K, O’Kearney-McMullan A, Hone CA, Kappe CO. Synthesis of the Lipophilic Amine Tail of Abediterol Enabled by Multiphase Flow Transformations. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jorge García-Lacuna
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Tobias Fleiß
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Rachel Munday
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Kevin Leslie
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Anne O’Kearney-McMullan
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Christopher A. Hone
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - C. Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
34
|
Zhu C, Yue H, Jia J, Rueping M. Nickel‐Catalyzed C‐Heteroatom Cross‐Coupling Reactions under Mild Conditions via Facilitated Reductive Elimination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013852] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Huifeng Yue
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Jiaqi Jia
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
35
|
Das S, Murugesan K, Villegas Rodríguez GJ, Kaur J, Barham JP, Savateev A, Antonietti M, König B. Photocatalytic (Het)arylation of C(sp3)–H Bonds with Carbon Nitride. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05694] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saikat Das
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany
| | - Kathiravan Murugesan
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany
| | | | - Jaspreet Kaur
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany
| | - Joshua P. Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Burkhard König
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
36
|
Singh S, Roy VJ, Dagar N, Sen PP, Roy SR. Photocatalysis in Dual Catalysis Systems for Carbon‐Nitrogen Bond Formation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001176] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Swati Singh
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India Phone number
| | - Vishal Jyoti Roy
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India Phone number
| | - Neha Dagar
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India Phone number
| | - Partha Pratim Sen
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India Phone number
| | - Sudipta Raha Roy
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India Phone number
| |
Collapse
|
37
|
Lévesque F, Di Maso MJ, Narsimhan K, Wismer MK, Naber JR. Design of a Kilogram Scale, Plug Flow Photoreactor Enabled by High Power LEDs. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00373] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- François Lévesque
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael J. Di Maso
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Karthik Narsimhan
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael K. Wismer
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - John R. Naber
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
38
|
Mata A, Tran DN, Weigl U, Williams JD, Kappe CO. Continuous flow synthesis of arylhydrazines via nickel/photoredox coupling of tert-butyl carbazate with aryl halides. Chem Commun (Camb) 2020; 56:14621-14624. [PMID: 33151210 DOI: 10.1039/d0cc06787c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nickel/photoredox catalyzed C-N couplings of hydrazine-derived nucleophiles provide a powerful alternative to Pd-catalyzed methods. This continuous-flow photochemical protocol, optimized using design of experiments, achieves these couplings in short residence times, with high selectivity. A range of (hetero)aryl bromides and chlorides are compatible and understanding of process stability/reactor fouling has been discerned.
Collapse
Affiliation(s)
- Alejandro Mata
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria. and Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Duc N Tran
- Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ulrich Weigl
- Cilag AG, Hochstrasse 201, 8200 Schaffhausen, Switzerland
| | - Jason D Williams
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria. and Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - C Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria. and Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
39
|
Mazzanti S, Savateev A. Emerging Concepts in Carbon Nitride Organic Photocatalysis. Chempluschem 2020; 85:2499-2517. [PMID: 33215877 DOI: 10.1002/cplu.202000606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Indexed: 01/01/2023]
Abstract
Carbon nitrides encompass a class of transition-metal-free materials possessing numerous advantages such as low cost (few Euros per gram), high chemical stability, broad tunability of redox potentials and optical bandgap, recyclability, and a high absorption coefficient (>105 cm-1 ), which make them highly attractive for application in photoredox catalysis. In this Review, we classify carbon nitrides based on their unique properties, structure, and redox potentials. We summarize recently emerging concepts in heterogeneous carbon nitride photocatalysis, with an emphasis on the synthesis of organic compounds: 1) Illumination-Driven Electron Accumulation in Semiconductors and Exploitation (IDEASE); 2) singlet-triplet intersystem crossing in carbon nitride excited states and related energy transfer; 3) architectures of flow photoreactors; and 4) dual metal/carbon nitride photocatalysis. The objective of this Review is to provide a detailed overview regarding innovative research in carbon nitride photocatalysis focusing on these topics.
Collapse
Affiliation(s)
- Stefano Mazzanti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
40
|
Kayahan E, Jacobs M, Braeken L, Thomassen LC, Kuhn S, van Gerven T, Leblebici ME. Dawn of a new era in industrial photochemistry: the scale-up of micro- and mesostructured photoreactors. Beilstein J Org Chem 2020; 16:2484-2504. [PMID: 33093928 PMCID: PMC7554662 DOI: 10.3762/bjoc.16.202] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/15/2020] [Indexed: 01/23/2023] Open
Abstract
Photochemical activation routes are gaining the attention of the scientific community since they can offer an alternative to the traditional chemical industry that mainly utilizes thermochemical activation of molecules. Photoreactions are fast and selective, which would potentially reduce the downstream costs significantly if the process is optimized properly. With the transition towards green chemistry, the traditional batch photoreactor operation is becoming abundant in this field. Process intensification efforts led to micro- and mesostructured flow photoreactors. In this work, we are reviewing structured photoreactors by elaborating on the bottleneck of this field: the development of an efficient scale-up strategy. In line with this, micro- and mesostructured bench-scale photoreactors were evaluated based on a new benchmark called photochemical space time yield (mol·day−1·kW−1), which takes into account the energy efficiency of the photoreactors. It was manifested that along with the selection of the photoreactor dimensions and an appropriate light source, optimization of the process conditions, such as the residence time and the concentration of the photoactive molecule is also crucial for an efficient photoreactor operation. In this paper, we are aiming to give a comprehensive understanding for scale-up strategies by benchmarking selected photoreactors and by discussing transport phenomena in several other photoreactors.
Collapse
Affiliation(s)
- Emine Kayahan
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium
| | - Mathias Jacobs
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium
| | - Leen Braeken
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium.,Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Leen Cj Thomassen
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium.,Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Simon Kuhn
- Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Tom van Gerven
- Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - M Enis Leblebici
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium.,Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Xiao J, Liu X, Pan L, Shi C, Zhang X, Zou JJ. Heterogeneous Photocatalytic Organic Transformation Reactions Using Conjugated Polymers-Based Materials. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03480] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xianlong Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
42
|
Abstract
AbstractOscillatory flow reactors (OFRs) superimpose an oscillatory flow to the net movement through a flow reactor. OFRs have been engineered to enable improved mixing, excellent heat- and mass transfer and good plug flow character under a broad range of operating conditions. Such features render these reactors appealing, since they are suitable for reactions that require long residence times, improved mass transfer (such as in biphasic liquid-liquid systems) or to homogeneously suspend solid particles. Various OFR configurations, offering specific features, have been developed over the past two decades, with significant progress still being made. This review outlines the principles and recent advances in OFR technology and overviews the synthetic applications of OFRs for liquid-liquid and solid-liquid biphasic systems.
Collapse
|
43
|
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C 2-C 6 Platform Chemicals Derived from Biomass. Chem Rev 2020; 120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C2 to C6 bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet 45, Zone Industrielle C, B-7180 Seneffe, Belgium
| | - Patricia Luis
- Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| |
Collapse
|
44
|
Wen Z, Maheshwari A, Sambiagio C, Deng Y, Laudadio G, Van Aken K, Sun Y, Gemoets HPL, Noël T. Optimization of a Decatungstate-Catalyzed C(sp 3)-H Alkylation Using a Continuous Oscillatory Millistructured Photoreactor. Org Process Res Dev 2020; 24:2356-2361. [PMID: 33100815 PMCID: PMC7573979 DOI: 10.1021/acs.oprd.0c00235] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 11/29/2022]
Abstract
Tetrabutylammonium decatungstate (TBADT) has emerged as an efficient and versatile photocatalyst for hydrogen atom transfer (HAT) processes that enables the cleavage of both activated and unactivated aliphatic C-H bonds. Using a recently developed oscillatory millistructured continuous-flow photoreactor, investigations of a decatungstate-catalyzed C(sp3)-H alkylation protocol were carried out, and the results are presented here. The performance of the reactor was evaluated in correlation to several chemical and process parameters, including residence time, light intensity, catalyst loading, and substrate/reagent concentration. In comparison with previously reported batch and flow protocols, conditions were found that led to considerably higher productivity, achieving a throughput up to 36.7 mmol/h with a residence time of only 7.5 min.
Collapse
Affiliation(s)
- Zhenghui Wen
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Apoorva Maheshwari
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Carlo Sambiagio
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Yuchao Deng
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Gabriele Laudadio
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Koen Van Aken
- Creaflow BV, Industrielaan 12, 9800 Deinze, Belgium.,Ecosynth NV, Industrielaan 12, 9800 Deinze, Belgium
| | - Yuhan Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | | | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
45
|
Gisbertz S, Reischauer S, Pieber B. Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nat Catal 2020. [DOI: 10.1038/s41929-020-0473-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Debrouwer W, Kimpe W, Dangreau R, Huvaere K, Gemoets HPL, Mottaghi M, Kuhn S, Van Aken K. Ir/Ni Photoredox Dual Catalysis with Heterogeneous Base Enabled by an Oscillatory Plug Flow Photoreactor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00150] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Wim Kimpe
- EcoSynth, Industrielaan 12, 9800 Deinze, Belgium
| | | | | | | | - Milad Mottaghi
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Simon Kuhn
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Koen Van Aken
- EcoSynth, Industrielaan 12, 9800 Deinze, Belgium
- Creaflow, Industrielaan 12, 9800 Deinze, Belgium
| |
Collapse
|
47
|
Zhang J, Zhang S, Peng C, Chen Y, Tang Z, Wu Q. Continuous synthesis of 2,5-hexanedione through direct C–C coupling of acetone in a Hilbert fractal photo microreactor. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00247j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Hilbert fractal photo microreactor (PMR) was developed and used in the continuous photochemical synthesis of 2,5-hexanedione (2,5-HDN) via direct C–C coupling of acetone.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai
- PR China
| | - Suqi Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai
- PR China
| | - Ci Peng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai
- PR China
| | - Yuhang Chen
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai
- PR China
| | - Zhiyong Tang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai
- PR China
| | - Qing Wu
- Department of Science and Technology Development
- China National Offshore Oil Corporation
- Beijing
- PR China
| |
Collapse
|