1
|
Sakai H, Hiramatsu S, Akiyama A, Negishi Y, Hasobe T. Bidirectional Intramolecular Singlet and Triplet Energy Transfer in Tetracene-Ultrasmall Gold Nanocluster Dyads: An Evaluation of the Triplet Behavior of Gold Nanoclusters. J Am Chem Soc 2025; 147:13483-13490. [PMID: 40227033 DOI: 10.1021/jacs.5c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
A series of tetracene (Tc)-alkanethiol-functionalized gold nanoclusters (Aum: m = 25, 38) dyads with varying alkyl chain lengths (n = 5, 11) (denoted as Tc-Cn-Aum) were synthesized to investigate the excited-state dynamics through the triplet excited state of these gold nanoclusters. Transient absorption measurements revealed bidirectional intramolecular energy transfer processes, including the initial singlet-singlet energy transfer (S-SEnT) from Tc to Au25, followed by the subsequent triplet-triplet energy transfer (T-TEnT) from Au25 to Tc in Tc-Cn-Au25 (n = 5, 11), with nearly similar rate constants regardless of the alkyl chain length (n). In the case of Tc-C5-Au38, intramolecular S-SEnT from Tc to Au38 was similarly observed; however, T-TEnT from Au38 to Tc was not detected. The differences in excited-state dynamics between Tc-C5-Au25 and Tc-C5-Au38 can be attributed to variations in the triplet energies of Aum. These results clearly demonstrate the triplet character of Au25 and Au38.
Collapse
Affiliation(s)
- Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Sunao Hiramatsu
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Aoi Akiyama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
2
|
Chen Z, Tang J, Zheng L, Ren A, Ma L, Li Q. Metal Nanoclusters as Highly Efficient, Versatile Type-II Photoinitiators via Generating Radicals from Non-Conventional Hydrogen Donors. Angew Chem Int Ed Engl 2025; 64:e202502217. [PMID: 39927899 DOI: 10.1002/anie.202502217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/11/2025]
Abstract
Development of highly efficient photocatalysis or photoinitiation systems that are applicable to various types of illumination source is critical to virtually all the light-driven applications. Here, we report a generalizable strategy to achieve highly sensitive, versatile photoinitiation systems based on the combination of metal nanoclusters with non-conventional hydrogen donors (co-initiators). Discovery of this type-II photoinitiation pathway in metal nanoclusters not only improves their two-photon initiation sensitivity by up to three-orders-of-magnitude, it further opens the door for metal nanoclusters to trigger the photopolymerization using the low-power UV light-emitting diodes. Different from molecular type-II photoinitiators, we found that the selection rules of hydrogen donors for metal nanoclusters are largely dependent on their ligand structures. More importantly, using electron paramagnetic resonance and mass spectroscopy, we for the first time demonstrate that the photoexcited metal nanoclusters can function as versatile hydrogen atom abstractors which generate various types of previously unreported thiyl and nitrogen-centered radicals. This finding indicates the broad opportunity of the future application of metal nanoclusters in light-driven organic synthesis and radical chemistry.
Collapse
Affiliation(s)
- Zijie Chen
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jin Tang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Letian Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - An Ren
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liang Ma
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qi Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Ibáñez‐Alé E, Hu J, Albero J, Simonelli L, Marini C, López N, Barrabés N, García H, Goberna‐Ferrón S. Structural Evolution of Stapes Controls the Electrochemical CO 2 Reduction on Bimetallic Cu-doped Gold Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408531. [PMID: 39623791 PMCID: PMC11735902 DOI: 10.1002/smll.202408531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Indexed: 01/18/2025]
Abstract
Ligand protected gold nanoclusters have been proposed for electrochemical CO2 reduction (eCO2R) as an alternative to polycrystalline catalysts, showing higher selectivity control due to the tailored composition and precise microenvironment. Here, two gold cluster families are studied with different staple motifs (Au25(SR)18 and Au144(SR)60, where SR = thiolate) doped with Ag or Cu to understand the interplay between the composition and the performance of these catalysts. Detailed cluster characterization and Density Functional Theory simulations demonstrate that the dynamic aspects involving ligand removal are crucial to unraveling the role of the dopant, the cluster curvature, and the staple structure. The best activity performance toward CO is obtained for Cu-doped Au144(SR)60 at U = -0.8 VRHE as ligands are only partially depleted and the staple can bend to stabilize *CO intermediate, while Cu-containing Au25(SR)18 can produce formate but shows worse CO selectivity. This study points toward the importance of ligand stability during eCO2R on bimetallic gold nanoclusters, paving the way for improving the design and operation of this family of catalysts.
Collapse
Affiliation(s)
- Enric Ibáñez‐Alé
- Institute of Chemical Research of Catalonia, (ICIQ‐CERCA)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 16Tarragona43007Spain
- Universitat Rovira i VirgiliAvinguda Catalunya, 35Tarragona43002Spain
| | - Jiajun Hu
- Institution Instituto Universitario de Tecnología Química (CSIC‐UPV)Universitat Politècnica de ValènciaAvda. De los Naranjos s/nValencia46022Spain
| | - Josep Albero
- Institution Instituto Universitario de Tecnología Química (CSIC‐UPV)Universitat Politècnica de ValènciaAvda. De los Naranjos s/nValencia46022Spain
| | - Laura Simonelli
- ALBA Synchrotron Light FacilityCarrer de la Llum 2‐26Cerdanyola del Valles08290BarcelonaSpain
| | - Carlo Marini
- ALBA Synchrotron Light FacilityCarrer de la Llum 2‐26Cerdanyola del Valles08290BarcelonaSpain
| | - Núria López
- Institute of Chemical Research of Catalonia, (ICIQ‐CERCA)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 16Tarragona43007Spain
| | - Noelia Barrabés
- Institute of Materials ChemistryTechnische Universität WienGetreidemarkt 9/BC/01Vienna1060Austria
| | - Hermenegildo García
- Institution Instituto Universitario de Tecnología Química (CSIC‐UPV)Universitat Politècnica de ValènciaAvda. De los Naranjos s/nValencia46022Spain
| | - Sara Goberna‐Ferrón
- Institution Instituto Universitario de Tecnología Química (CSIC‐UPV)Universitat Politècnica de ValènciaAvda. De los Naranjos s/nValencia46022Spain
| |
Collapse
|
4
|
Mitsui M. Recent Advances in Understanding Triplet States in Metal Nanoclusters: Their Formation, Energy Transfer, and Applications in Photon Upconversion. J Phys Chem Lett 2024; 15:12257-12268. [PMID: 39636297 DOI: 10.1021/acs.jpclett.4c03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Recent experimental findings, rapidly accumulating over the past few years, has revealed that in the electronic excited states of metal nanoclusters (MNCs) composed of noble metal atoms (e.g., Cu, Ag, or Au), triplet states are generated with remarkably high efficiency, exerting a pivotal influence over the photophysical properties of the MNCs, notably their photoluminescence characteristics. As a result, MNCs are increasingly recognized as promising luminescent nanomaterials that exhibit room-temperature phosphorescence and thermally activated delayed fluorescence. Furthermore, the significance of triplet-state-mediated energy transfer and charge transfer in intermolecular photophysical processes is gaining increasing recognition, particularly in the applications of MNCs as photosensitizers for singlet oxygen and organic molecular triplets. This Perspective focuses on recent advances in understanding of the formation and photophysics of triplet states in MNCs. Additionally, a brief overview is provided of a series of studies exploring the use of MNCs as triplet sensitizers for photon upconversion via triplet-triplet annihilation, and future prospects for this emerging application are discussed.
Collapse
Affiliation(s)
- Masaaki Mitsui
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
5
|
Yang B, Cao L, Ge K, Lv C, Zhao Z, Zheng T, Gao S, Zhang J, Wang T, Jiang J, Qin Y. FeSA‐Ir/Metallene Nanozymes Induce Sequential Ferroptosis‐Pyroptosis for Multi‐Immunogenic Responses Against Lung Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401110. [PMID: 38874051 DOI: 10.1002/smll.202401110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Indexed: 06/15/2024]
Abstract
For cancer metastasis inhibition, the combining of nanozymes with immune checkpoint blockade (ICB) therapy remains the major challenge in controllable reactive oxygen species (ROS) generation for creating effective immunogenicity. Herein, new nanozymes with light-controlled ROS production in terms of quantity and variety are developed by conjugating supramolecular-wrapped Fe single atom on iridium metallene with lattice-strained nanoislands (FeSA-Ir@PF NSs). The Fenton-like catalysis of FeSA-Ir@PF NSs effectively produced •OH radicals in dark, which induced ferroptosis and apoptosis of cancer cells. While under second near-infrared (NIR-II) light irradiation, FeSA-Ir@PF NSs showed ultrahigh photothermal conversion efficiency (𝜂, 75.29%), cooperative robust •OH generation, photocatalytic O2 and 1O2 generation, and caused significant pyroptosis of cancer cells. The controllable ROS generation, sequential cancer cells ferroptosis and pyroptosis, led 99.1% primary tumor inhibition and multi-immunogenic responses in vivo. Most importantly, the inhibition of cancer lung metastasis is completely achieved by FeSA-Ir@PF NSs with immune checkpoint inhibitors, as demonstrated in different mice lung metastasis models, including circulating tumor cells (CTCs) model. This work provided new inspiration for developing nanozymes for cancer treatments and metastasis inhibition.
Collapse
Affiliation(s)
- Baochan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lingzhi Cao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Kun Ge
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Chaofan Lv
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Zunling Zhao
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Qin
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
6
|
Smith NL, Knappenberger KL. Influence of Aliphatic versus Aromatic Ligand Passivation on Intersystem Crossing in Au 25(SR) 18. J Phys Chem A 2024; 128:7620-7627. [PMID: 39197122 DOI: 10.1021/acs.jpca.4c04387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The electronic relaxation dynamics of gold monolayer protected clusters (MPCs) are influenced by the hydrocarbon structure of thiolate protecting ligands. Here, we present ligand-dependent electronic relaxation for a series of Au25(SR)18- (SR = SC8H9, SC6H13, SC12H25) MPCs using femtosecond time-resolved transient absorption spectroscopy. Relaxation pathways included a ligand-independent femtosecond internal conversion and a competing ligand-dependent picosecond intersystem crossing process. Intersystem crossing was accelerated for the aliphatic (SC6H13, SC12H25) thiolate MPCs compared to the aromatic (SC8H9) thiolate MPCs. Additionally, a 1.2 THz quadrupolar acoustic mode and a 2.4 THz breathing acoustic mode was identified in each cluster, which indicated that differences in ligand structure did not result in significant structural changes to the metal core of the MPCs. Considering that the difference in relaxation rates did not result from ligand-induced core deformation, the accelerated intersystem crossing was attributed to greater electron-vibrational coupling to Au-S vibrational modes. The results suggested that the organometallic semiring was less rigid for the aliphatic thiolate MPCs due to reduced steric effects, and in turn, increases in nonradiative decay rates were observed. Overall, these results imply that the protecting ligand structure can be used to modify carrier relaxation in MPCs.
Collapse
Affiliation(s)
- Nathanael L Smith
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
8
|
Jana A, Duary S, Das A, Kini AR, Acharya S, Machacek J, Pathak B, Base T, Pradeep T. Multicolor photoluminescence of Cu 14 clusters modulated using surface ligands. Chem Sci 2024; 15:13741-13752. [PMID: 39211504 PMCID: PMC11352640 DOI: 10.1039/d4sc01566e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Copper nanoclusters exhibit unique structural features and their molecular assembly results in diverse photoluminescence properties. In this study, we present ligand-dependent multicolor luminescence observed in a Cu14 cluster, primarily protected by ortho-carborane-9,12-dithiol (o-CBDT), featuring an octahedral Cu6 inner kernel enveloped by eight isolated copper atoms. The outer layer of the metal kernel consists of six bidentate o-CBDT ligands, in which carborane backbones are connected through μ3-sulphide linkages. The initially prepared Cu14 cluster, solely protected by six o-CBDT ligands, did not crystallize in its native form. However, in the presence of N,N-dimethylformamide (DMF), the cluster crystallized along with six DMF molecules. Single-crystal X-ray diffraction (SCXRD) revealed that the DMF molecules were directly coordinated to six of the eight capping Cu atoms, while oxygen atoms were bound to the two remaining Cu apices in antipodal positions. Efficient tailoring of the cluster surface with DMF shifted its luminescence from yellow to bright red. Luminescence decay profiles showed fluorescence emission for these clusters, originating from the singlet states. Additionally, we synthesized microcrystalline fibers with a one-dimensional assembly of DMF-appended Cu14 clusters and bidentate DPPE linkers. These fibers exhibited bright greenish-yellow phosphorescence emission, originating from the triplet state, indicating the drastic surface tailoring effect of secondary ligands. Theoretical calculations provided insights into the electronic energy levels and associated electronic transitions for these clusters. This work demonstrated dynamic tuning of the emissive excited states of copper nanoclusters through the efficient engineering of ligands.
Collapse
Affiliation(s)
- Arijit Jana
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Subrata Duary
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Amitabha Das
- Department of Chemistry, Indian Institute of Technology Indore Indore 453552 India
| | - Amoghavarsha Ramachandra Kini
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Swetashree Acharya
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Jan Machacek
- Department of Syntheses, Institute of Inorganic Chemistry, The Czech Academy of Sciences 1001 Husinec - Rez 25068 Czech Republic
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore Indore 453552 India
| | - Tomas Base
- Department of Syntheses, Institute of Inorganic Chemistry, The Czech Academy of Sciences 1001 Husinec - Rez 25068 Czech Republic
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| |
Collapse
|
9
|
Luo X, Kong J, Xiao H, Sang D, He K, Zhou M, Liu J. Noncovalent Interaction Guided Precise Photoluminescence Regulation of Gold Nanoclusters in Both Isolate Species and Aggregate States. Angew Chem Int Ed Engl 2024; 63:e202404129. [PMID: 38651974 DOI: 10.1002/anie.202404129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Designing luminophores bright in both isolate species and aggregate states is of great importance in many emerging cutting-edge applications. However, the conventional luminophores either emit in isolate species but quench in aggregate state or emit in aggregate state but darken in isolate species. Here we demonstrate that the precise regulation of noncovalent interactions can realize luminophores bright in both isolate species and aggregate states. It is firstly discovered that the intra-cluster interaction enhances the emission of atomically precise Au25(pMBA)18 (pMBA=4-mercaptobenzoic acid), a nanoscale luminophore, while the inter-cluster interaction quenches the emission. The emission enhancing strategies are then well-designed by both introducing exogenous substances to block inter-cluster interaction and surface manipulation of Au25(pMBA)18 at the molecular level to enhance intra-cluster interaction, opening new possibilities to controllably enhance the luminophore's photoluminescence in both isolate species and aggregate states in different phases including aqueous solution, solid state and organic solvents.
Collapse
Affiliation(s)
- Xiaoxi Luo
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hang Xiao
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dongmiao Sang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui He
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinbin Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
10
|
D'Antoni P, Sementa L, Bonacchi S, Reato M, Maran F, Fortunelli A, Stener M. Combined experimental and computational study of the photoabsorption of the monodoped and nondoped nanoclusters Au 24Pt(SR) 18, Ag 24Pt(SR) 18, and Ag 25(SR) 18. Phys Chem Chem Phys 2024; 26:17569-17576. [PMID: 38867581 DOI: 10.1039/d4cp00789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Assessing the accuracy of first-principles computational approaches is instrumental to predict electronic excitations in metal nanoclusters with quantitative confidence. Here we describe a validation study on the optical response of a set of monolayer-protected clusters (MPC). The photoabsorption spectra of Ag25(DMBT)18-, Ag24Pt(DMBT)182- and Au24Pt(SC4H9)18, where DMBT is 2,4-dimethylbenzenethiolate and SC4H9 is n-butylthiolate, have been obtained at low temperature and compared with accurate TDDFT calculations. An excellent match between theory and experiment, with typical deviations of less than 0.1 eV, was obtained, thereby validating the accuracy and reliability of the proposed computational framework. Moreover, an analysis of the TDDFT simulations allowed us to ascribe all relevant spectral features to specific transitions between occupied/virtual orbital pairs. The doping effect of Pt on the optical response of these ultrasmall MPC systems was identified and discussed.
Collapse
Affiliation(s)
- Pierpaolo D'Antoni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy.
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, I-56124 Pisa, Italy.
| | - Sara Bonacchi
- Department of Chemistry, University of Padova, Via Marzolo 1, I-35131 Padova, Italy.
| | - Mattia Reato
- Department of Chemistry, University of Padova, Via Marzolo 1, I-35131 Padova, Italy.
| | - Flavio Maran
- Department of Chemistry, University of Padova, Via Marzolo 1, I-35131 Padova, Italy.
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, I-56124 Pisa, Italy.
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy.
| |
Collapse
|
11
|
Liu LJ, Zhang MM, Deng Z, Yan LL, Lin Y, Phillips DL, Yam VWW, He J. NIR-II emissive anionic copper nanoclusters with intrinsic photoredox activity in single-electron transfer. Nat Commun 2024; 15:4688. [PMID: 38824144 PMCID: PMC11144245 DOI: 10.1038/s41467-024-49081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Ultrasmall copper nanoclusters have recently emerged as promising photocatalysts for organic synthesis, owing to their exceptional light absorption ability and large surface areas for efficient interactions with substrates. Despite significant advances in cluster-based visible-light photocatalysis, the types of organic transformations that copper nanoclusters can catalyze remain limited to date. Herein, we report a structurally well-defined anionic Cu40 nanocluster that emits in the second near-infrared region (NIR-II, 1000-1700 nm) after photoexcitation and can conduct single-electron transfer with fluoroalkyl iodides without the need for external ligand activation. This photoredox-active copper nanocluster efficiently catalyzes the three-component radical couplings of alkenes, fluoroalkyl iodides, and trimethylsilyl cyanide under blue-LED irradiation at room temperature. A variety of fluorine-containing electrophiles and a cyanide nucleophile can be added onto an array of alkenes, including styrenes and aliphatic olefins. Our current work demonstrates the viability of using readily accessible metal nanoclusters to establish photocatalytic systems with a high degree of practicality and reaction complexity.
Collapse
Affiliation(s)
- Li-Juan Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou, China
| | - Mao-Mao Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Ziqi Deng
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Liang-Liang Yan
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
- Institute of Molecular Functional Materials, The University of Hong Kong, Hong Kong, China
| | - Yang Lin
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | | | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
- Institute of Molecular Functional Materials, The University of Hong Kong, Hong Kong, China
| | - Jian He
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China.
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China.
| |
Collapse
|
12
|
Liu Z, Luo L, Jin R. Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309073. [PMID: 37922431 DOI: 10.1002/adma.202309073] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Atomically precise gold nanoclusters (NCs) have emerged as a new class of precision materials and attracted wide interest in recent years. One of the unique properties of such nanoclusters pertains to their photoluminescence (PL), for it can widely span visible to near-infrared-I and -II wavelengths (NIR-I/II), and even beyond 1700 nm by manipulating the size, structure, and composition. The current research efforts focus on the structure-PL correlation and the development of strategies for raising the PL quantum yields, which is nontrivial when moving from the visible to the near-infrared wavelengths, especially in the NIR-II regions. This review summarizes the recent progress in the field, including i) the types of PL observed in gold NCs such as fluorescence, phosphorescence, and thermally activated delayed fluorescence, as well as dual emission; ii) some effective strategies that are devised to improve the PL quantum yield (QY) of gold NCs, such as heterometal doping, surface rigidification, and core phonon engineering, with double-digit QYs for the NIR PL on the horizons; and iii) the applications of luminescent gold NCs in bioimaging, photosensitization, and optoelectronics. Finally, the remaining challenges and opportunities for future research are highlighted.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
13
|
Liu Z, Zhou M, Luo L, Wang Y, Kahng E, Jin R. Elucidating the Near-Infrared Photoluminescence Mechanism of Homometal and Doped M 25(SR) 18 Nanoclusters. J Am Chem Soc 2023; 145:19969-19981. [PMID: 37642696 PMCID: PMC10510323 DOI: 10.1021/jacs.3c06543] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/31/2023]
Abstract
More than a decade of research on the photoluminescence (PL) of classic Au25(SR)18 and its doped nanoclusters (NCs) still leaves many fundamental questions unanswered due to the complex electron dynamics. Here, we revisit the homogold Au25 (ligands omitted hereafter) and doped NCs, as well as the Ag25 and doped ones, for a comparative study to disentangle the influencing factors and elucidate the PL mechanism. We find that the strong electron-vibration coupling in Au25 leads to weak PL in the near-infrared region (∼1000 nm, quantum yield QY = 1% in solution at room temperature). Heteroatom doping of Au25 with a single Cd or Hg atom strengthens the coupling of the exciton with staple vibrations but reduces the coupling with the core breathing and quadrupolar modes. The QYs of the three MAu24 NCs (M = Hg, Au, and Cd) follow a linear relation with their PL lifetimes, suggesting a mechanism of suppressed nonradiative decay in PL enhancement. In contrast, the weaker electron-vibration coupling in Ag25 leads to higher PL (QY = 3.5%), and single Au atom doping further leads to a 5× enhancement of the radiative rate and a suppression of nonradiative decay rate (i.e., twice the PL lifetime of Ag25) in AuAg24 (hence, QY 35%), but doping more Au atoms results in gold distribution to staple motifs and thus triggering of strong electron-vibration coupling as in the MAu24 NCs, hence, counteracting the radiative enhancement effect and giving rise to only 5% QY for AuxAg25-x (x = 3-10). The obtained insights will provide guidance for the design of metal NCs with high PL for lighting, sensing, and optoelectronic applications.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yitong Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ellen Kahng
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Arima D, Mitsui M. Structurally Flexible Au-Cu Alloy Nanoclusters Enabling Efficient Triplet Sensitization and Photon Upconversion. J Am Chem Soc 2023; 145:6994-7004. [PMID: 36939572 DOI: 10.1021/jacs.3c00870] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Ligand-protected noble-metal nanoclusters exhibit an innately triplet nature and have been recently recognized as emerging platforms for triplet sensitizers of photon upconversion (UC) via triplet-triplet annihilation. Herein, we report that a structurally flexible Au-Cu alloy nanocluster, [Au4Cu4(S-Adm)5(DPPM)2]+ (Au4Cu4; S-Adm = 1-adamantanethiolate, DPPM = bis(diphenylphosphino)methane), exhibited favorable sensitizer properties and superior UC performance. Contrary to the structurally rigid Au2Cu6(S-Adm)6(TPP)2 (Au2Cu6, TPP = triphenylphosphine), Au4Cu4 exhibited significantly better sensitizer characteristics, such as a near-unity quantum yield for intersystem crossing (ISC), long triplet lifetime (ca. 8 μs), and efficient triplet energy transfer (TET). The efficient ISC of Au4Cu4 was attributed to the practically negligible activation barriers during the ISC process, which was caused by the spin-orbit interaction between the two isoenergetic isomers predicted by theoretical calculations. A series of aromatic molecules with different triplet energies were used as acceptors to reveal the driving force dependence of the TET rate constant (kTET). This dependency was analyzed to evaluate the triplet energy and sensitization ability of the alloy nanoclusters. The results showed that the maximum value of kTET for Au4Cu4 was seven times larger than that for Au2Cu6, which presumably reflects the structural/electronic fluctuations of Au4Cu4 during the triplet state residence. The combination of the Au4Cu4 sensitizer and the 9,10-diphenylanthracene (DPA) annihilator/emitter achieved UC with internal quantum yields of 14% (out of 50% maximum) and extremely low threshold intensities (2-26 mWcm-2). This performance far exceeds that of Au2Cu6 and is also outstanding among the organic-inorganic hybrid nanomaterials reported so far.
Collapse
Affiliation(s)
- Daichi Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masaaki Mitsui
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
15
|
Zheng Y, Zhu Y, Dai J, Lei J, You J, Chen N, Wang L, Luo M, Wu J. Atomically precise Au nanocluster-embedded carrageenan for single near-infrared light-triggered photothermal and photodynamic antibacterial therapy. Int J Biol Macromol 2023; 230:123452. [PMID: 36708904 DOI: 10.1016/j.ijbiomac.2023.123452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
In this study, we report atomically precise gold nanoclusters-embedded natural polysaccharide carrageenan as a novel hydrogel platform for single near-infrared light-triggered photothermal (PTT) and photodynamic (PDT) antibacterial therapy. Briefly, atomically precise captopril-capped Au nanoclusters (Au25Capt18) prepared by an alkaline NaBH4 reduction method and then embedded them into the biosafe carrageenan to achieve superior PTT and PDT dual-mode antibacterial effect. In this platform, the embedded Au25Capt18, as simple-component phototherapeutic agents, exhibit superior thermal effects and singlet oxygen generation under a single near-infrared (NIR, 808 nm) light irradiation, which enables rapid elimination of bacteria. Carrageenan endows the hydrogel platform with superior gelation characteristics and wound microenvironmental regulation. The Au25Capt18-embedded hydrogels exhibited good water retention, hemostasis, and breathability, providing a favorable niche environment for promoting wound healing. In vitro experiments confirmed the excellent antibacterial activity of the Au25Capt18 hydrogels against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The antibacterial effect and promoting wound healing function were further validated in a S. aureus-infected wound model. Biosafety evaluation showed that the Au25Capt18 hydrogel has excellent biocompatibility. This PTT/PDT dual-mode therapy offers an alternative strategy for battling bacterial infections without antibiotics. More importantly, this hydrogel is facile to prepare which is helpful for expanding applications.
Collapse
Affiliation(s)
- Youkun Zheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuxin Zhu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianghong Dai
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jiaojiao Lei
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jingcan You
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
16
|
Mitsui M, Arima D, Uchida A, Yoshida K, Arai Y, Kawasaki K, Niihori Y. Charge-Transfer-Mediated Mechanism Dominates Oxygen Quenching of Ligand-Protected Noble-Metal Cluster Photoluminescence. J Phys Chem Lett 2022; 13:9272-9278. [PMID: 36173370 DOI: 10.1021/acs.jpclett.2c02568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photoluminescence (PL) quenching of ligand-protected noble-metal clusters (NMCs) by molecular oxygen is often used to define whether the PL of NMC is fluorescent or phosphorescent, and only energy transfer has been always considered as the quenching mechanism. Herein, we performed the Rehm-Weller analysis of the O2-induced PL quenching of 13 different NMCs and found that the charge-transfer (CT)-mediated mechanism dominates the quenching process. The quenching rate constant showed a clear dependence on the CT driving force, varied markedly from 106 to 109 M-1s-1. Transient absorption spectroscopy and photon upconversion measurements confirmed the triplet sensitization of aromatic molecules by NMCs regardless of the quenching degree by O2, establishing that the PL of NMCs under investigation originates from the excited triplet state (i.e., phosphorescence). The results herein provide an essential indicator for correctly determining whether the PL of an NMC is fluorescent or phosphorescent.
Collapse
Affiliation(s)
- Masaaki Mitsui
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Daichi Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Atsuki Uchida
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Kouta Yoshida
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yamato Arai
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Kakeru Kawasaki
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yoshiki Niihori
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
17
|
Zou J, Fei W, Qiao Y, Yang Y, He Z, Feng L, Li MB, Wu Z. Combined synthesis of interconvertible Au11Cd and Au26Cd5 for photocatalytic oxidations involving singlet oxygen. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Ma W, Mao J, He CT, Shao L, Liu J, Wang M, Yu P, Mao L. Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chem Sci 2022; 13:5606-5615. [PMID: 35694341 PMCID: PMC9116287 DOI: 10.1039/d2sc01110g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
Singlet oxygen (1O2) as an excited electronic state of O2 plays a significant role in the ubiquitous oxidative processes from enzymatic oxidative metabolism to industrial catalytic oxidation. Generally, 1O2 can...
Collapse
Affiliation(s)
- Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Chun-Ting He
- MOE Key Laboratory of Functional Small Organic Molecule, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 China
| | - Leihou Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- College of Chemistry, Beijing Normal University Xinjiekouwai Street 19 Beijing 100875 China
| |
Collapse
|
19
|
Ma H, Wang J, Zhang XD. Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Medves M, Sementa L, Toffoli D, Fronzoni G, Krishnadas KR, Bürgi T, Bonacchi S, Dainese T, Maran F, Fortunelli A, Stener M. Predictive optical photoabsorption of Ag 24Au(DMBT) 18 - via efficient TDDFT simulations. J Chem Phys 2021; 155:084103. [PMID: 34470368 DOI: 10.1063/5.0056869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report a computational study via time-dependent density-functional theory (TDDFT) methods of the photo-absorption spectrum of an atomically precise monolayer-protected cluster (MPC), the Ag24Au(DMBT)18 single negative anion, where DMBT is the 2,4-dimethylbenzenethiolate ligand. The use of efficient simulation algorithms, i.e., the complex polarizability polTDDFT approach and the hybrid-diagonal approximation, allows us to employ a variety of exchange-correlation (xc-) functionals at an affordable computational cost. We are thus able to show, first, how the optical response of this prototypical compound, especially but not exclusively in the absorption threshold (low-energy) region, is sensitive to (1) the choice of the xc-functionals employed in the Kohn-Sham equations and the TDDFT kernel and (2) the choice of the MPC geometry. By comparing simulated spectra with precise experimental photoabsorption data obtained from room temperature down to low temperatures, we then demonstrate how a hybrid xc-functional in both the Kohn-Sham equations and the diagonal TDDFT kernel at the crystallographically determined experimental geometry is able to provide a consistent agreement between simulated and measured spectra across the entire optical region. Single-particle decomposition analysis tools finally allow us to understand the physical reason for the failure of non-hybrid approaches.
Collapse
Affiliation(s)
- Marco Medves
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, I-56124 Pisa, Italy
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | - Giovanna Fronzoni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | | | - Thomas Bürgi
- Département de Chimie Physique, Université de Gene've, 1211 Geneva 4, Switzerland
| | - Sara Bonacchi
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy
| | - Tiziano Dainese
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy
| | - Flavio Maran
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, I-56124 Pisa, Italy
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| |
Collapse
|
21
|
Takano S, Hirai H, Nakashima T, Iwasa T, Taketsugu T, Tsukuda T. Photoluminescence of Doped Superatoms M@Au 12 (M = Ru, Rh, Ir) Homoleptically Capped by (Ph 2)PCH 2P(Ph 2): Efficient Room-Temperature Phosphorescence from Ru@Au 12. J Am Chem Soc 2021; 143:10560-10564. [PMID: 34232036 DOI: 10.1021/jacs.1c05019] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of doped gold superatoms M@Au12 (M = Ru, Rh, Ir) was synthesized by capping with the bidentate ligand (Ph2)PCH2P(Ph2). A single-crystal X-ray diffraction analysis showed that all the M@Au12 superatoms had icosahedral motifs with a significantly higher symmetry than that of the pure Au13 counterpart due to different coordination geometries. The Ru@Au12 superatom exhibited a room-temperature phosphorescence with the highest quantum yield of 0.37 in deaerated dichloromethane. Density functional theory calculations suggested that the efficient phosphorescence is ascribed to a rapid intersystem crossing due to the similarity between the singlet and triplet excited states in terms of structure and energy.
Collapse
Affiliation(s)
- Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haru Hirai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Nakashima
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
22
|
|
23
|
Saito Y, Shichibu Y, Konishi K. Self-promoted solid-state covalent networking of Au 25(SR) 18 through reversible disulfide bonds. A critical effect of the nanocluster in oxidation processes. NANOSCALE 2021; 13:9971-9977. [PMID: 33978018 DOI: 10.1039/d1nr01812d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Covalent crosslinking of ligand-protected gold nanoclusters offers interesting platforms to investigate the properties associated with the synergetic effects of multiple nanoclusters. In this paper, we report the synthesis of covalent networks of [Au25(SR)18]- nanoclusters using reversible disulfide linkages, which was facilitated by the unique capabilities of the nanocluster to mediate oxidation processes. The conventional Au25 synthesis using 1,6-hexanedithiol afforded a soluble oligodisulfide-appended [Au25(SR)18]- monomer possessing uncoordinated anionic thiolate sites at the terminal ends. Upon exposure to O2, the monomer spontaneously underwent intercluster crosslinking in the solid state to give free-standing transparent films, in which the nanoclusters were condensed with the retention of the original Au25 framework. Through studies combined with model experiments, the Au25 cluster was found to be involved in the O2-mediated radical reactions, promoting the formation of intercluster disulfide linkages. The composition of the films implied the involvement of reversible exchange reactions between disulfide and thiyl radicals, from which it was suggested that solid-state crosslinking occurred in adaptive manners under the control of dynamic covalent chemistry. We also demonstrate that the nanocluster film can serve as a robust and efficient heterogeneous photosensitizer to mediate the generation of singlet oxygen. This work demonstrates a unique aspect of the Au25(SR)18-type nanocluster to mediate oxidation processes as well as the utility of the concept of dynamic covalent chemistry in the bottom-up construction of nanomaterials, which would widen the potential of ligand-protected nanoclusters.
Collapse
Affiliation(s)
- Yuki Saito
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan.
| | | | | |
Collapse
|
24
|
Gao P, Chang X, Zhang D, Cai Y, Chen G, Wang H, Wang T. Synergistic integration of metal nanoclusters and biomolecules as hybrid systems for therapeutic applications. Acta Pharm Sin B 2021; 11:1175-1199. [PMID: 34094827 PMCID: PMC8144895 DOI: 10.1016/j.apsb.2020.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic nanoparticles are designed to enhance efficacy, real-time monitoring, targeting accuracy, biocompatibility, biodegradability, safety, and the synergy of diagnosis and treatment of diseases by leveraging the unique physicochemical and biological properties of well-developed bio-nanomaterials. Recently, bio-inspired metal nanoclusters (NCs) consisting of several to roughly dozens of atoms (<2 nm) have attracted increasing research interest, owing to their ultrafine size, tunable fluorescent capability, good biocompatibility, variable metallic composition, and extensive surface bio-functionalization. Hybrid core-shell nanostructures that effectively incorporate unique fluorescent inorganic moieties with various biomolecules, such as proteins (enzymes, antigens, and antibodies), DNA, and specific cells, create fluorescently visualized molecular nanoparticle. The resultant nanoparticles possess combinatorial properties and synergistic efficacy, such as simplicity, active bio-responsiveness, improved applicability, and low cost, for combination therapy, such as accurate targeting, bioimaging, and enhanced therapeutic and biocatalytic effects. In contrast to larger nanoparticles, bio-inspired metal NCs allow rapid renal clearance and better pharmacokinetics in biological systems. Notably, advances in nanoscience, interfacial chemistry, and biotechnologies have further spurred researchers to explore bio-inspired metal NCs for therapeutic purposes. The current review presents a comprehensive and timely overview of various metal NCs for various therapeutic applications, with a special emphasis on the design rationale behind the use of biomolecules/cells as the main scaffolds. In the different hybrid platform, we summarize the current challenges and emerging perspectives, which are expected to offer in-depth insight into the rational design of bio-inspired metal NCs for personalized treatment and clinical translation.
Collapse
Affiliation(s)
- Peng Gao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Chang
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Hao Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Tianfu Wang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
25
|
Shi Q, Qin Z, Sharma S, Li G. Recent Progress in Heterogeneous Catalysis by Atomically and Structurally Precise Metal Nanoclusters. CHEM REC 2021; 21:879-892. [DOI: 10.1002/tcr.202100001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Quanquan Shi
- College of Science College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot 010018 China
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhaoxian Qin
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Sachil Sharma
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Gao Li
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
26
|
Niihori Y, Wada Y, Mitsui M. Single Platinum Atom Doping to Silver Clusters Enables Near‐Infrared‐to‐Blue Photon Upconversion. Angew Chem Int Ed Engl 2021; 60:2822-2827. [DOI: 10.1002/anie.202013725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/16/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Yuki Wada
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Masaaki Mitsui
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| |
Collapse
|
27
|
Niihori Y, Wada Y, Mitsui M. Single Platinum Atom Doping to Silver Clusters Enables Near‐Infrared‐to‐Blue Photon Upconversion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshiki Niihori
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Yuki Wada
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Masaaki Mitsui
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| |
Collapse
|
28
|
Bonacchi S, Antonello S, Dainese T, Maran F. Atomically Precise Metal Nanoclusters: Novel Building Blocks for Hierarchical Structures. Chemistry 2021; 27:30-38. [PMID: 32794586 DOI: 10.1002/chem.202003155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Indexed: 11/08/2022]
Abstract
Atomically precise ligand-protected nanoclusters (NCs) constitute an important class of compounds that exhibit well-defined structures and, when sufficiently small, evident molecular properties. NCs provide versatile building blocks to fabricate hierarchical superstructures. The assembly of NCs indeed offers opportunities to devise new materials with given structures and able to carry out specific functions. In this Concept article, we highlight the possibilities offered by NCs in which the physicochemical properties are controlled by the introduction of foreign metal atoms and/or modification of the composition of the capping monolayer with functional ligands. Different approaches to assemble NCs into dimers and higher hierarchy structures and the corresponding changes in physicochemical properties are also described.
Collapse
Affiliation(s)
- Sara Bonacchi
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Sabrina Antonello
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Tiziano Dainese
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Flavio Maran
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, 06269, Connecticut, USA
| |
Collapse
|
29
|
Kang X, Li Y, Zhu M, Jin R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem Soc Rev 2020; 49:6443-6514. [PMID: 32760953 DOI: 10.1039/c9cs00633h] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal nanoclusters fill the gap between discrete atoms and plasmonic nanoparticles, providing unique opportunities for investigating the quantum effects and precise structure-property correlations at the atomic level. As a versatile strategy, alloying can largely improve the physicochemical performances compared to the corresponding homo-metal nanoclusters, and thus benefit the applications of such nanomaterials. In this review, we highlight the achievements of atomically precise alloy nanoclusters, and summarize the alloying principles and fundamentals, including the synthetic methods, site-preferences for different heteroatoms in the templates, and alloying-induced structure and property changes. First, based on various Au or Ag nanocluster templates, heteroatom doping modes are presented. The templates with electronic shell-closing configurations tend to maintain their structures during doping, while the others may undergo transformation and give rise to alloy nanoclusters with new structures. Second, alloy nanoclusters of specific magic sizes are reviewed. The arrangement of different atoms is related to the symmetry of the structures; that is, different atoms are symmetrically located in the nanoclusters of smaller sizes, and evolve into shell-by-shell structures at larger sizes. Then, we elaborate on the alloying effects in terms of optical, electrochemical, electroluminescent, magnetic and chiral properties, as well as the stability and reactivity via comparisons between the doped nanoclusters and their homo-metal counterparts. For example, central heteroatom-induced photoluminescence enhancement is emphasized. The applications of alloy nanoclusters in catalysis, chemical sensing, bio-labeling, and other fields are further discussed. Finally, we provide perspectives on existing issues and future efforts. Overall, this review provides a comprehensive synthetic toolbox and controllable doping modes so as to achieve more alloy nanoclusters with customized compositions, structures, and properties for applications. This review is based on publications available up to February 2020.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | | | | | | |
Collapse
|