1
|
Patel K, Wilczek L, Calogero F, Marek I. Formally Stereoretentive S N1 Reactions of Homoallylic Tertiary Alcohols Via Nonclassical Carbocation. J Am Chem Soc 2025. [PMID: 40424501 DOI: 10.1021/jacs.5c05680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
We present a stereoretentive nucleophilic substitution of homoallylic tertiary alcohols via the formation of a nonclassical cyclopropyl carbinyl (CPC) carbocation intermediate. This strategy enables the creation of highly congested tertiary centers with preserved stereocontrol, addressing the typical challenges of carbocation instability and reactivity in SN1 mechanisms. The stabilization of the CPC intermediate is crucial for achieving precise regio- and stereoselectivity, significantly enhancing the utility of SN1-type mechanisms in complex molecule synthesis.
Collapse
Affiliation(s)
- Kaushalendra Patel
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| | - Leonie Wilczek
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| | - Francesco Calogero
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| |
Collapse
|
2
|
Liang KC, Ling TP, Qin HT, Liu F. Sulfinylation of Tertiary Alkyl Halides via a Halogenophilic Substitution (S N2X) Reaction. J Org Chem 2025; 90:5393-5397. [PMID: 40208698 DOI: 10.1021/acs.joc.4c03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The halogenophilic SN2X reaction involving a nucleophilic attack on the X group from the front is less sensitive to backside steric hindrance. Herein, we report a mild and efficient SN2X reaction for sulfinylation of activated tertiary alkyl halides, which could provide a novel method for accessing sulfoxides decorated with a congested carbon center. Preliminary mechanistic studies indicated that the generated sulfinyl bromides would be the key electrophilic intermediates in the reaction.
Collapse
Affiliation(s)
- Kai-Cheng Liang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Tian-Peng Ling
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Hai-Tao Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
3
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 PMCID: PMC12056945 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and EngineeringYamaguchi University2-16-1 TokiwadaiUbeYamaguchi755-8611Japan
| |
Collapse
|
4
|
Teo WJ, Esteve Guasch J, Jiang L, Li B, Suero MG. Rh-Catalyzed Enantioselective Single-Carbon Insertion of Alkenes. J Am Chem Soc 2024; 146:21837-21846. [PMID: 39058396 PMCID: PMC11311232 DOI: 10.1021/jacs.4c06158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The interest in the discovery and development of skeletal editing processes that selectively insert, exchange, or delete an atom in organic molecules has significantly increased over the last few years. However, processes of this class that proceed through the creation of a chiral center with high asymmetric induction have been largely unexplored. Herein, we report an enantioselective single-carbon insertion in aryl- and alkyl-substituted alkenes mediated by a catalytically generated chiral Rh-carbynoid and phosphate nucleophiles that produce enantioenriched allylic phosphates (enantiomeric ratio (e.r.) = 89.5:10.5-99.5:0.5). The key to the process was a diastereo- and enantioselective cyclopropanation of the alkene with a chiral Rh-carbynoid and the formation of a transient cyclopropyl-I(III) intermediate. The addition of the phosphate nucleophile provided a cyclopropyl-I(III)-phosphate intermediate that undergoes disrotatory ring opening following the Woodward-Hoffmann-DePuy rules. This process led to a chiral intimate allyl cation-phosphate pair that evolved with excellent enantioretention. The evidence of an SN1-like SNi mechanism is provided by linear free-energy relationship studies, kinetic isotope effects, X-ray crystallography, and control experiments. We demonstrated the utility of the enantioenriched allylic phosphates in late-stage N-H allylations of natural products and drug molecules and in cross-coupling reactions that occurred with excellent enantiospecificity.
Collapse
Affiliation(s)
- Wei Jie Teo
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Josep Esteve Guasch
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel·lí Domingo, 1, Tarragona 43007, Spain
| | - Liyin Jiang
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Bowen Li
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Sun XL, Chen YJ, Cai HW, Gu XY, Li DS, Wu LT, Wan WM. Versatile Polymerization-Induced Emission Polymers from Barbier Polymerization of Cinnamic Esters with Tunable Emission. Chemistry 2024; 30:e202400045. [PMID: 38298110 DOI: 10.1002/chem.202400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Cinnamic ester is a common and abundant chemical substance, which can be extracted from natural plants. Compared with traditional esters, cinnamic ester contains α,β-unsaturated carbonyl structure with multiple reactive sites, resulting in more abundant reactivities and chemical structures. Here, a versatile polymerization-induced emission (PIE) is successfully demonstrated through Barbier polymerization of cinnamic ester. Attributed to its abundant reactivities of α,β-unsaturated carbonyl structure, Barbier polymerization of cinnamic esters with different organodihalides gives polyalcohol and polyketone via 1,2-addition and 1,4-addition, respectively, which is also confirmed by small molecular model reactions. Meanwhile, these organodihalides dependant polyalcohol and polyketone exhibit different non-traditional intrinsic luminescence (NTIL) from aggregation-induced emission (AIE) type to aggregation-caused quenching (ACQ) type, where novel PIE luminogens (PIEgens) are revealed. Further potential applications in explosive detection are carried out, where it achieves TNT detection sensitivity at ppm level in solution and ng level on the test paper. This work therefore expands the structure and functionality libraries of monomer, polymer and NTIL, which might cause inspirations to different fields including polymer chemistry, NTIL, AIE and PIE.
Collapse
Affiliation(s)
- Xiao-Li Sun
- College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P.R. of China
| | - Yu-Jiao Chen
- College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P.R. of China
| | - Hua-Wen Cai
- College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P.R. of China
| | - Xi-Yao Gu
- College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P.R. of China
| | - De-Shan Li
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, 350002, P.R. of China
| | - Liang-Tao Wu
- College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P.R. of China
| | - Wen-Ming Wan
- College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P.R. of China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, 350002, P.R. of China
| |
Collapse
|
6
|
Sato K, Fujita T, Takeuchi T, Suzuki T, Ikeuchi K, Tanino K. Alcohol synthesis based on the S N2 reactions of alkyl halides with the squarate dianion. Org Biomol Chem 2024; 22:1369-1373. [PMID: 38232248 DOI: 10.1039/d3ob01507f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A convenient method has been developed for transforming alkyl halides into the corresponding alcohols via an SN2 reaction. Treatment of an alkyl halide with the squarate dianion at high temperature produces mono-alkyl squarate, and a one-pot basic hydrolysis of the intermediate affords the alcohol in good yield.
Collapse
Affiliation(s)
- Kazuto Sato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomoyuki Fujita
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Takeuchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
7
|
Moon HW, Lavagnino MN, Lim S, Palkowitz MD, Mandler MD, Beutner GL, Drance MJ, Lipshultz JM, Scola PM, Radosevich AT. Deoxyfluorination of 1°, 2°, and 3° Alcohols by Nonbasic O-H Activation and Lewis Acid-Catalyzed Fluoride Shuttling. J Am Chem Soc 2023; 145:22735-22744. [PMID: 37812176 PMCID: PMC11179691 DOI: 10.1021/jacs.3c08373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A method for deoxyfluorination of aliphatic primary, secondary, and tertiary alcohols is reported, employing a nontrigonal phosphorus triamide for base-free alcohol activation in conjunction with an organic soluble fluoride donor and a triarylborane fluoride shuttling catalyst. Mechanistic experiments are consistent with a reaction that proceeds by the collapse of an oxyphosphonium fluoroborate ion pair with fluoride transfer. The substrate scope complements existing deoxyfluorination methods and enables the preparation of homochiral secondary and tertiary alkylfluorides by stereoinversion of the substrate alcohol.
Collapse
Affiliation(s)
- Hye Won Moon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Marissa N. Lavagnino
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Soohyun Lim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Maximilian D. Palkowitz
- Small Molecule Drug Discovery, Bristol Myers Squibb, 250 Water Street, Cambridge, Massachusetts 02141, United States
| | - Michael D. Mandler
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Gregory L. Beutner
- Chemical and Synthetic Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Myles J. Drance
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey M. Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Paul M. Scola
- Small Molecule Drug Discovery, Bristol Myers Squibb, 250 Water Street, Cambridge, Massachusetts 02141, United States
| | - Alexander T. Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Kim B, Puthukanoori RK, Martha B, Reddy Muthyala N, Thota S, Thummala V, Rao Paraselli B, Chen DYK. Stereo-Controlled Synthesis of Vicinal Tertiary Carbinols: Application in the Synthesis of a Diol Substructure of Zaragozic Acid, Pactamycin and Ryanodol. Chemistry 2023; 29:e202301938. [PMID: 37395682 DOI: 10.1002/chem.202301938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
A novel and flexible approach for the stereo-controlled synthesis of vicinal tertiary carbinols is reported. The developed strategy featured a highly diastereoselective singlet-oxygen (O2 1 ) [4+2] cycloaddition of rationally designed cyclohexadienones (derived from oxidative dearomatization of the corresponding carboxylic-acid appended phenol precursors), followed by programmed "O-O" and "C-C" bond cleavage. In doing so, a highly functionalized and versatile intermediate was identified and prepared in synthetically useful quantity as a plausible precursor to access a variety of designed and naturally occurring vicinal tertiary carbinol containing compounds. Most notably, the developed strategy was successfully applied in the stereo-controlled synthesis of advanced core structures of zaragozic acid, pactamycin and ryanodol.
Collapse
Affiliation(s)
- Byungjoo Kim
- Department of Chemistry, Seoul National University, Gwanak-1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | | | | | | | - Srinivas Thota
- Chemveda Life Sciences, Pvt. Ltd., Hyderabad, Telangana, 500039, India
| | | | | | - David Y-K Chen
- Department of Chemistry, Seoul National University, Gwanak-1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
9
|
Chen X, Marek I. Highly Diastereoselective Preparation of Tertiary Alkyl Isonitriles by Stereoinvertive Nucleophilic Substitution at a Nonclassical Carbocation. Org Lett 2023; 25:2285-2288. [PMID: 36976777 PMCID: PMC10088034 DOI: 10.1021/acs.orglett.3c00583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 03/29/2023]
Abstract
A highly efficient SnCl4-catalyzed nucleophilic isocyanation of cyclopropyl ethers has been developed. The reaction proceeds at the quaternary carbon stereocenter of the cyclopropane with a complete inversion of configuration, providing a new avenue for the construction of synthetically challenging tertiary alkyl isonitriles with high diastereopurity. The diversity of the incorporated isocyanide group has been demonstrated by the transformation of tertiary alkyl isonitriles into the corresponding tertiary alkyl amines, amides, and cyclic ketoimines.
Collapse
Affiliation(s)
- Xu Chen
- Schulich Faculty of Chemistry and Resnick
Sustainability Center for Catalysis, Technion
- Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry and Resnick
Sustainability Center for Catalysis, Technion
- Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
10
|
Ghosh S, Changotra A, Petrone DA, Isomura M, Carreira EM, Sunoj RB. Role of Noncovalent Interactions in Inducing High Enantioselectivity in an Alcohol Reductive Deoxygenation Reaction Involving a Planar Carbocationic Intermediate. J Am Chem Soc 2023; 145:2884-2900. [PMID: 36695526 DOI: 10.1021/jacs.2c10975] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The involvement of planar carbocation intermediates is generally considered undesirable in asymmetric catalysis due to the difficulty in gaining facial control and their intrinsic stability issues. Recently, suitably designed chiral catalyst(s) have enabled a guided approach of nucleophiles to one of the prochiral faces of carbocations affording high enantiocontrol. Herein, we present the vital mechanistic insights from our comprehensive density functional theory (B3LYP-D3) study on a chiral Ir-phosphoramidite-catalyzed asymmetric reductive deoxygenation of racemic tertiary α-substituted allenylic alcohols. The catalytic transformation relies on the synergistic action of a phosphoramidite-modified Ir catalyst and Bi(OTf)3, first leading to the formation of an Ir-π-allenyl carbocation intermediate through a turn-over-determining SN1 ionization, followed by a face-selective hydride transfer from a Hantzsch ester analogue to yield an enantioenriched product. Bi(OTf)3 was found to promote a significant number of ionic interactions as well as noncovalent interactions (NCIs) with the catalyst and the substrates (allenylic alcohol and Hantzsch ester), thus providing access to a lower energy route as compared to the pathways devoid of Bi(OTf)3. In the nucleophilic addition, the chiral induction was found to depend on the number and efficacy of such key NCIs. The curious case of reversal of enantioselectivity, when the α-substituent of the allenyl alcohol is changed from methyl to cyclopropyl, was identified to originate from a change in mechanism from an enantioconvergent pathway (α-methyl) to a dynamic kinetic asymmetric transformation (α-cyclopropyl). These molecular insights could lead to newer strategies to tame tertiary carbocations in enantioselective reactions using suitable combinations of catalysts and additives.
Collapse
Affiliation(s)
- Supratim Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - David A Petrone
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.,Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Mayuko Isomura
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Chen X, Patel K, Marek I. Stereoselective Construction of Tertiary Homoallyl Alcohols and Ethers by Nucleophilic Substitution at Quaternary Carbon Stereocenters. Angew Chem Int Ed Engl 2023; 62:e202212425. [PMID: 36413111 PMCID: PMC10107121 DOI: 10.1002/anie.202212425] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
An efficient method for the stereoselective construction of tertiary C-O bonds via a stereoinvertive nucleophilic substitution at the quaternary carbon stereocenter of cyclopropyl carbinol derivatives using water, alcohols and phenols as nucleophiles has been developed. This substitution reaction proceeds under mild conditions and tolerates several functional groups, providing a new access to the stereoselective formation of highly congested tertiary homoallyl alcohols and ethers.
Collapse
Affiliation(s)
- Xu Chen
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Technion CityHaifa3200009Israel
| | - Kaushalendra Patel
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Technion CityHaifa3200009Israel
| | - Ilan Marek
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Technion CityHaifa3200009Israel
| |
Collapse
|
12
|
Chen X, Patel K, Marek I. Stereospecific nucleophilic substitution at quaternary carbon stereocenters of cyclopropyl carbinols. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Wu H, Li X, Yang L, Chen W, Zou C, Deng W, Wang Z, Hu J, Li Y, Huang Y. Cathodic Carbonyl Alkylation of Aryl Ketones or Aldehydes with Unactivated Alkyl Halides. Org Lett 2022; 24:9342-9347. [PMID: 36484503 DOI: 10.1021/acs.orglett.2c04019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient cathodic carbonyl alkylation of aryl ketones or aldehydes with unactivated alkyl halides has been realized through the electrochemical activation of iron. The protocol is believed to include a radical-radical coupling or nucleophilic addition process, and the formation of ketyl radicals and alkyl radicals has been demonstrated. The protocol provides various tertiary or secondary alcohols by the formation of intermolecular C-C bonds under safe and mild conditions, is scalable, consumes little energy, and exhibits a broad substrate scope.
Collapse
Affiliation(s)
- Hongting Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Xinling Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Ling Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Weihao Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Canlin Zou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Weijie Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Ziliang Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| |
Collapse
|
14
|
Pavlíčková T, Stöckl Y, Marek I. Synthesis and Functionalization of Tertiary Propargylic Boronic Esters by Alkynyllithium-Mediated 1,2-Metalate Rearrangement of Borylated Cyclopropanes. Org Lett 2022; 24:8901-8906. [PMID: 36446049 PMCID: PMC9791689 DOI: 10.1021/acs.orglett.2c03756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 11/30/2022]
Abstract
Implementing the use of alkynyllithium reagents in a stereospecific 1,2-metalate rearrangement-mediated ring opening of polysubstituted cyclopropyl boronic esters provides a variety of tertiary pinacol boranes bearing adjacent tertiary or quaternary carbon stereocenters with high levels of diastereomeric purity. The potential of this strategy was demonstrated through a selection of α- and γ-functionalization of the propargyl boronic esters.
Collapse
Affiliation(s)
- Tereza Pavlíčková
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Yannick Stöckl
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
15
|
Calcatelli A, Denton RM, Ball LT. Modular Synthesis of α,α-Diaryl α-Amino Esters via Bi(V)-Mediated Arylation/S N2-Displacement of Kukhtin–Ramirez Intermediates. Org Lett 2022; 24:8002-8007. [PMID: 36278869 PMCID: PMC9641671 DOI: 10.1021/acs.orglett.2c03201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We report a concise and modular approach to α,α-diaryl
α-amino esters from readily available α-keto esters. This
mild, one-pot protocol proceeds via ketone umpolung, with in situ formation of a Kukhtin–Ramirez intermediate
preceding sequential electrophilic arylation by Bi(V) and SN2 displacement by an amine. The methodology is compatible with a
wide range of anilines and primary amines - including derivatives
of drugs and proteinogenic amino acids - Bi(V) arylating agents, and
α-keto ester substrates.
Collapse
Affiliation(s)
| | - Ross M. Denton
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, 6 Triumph Road, Nottingham NG7 2GA, U.K
| | - Liam T. Ball
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
16
|
Augustin AU, Di Silvio S, Marek I. Borylated Cyclopropanes as Spring-Loaded Entities: Access to Vicinal Tertiary and Quaternary Carbon Stereocenters in Acyclic Systems. J Am Chem Soc 2022; 144:16298-16302. [PMID: 36041738 PMCID: PMC9479080 DOI: 10.1021/jacs.2c07394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Herein, we present the formation of acyclic frameworks
bearing
two consecutive stereocenters of either tertiary or quaternary nature
starting from easily accessible cyclopropenes. This holistic approach
involves a regio- and diastereoselective hydro- or carboborylation
of substituted cyclopropenyl esters. Formation of boronate complexes
of the latter via the addition of nucleophiles and subsequent stereospecific
1,2-migration with carbon–carbon bond cleavage delivered the
title compounds.
Collapse
Affiliation(s)
- André U Augustin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Sergio Di Silvio
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
17
|
Chen X, Marek I. Stereoinvertive Nucleophilic Substitution at Quaternary Carbon Stereocenters of Cyclopropyl Ketones and Ethers. Angew Chem Int Ed Engl 2022; 61:e202203673. [PMID: 35471589 PMCID: PMC9324837 DOI: 10.1002/anie.202203673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/09/2022]
Abstract
A highly regio- and diastereoselective nucleophilic substitution at the quaternary carbon stereocenter of cyclopropyl ketones and cyclopropyl carbinol derivatives using TMSBr, DMPSCl and TMSN3 as nucleophiles has been developed. A variety of acyclic tertiary alkyl bromides, chlorides and azides were therefore prepared with excellent diastereopurity. The substitution occurs at the most substituted quaternary carbon center in a stereoinvertive manner, which may be attributed to the existence of a bicyclobutonium species.
Collapse
Affiliation(s)
- Xu Chen
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyTechnion CityHaifa3200009Israel
| | - Ilan Marek
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyTechnion CityHaifa3200009Israel
| |
Collapse
|
18
|
Ranjith J, Jeong Y, Kim H, Ha HJ. α‐ Aziridinyl Carbenium Ion Intermediate and Stereoselective Dehydroxylative Diarylation of Aziridin‐2‐yl Carboxaldehyde. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jala Ranjith
- Hankuk University of Foreign Studies Chemistry KOREA, REPUBLIC OF
| | - Yeolib Jeong
- Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Hyunwoo Kim
- Korean Advanced Institute of Science: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Hyun-Joon Ha
- Hankuk University of Foreign Studies Department of Chemistry and Protein Research Center for Bio-Industry Yongin 449-791 Kyunggi-Do KOREA, REPUBLIC OF
| |
Collapse
|
19
|
Chen X, Marek I. Stereoinvertive Nucleophilic Substitution at Quaternary Carbon Stereocenters of Cyclopropyl Ketones and Ethers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu Chen
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Technion City Haifa 3200009 Israel
| |
Collapse
|
20
|
Patel K, Lanke V, Marek I. Stereospecific Construction of Quaternary Carbon Stereocenters from Quaternary Carbon Stereocenters. J Am Chem Soc 2022; 144:7066-7071. [PMID: 35412821 PMCID: PMC9052742 DOI: 10.1021/jacs.2c01695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Organoaluminum species
promote a smooth nucleophilic substitution
at the quaternary carbon stereocenter of stereodefined polysubstituted
cyclopropyl methyl phosphate with a complete inversion of configuration,
even when more reactive functional groups are present. The regio-
and diastereoselectivity of the substitution is attributed to the
existence of a bicyclobutonium intermediate.
Collapse
Affiliation(s)
- Kaushalendra Patel
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Veeranjaneyulu Lanke
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
21
|
Wang F, Nishimoto Y, Yasuda M. Indium-Catalyzed Formal Carbon-Halogen Bond Insertion: Synthesis of α-Halo-α,α-disubstituted Esters from Benzylic Halides and Diazo Esters. Org Lett 2022; 24:1706-1710. [PMID: 35191713 DOI: 10.1021/acs.orglett.2c00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-carbon-unit insertion into carbon-halogen (C-X) bonds accompanied by the formation of a new C-X bond and carbon-chain elongation is a powerful synthetic method of complex organohalides. Herein, we developed an indium trihalide catalyzed formal insertion of diazo esters into a C-X (X = Cl, Br, I) bond. In the present system, the reactions of α-aryl diazo esters with benzylic chlorides, bromides, and iodides yielded α-chloro, α-bromo, and α-iodo esters, respectively.
Collapse
Affiliation(s)
- Fei Wang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Xu B, Lin Y, Ye Y, Xu L, Xie T, Ye XY. Benzyl thioether formation merging copper catalysis. RSC Adv 2021; 12:692-697. [PMID: 35425124 PMCID: PMC8697992 DOI: 10.1039/d1ra08015f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
A novel copper-catalyzed thioetherification reaction has been developed to afford benzyl thioethers in moderate to excellent yields. Under the mild and easy-to-operate conditions, a variety of thioethers are efficiently prepared from readily available benzyl alcohols (primary, secondary, and tertiary) and thiols in the presence of Cu(OTf)2 as the Lewis acid catalysis. This C-S bond formation protocol furnishes exceptional chemoselectivity, and the preliminary mechanism studies show that the reaction should proceed through a Lewis-acid-mediated SN1-type nucleophilic attack of the carbocations formed in situ.
Collapse
Affiliation(s)
- Bing Xu
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Ying Lin
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Li Xu
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| |
Collapse
|
23
|
Zhu WR, Su Q, Deng XY, Liu JS, Zhong T, Meng SS, Yi JT, Weng J, Lu G. Organocatalytic enantioselective S N1-type dehydrative nucleophilic substitution: access to bis(indolyl)methanes bearing quaternary carbon stereocenters. Chem Sci 2021; 13:170-177. [PMID: 35733509 PMCID: PMC9158264 DOI: 10.1039/d1sc05174a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
A highly general and straightforward approach to access chiral bis(indolyl)methanes (BIMs) bearing quaternary stereocenters has been realized via enantioconvergent dehydrative nucleophilic substitution. A broad range of 3,3'-, 3,2'- and 3,1'-BIMs were obtained under mild conditions with excellent efficiency and enantioselectivity (80 examples, up to 98% yield and >99 : 1 er). By utilizing racemic 3-indolyl tertiary alcohols as precursors of alkyl electrophiles and indoles as C-H nucleophiles, this organocatalytic strategy avoids pre-activation of substrates and produces water as the only by-product. Mechanistic studies suggest a formal SN1-type pathway enabled by chiral phosphoric acid catalysis. The practicability of the obtained enantioenriched BIMs was further demonstrated by versatile transformation and high antimicrobial activities (3al, MIC: 1 μg mL-1).
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiao-Yi Deng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jia-Sheng Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Tao Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shan-Shui Meng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
24
|
Chen Q, Li S, Xie X, Guo H, Yang J, Zhang J. Pd-Catalyzed Enantioselective Dicarbofunctionalization of Alkene to Access Disubstituted Dihydroisoquinolinone. Org Lett 2021; 23:4099-4103. [PMID: 33983037 DOI: 10.1021/acs.orglett.1c00974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Pd/Xu-Phos-catalyzed asymmetric Heck/Suzuki domino reaction has been developed that shows high functional group tolerance and enables coupling with various aryl/alkenyl borates. A series of chiral disubstituted dihydroisoquinolinones could be obtained in good yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Qiaoyu Chen
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China
| | - Sanliang Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xiaoxiao Xie
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China
| | - Hao Guo
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China.,Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| |
Collapse
|
25
|
Zhu L, Yang H, Wong MW. Asymmetric Nucleophilic Allylation of α-Chloro Glycinate via Squaramide Anion-Abstraction Catalysis: SN1 or SN2 Mechanism, or Both? J Org Chem 2021; 86:8414-8424. [DOI: 10.1021/acs.joc.1c00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lihan Zhu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
26
|
Zhang CH, Gao Q, Li M, Wang JF, Yu CM, Mao B. Kinetic Resolution of Tertiary Allylic Alcohols: Highly Enantioselective Access to Cyclic Ethers Bearing an α-Tetrasubstituted Stereocenter. Org Lett 2021; 23:3949-3954. [DOI: 10.1021/acs.orglett.1c01110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chao-Huan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qing Gao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Meng Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jian-Fei Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chuan-Ming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bin Mao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
27
|
Gong Y, Zhu Z, Qian Q, Tong W, Gong H. Zn- and Cu-Catalyzed Coupling of Tertiary Alkyl Bromides and Oxalates to Forge Challenging C–O, C–S, and C–N Bonds. Org Lett 2021; 23:1005-1010. [DOI: 10.1021/acs.orglett.0c04206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuxin Gong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Zhaodong Zhu
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Qun Qian
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Weiqi Tong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| |
Collapse
|
28
|
Mairhofer C, Haider V, Bögl T, Waser M. Enantiospecific deoxyfluorination of cyclic α-OH-β-ketoesters. Org Biomol Chem 2021; 19:162-165. [PMID: 33211788 PMCID: PMC7116657 DOI: 10.1039/d0ob02152k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein report the deoxyfluorination of cyclic α-hydroxy-β-ketoesters using diethylaminosulfur trifluoride (DAST). The reaction proceeds with excellent levels of stereospecificity, giving the configurationally inverted α-fluoro-β-ketoesters in high yields under operationally simple conditions.
Collapse
Affiliation(s)
- Christopher Mairhofer
- Johannes Kepler University Linz, Institute of Organic Chemistry, Altenbergerstraße 69, 4040 Linz, Austria.
| | | | | | | |
Collapse
|
29
|
Wang Y, Liu J, Qiu G, Yang Y, Zhou H. Metal-Free Selenizative spiro-Tricyclization of N-Hydroxylethyl- N-arylpropiolamides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|