1
|
Luo J, Singh J, Deng Y. Photocatalytic C-H Functionalization Utilizing Acridine-Lewis Acid Complexes and Pyridine N-oxide Based HAT Catalysts. Tetrahedron 2025; 181:134683. [PMID: 40370747 PMCID: PMC12074650 DOI: 10.1016/j.tet.2025.134683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Pyridine N-oxides have been well established as a class of potent hydrogen-atom-transfer (HAT) catalysts for C-H functionalization of unactivated alkanes and activated C-H substrates. The combination of acridine derivatives and Lewis acids forms in situ-generated photocatalysts that are able to photo-oxidize pyridine N-oxides to generate N-oxide radicals upon irradiation with visible light. Herein, we described a photocatalytic C-H functionalization utilizing acridine-Lewis acid complexes and pyridine N-oxide based HAT catalysts. The readily available and facilely tunable photocatalytic system of acridine-Lewis acid complexes and pyridine N-oxides enables a broad range of substrates with high reactivities (up to 97% yield).
Collapse
Affiliation(s)
- Jun Luo
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jujhar Singh
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
2
|
Yadav I, Gramage-Doria R. Palladium-free Wacker-inspired oxidation: challenges and opportunities in catalysis. Chem Commun (Camb) 2025. [PMID: 40395024 DOI: 10.1039/d5cc00153f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Palladium-catalysed Wacker-type oxidation of olefins to ketones or aldehydes is one of the most prominent homogeneous reactions globally, even performed at a multi-tonne scale. From a fundamental and an applied point of view, it is extremely appealing to replace palladium catalysts by other metal-based catalysts to increase the efficiency, selectivity and sustainability, particularly considering the reactivity of well-defined first-row transition metal complexes as catalysts. In this case, the ligand(s) coordinating to the metal(s) play a major role in controlling selectivity and activity, thanks to unique mechanistic considerations. This mechanistically-driven feature article emphasizes the advantages and disadvantages of currently existing approaches. Besides the main efforts devoted to homogeneous catalysis, heterogenous systems and biocatalysis have also been studied as they offer complementary strategies. Overall, this review presents an up-to-date analysis of key contributions while highlighting existing gaps for future developments in this important and exciting field.
Collapse
Affiliation(s)
- Inderpal Yadav
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France.
| | | |
Collapse
|
3
|
Wu L, He JB, Wei W, Pan HX, Wang X, Yang S, Liang Y, Tang GL, Zhou J. Three distinct strategies lead to programmable aliphatic C-H oxidation in bicyclomycin biosynthesis. Nat Commun 2025; 16:4651. [PMID: 40389404 PMCID: PMC12089406 DOI: 10.1038/s41467-025-58997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/09/2025] [Indexed: 05/21/2025] Open
Abstract
The C-H bond functionalization has been widely used in chemical synthesis over the past decade. However, regio- and stereoselectivity still remain a significant challenge, especially for inert aliphatic C-H bonds. Here we report the mechanism of three Fe(II)/α-ketoglutarate-dependent dioxygenases in bicyclomycin synthesis, which depicts the natural tactic to sequentially hydroxylate specific C-H bonds of similar substrates (cyclodipeptides). Molecular basis by crystallographic studies, computational simulations, and site-directed mutagenesis reveals the exquisite arrangement of three enzymes using mutually orthogonal strategies to realize three different regio-selectivities. Moreover, this programmable selective hydroxylation can be extended to other cyclodipeptides. This evidence not only provides a naturally occurring showcase corresponding to the widely used methods in chemical catalysis but also expands the toolbox of biocatalysts to address the regioselective functionalization of C-H bonds.
Collapse
Affiliation(s)
- Lian Wu
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of CAS, Shanghai, 200032, China
| | - Jun-Bin He
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of CAS, Shanghai, 200032, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hai-Xue Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of CAS, Shanghai, 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of CAS, Hangzhou, 310024, China
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of CAS, Shanghai, 200032, China.
| | - Yong Liang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Gong-Li Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of CAS, Shanghai, 200032, China.
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of CAS, Hangzhou, 310024, China.
| | - Jiahai Zhou
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Mauri A, Kiefer P, Wenzel W, Kozlowska M. Photoreactivity of Norrish Type Photoinitiators for 3D Laser Printing via First Principles Calculations. Macromol Rapid Commun 2025:e2500231. [PMID: 40375633 DOI: 10.1002/marc.202500231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/17/2025] [Indexed: 05/18/2025]
Abstract
In the rapidly evolving field of 3D laser nanoprinting, achieving high resolution and high printing speed relies heavily on the effective use and design of sensitive photoinitiators. However, their photoreactivity is hitherto not well described. This study investigates the photochemical and photophysical characteristics of a high-performing Norrish Type II photoinitiator (2E,6E)-2,6-bis(4-(dibutylamino)benzylidene)-4-methylcyclohexanone, known as BBK, as well as commonly employed Norrish Type I photoinitiators: Irgacure 651, Irgacure 369. Using quantum mechanical calculations, multiphoton absorption, the formation of the excited states, and the radical formation mechanisms most probably involved in the initiation of free radical polymerization are examined. Their relation to the observations during 3D printing experiments is discussed, aiming to uncover the molecular foundations behind varying performances of photoinitiators. Bond dissociation energies and energy barriers for bond cleavage of Irgacure photoinitiators are demonstrated to confirm radical formation in the lowest triplet state, whereas this pathway is shown to be less probable for BBK. The radical polymerization initiation upon absorption from the triplet manifold of BBK and reactions with pentaerythritol triacrylate (PETA) monomers are described. Deactivation pathway via reversible intersystem crossing, as well as the photoactivation characteristics, are compared with relation to the 7-diethylamino-3-thenoylcoumarin (DETC) photoinitiator.
Collapse
Affiliation(s)
- Anna Mauri
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Pascal Kiefer
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
5
|
Le Saux E, Morandi B. Palladium-Catalyzed Transfer Iodination from Aryl Iodides to Nonactivated C( sp3)-H Bonds. J Am Chem Soc 2025; 147:12956-12961. [PMID: 40183519 DOI: 10.1021/jacs.5c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
We report a new strategy for the catalytic iodination of nonactivated C(sp3)-H bonds. The method merges the concepts of shuttle and light-enabled palladium catalysis to employ aryl iodides as both hydrogen atom transfer reagents and iodine donors. A noncanonical Pd0/PdI catalytic cycle is harnessed to transfer iodine from a C(sp2) to a C(sp3)-H bond under mild conditions, which tolerate sensitive functional groups. This mechanism is also applied to implement a C(sp3)-H thiolation that exploits reversible steps of the system.
Collapse
Affiliation(s)
- Emilien Le Saux
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Irvankoski S, Davenport MT, Ess DH, Siitonen JH. Method and Mechanistic Insights to 1,2-Aminochlorinate Alkenes using Blue-Light Activated Dichlorocarbamates. Chemistry 2025; 31:e202403215. [PMID: 40034072 DOI: 10.1002/chem.202403215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/05/2025]
Abstract
Blue light activation of N,N-dichlorocarbamates facilitates a direct 1,2-aminochlorination of unactivated olefins to yield 1,2-chloro-N-Cl compounds under ambient conditions. Mechanistic studies suggest that N,N-dichlorocarbamates undergo a photochemical excitation to yield a neutral nitrogen-centered radical, which rapidly reacts with olefins in an anti-Markovnikov fashion. Using this method, a range of functionally diverse substrates are successfully aminochlorinated to yield the corresponding 1,2-chloro-N-Cl compounds.
Collapse
Affiliation(s)
- Sini Irvankoski
- Department of Chemistry and Materials Science, Aalto University, 00076, Espoo, Finland
| | - Michael T Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, USA
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, USA
| | - Juha H Siitonen
- Department of Chemistry and Materials Science, Aalto University, 00076, Espoo, Finland
| |
Collapse
|
7
|
Yu H, Yu X, Li X, Kou W, Fang F, Zhang G. Enantioselective Photoredox- and Cu-Catalyzed Cyanoalkylation of Styrenes via Deoxygenation of Alkoxyl Radicals with Organophosphorus Compounds(III). Org Lett 2025; 27:1750-1756. [PMID: 39935183 DOI: 10.1021/acs.orglett.5c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The enantioselective cyanoalkylation of styrenes by a cooperative photoredox and copper catalysis system has been established, providing straightforward access to structurally diverse enantioenriched alkyl nitriles in good yields with excellent enantioselectivities under mild conditions via deoxygenation of alkoxyl radicals with organophosphorus compounds(III). In addition, the reaction features a wide substrate scope and good functional group tolerance, and the resultant alkyl nitriles could be easily converted into a series of chiral carboxylic acids, amides, esters, etc.
Collapse
Affiliation(s)
- Hongzhou Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xiang Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xingyu Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Wanqing Kou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Fang Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Guoyu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| |
Collapse
|
8
|
Geraci A, Baudoin O. Fe-Catalyzed α-C(sp 3)-H Amination of N-Heterocycles. Angew Chem Int Ed Engl 2025; 64:e202417414. [PMID: 39410815 DOI: 10.1002/anie.202417414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 11/12/2024]
Abstract
Nitrogen-heterocycles are privileged structures in both marketed drugs and natural products. On the other hand, C-H amination reactions furnish unconventional and straightforward approaches for the construction of C-N bonds. Yet, most of the known methods rely on precious metal catalysts. Herein we report a site-selective intermolecular C(sp3)-H amination of N-heterocycles, catalyzed by inexpensive FeCl2, which allows the functionalization of a wide range of pharmaceutically relevant cyclic amines. The C-H amination occurs site-selectively in α-position to the nitrogen atom, even when weaker C-H bonds are present, and furnishes Troc-protected aminals or amidines. The method employs the N-heterocycle as limiting reagent and is applicable to the late-stage functionalization of complex molecules. Its synthetic potential was further illustrated through the derivatization of α-aminated products and the application to a concise total synthesis of the reported structure for senobtusin. Mechanistic studies allowed to propose a plausible reaction mechanism involving a turnover-limiting Fe-nitrene generation followed by fast H atom transfer and radical rebound.
Collapse
Affiliation(s)
- Andrea Geraci
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Olivier Baudoin
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
9
|
Nishad CS, Kumar A, Kaur K, Banerjee B. Visible-Light-Mediated Cascade 1,4-Hydrogen Atom Transfer versus Dearomative Spirocyclization of N-Benzylacrylamides: Divergent Access to Functionalized γ-Ketoamides and 2-Azaspiro[4.5]decanes. J Org Chem 2025; 90:1411-1425. [PMID: 39807943 DOI: 10.1021/acs.joc.4c02862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Visible-light-driven metal- and photocatalyst-free cascade 1,4-HAT and dearomative spirocyclization of N-benzylacrylamides are described for sustainable synthesis of a variety of pharmaceutically important γ-ketoamides and 2-Azaspiro[4.5]decanes in one pot in good to excellent yields. Readily accessible and nontoxic materials, expensive Ir or Ru photocatalyst-free mild conditions, excellent functional group tolerance, operational simplicity, and scalability enhance the practical value of this protocol. Mechanistic studies reveal that acyl radicals generated from α-oxocarboxylic acids trigger the rare 1,4-HAT and dearomative spirocyclization. The synthetic potential of this environmentally benign method is further showcased by late-stage functionalization of drug molecules, amino acid, and peptides.
Collapse
Affiliation(s)
| | - Ashish Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Kamaldeep Kaur
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Biplab Banerjee
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
10
|
Zhu H, Powell JN, Geldchen VA, Drumheller AS, Driver TG. Harnessing the Reactivity of Nitroarene Radical Anions to Create Quinoline N-Oxides by Electrochemical Reductive Cyclization. Angew Chem Int Ed Engl 2025; 64:e202416126. [PMID: 39428355 PMCID: PMC11753951 DOI: 10.1002/anie.202416126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Electrochemical reduction of 2-allyl-substituted nitroarenes using a simple, undivided electrochemical cell with non-precious electrodes to generate nitroarene radical anions was developed. The nitroarene radical anion intermediates participate in 1,5-hydrogen atom transfer reactions to construct quinoline N-oxides bearing aryl-, heteroaryl-, alkenyl-, benzyl-, sulfonyl-, or carboxyl groups.
Collapse
Affiliation(s)
- Haoran Zhu
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Jair N Powell
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Victoria A Geldchen
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Adam S Drumheller
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Tom G Driver
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| |
Collapse
|
11
|
Sheng T, Zhuang Z, Zhao Z, Hoque ME, Yu JQ. Copper-Catalyzed γ-C(sp 3)-H Lactamization and Iminolactonization. Angew Chem Int Ed Engl 2025; 64:e202416634. [PMID: 39467258 DOI: 10.1002/anie.202416634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
Despite extensive efforts to develop γ-lactamization reactions for pyrrolidinone synthesis using either cyclometallation, C-H insertion, or radical C-H abstraction strategies, γ-lactamization reactions of aliphatic amides using practical catalysts and common protecting groups remain extremely rare. Herein we report copper-catalyzed γ-C(sp3)-H lactamization and iminolactonization of tosyl-protected aliphatic amides using inexpensive Selectfluor as the sole oxidant. A switchable selectivity of γ-lactams or γ-iminolactones can be obtained by using two different sets of reaction conditions. Notably, structurally diverse spiro-, fused-, and bridged-lactams and iminolactones, as well as isoindolinones are accessible by this method. Further derivatization of the γ-lactam products enables the synthesis of a range of biologically important motifs, including γ-amino acids, δ-amino alcohols, and pyrrolidines.
Collapse
Affiliation(s)
- Tao Sheng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhihan Zhao
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Md Emdadul Hoque
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
12
|
Zuo K, Zhu J, Akhtar F, Dam P, Azofra LM, El-Sepelgy O. Biomimetic Catalytic Remote Desaturation of Aliphatic Alcohols. Org Lett 2025; 27:30-35. [PMID: 39714251 PMCID: PMC11731365 DOI: 10.1021/acs.orglett.4c03623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Herein we present photoinduced cobaloxime-catalyzed selective remote desaturation of aliphatic alcohols. This transformation, which proceeds efficiently at room temperature, facilitates the synthesis of valuable cyclic and acyclic allylic and homoallylic alcohols from readily available saturated aliphatic alcohols. Remarkably, this method obviates the need for external oxidants, noble metal catalysts, and phosphine ligands.
Collapse
Affiliation(s)
- Kaiming Zuo
- Leibniz
Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jing Zhu
- Leibniz
Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Faral Akhtar
- Leibniz
Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Phong Dam
- Leibniz
Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Luis Miguel Azofra
- Instituto
de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Osama El-Sepelgy
- Leibniz
Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
13
|
Yan T, Chen Y, Mortishire-Smith B, Simeone A, Hofer A, Balasubramanian S. Selective Photocatalytic C-H Oxidation of 5-Methylcytosine in DNA. Angew Chem Int Ed Engl 2025; 64:e202413593. [PMID: 39231378 DOI: 10.1002/anie.202413593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
Selective C-H activation on complex biological macromolecules is a key goal in the field of organic chemistry. It requires thermodynamically challenging chemical transformations to be delivered under mild, aqueous conditions. 5-Methylcytosine (5mC) is a fundamentally important epigenetic modification in DNA that has major implications for biology and has emerged as a vital biomarker. Selective functionalisation of 5mC would enable new chemical approaches to tag, detect and map DNA methylation to enhance the study and exploitation of this epigenetic feature. We demonstrate the first example of direct and selective chemical oxidation of 5mC to 5-formylcytosine (5fC) in DNA, employing a photocatalytic system. This transformation was used to selectively tag 5mC. We also provide proof-of-concept for deploying this chemistry for single-base resolution sequencing of 5mC and genetic bases adenine (A), cytosine (C), guanine (G), thymine (T) in DNA on a next-generation sequencing system. This work exemplifies how photocatalysis has the potential to transform the analysis of DNA.
Collapse
Affiliation(s)
- Tao Yan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yuqi Chen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ben Mortishire-Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Angela Simeone
- Cancer Research, UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Alexandre Hofer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Shankar Balasubramanian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cancer Research, UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| |
Collapse
|
14
|
Mukherjee K, Cheung KPS, Gevorgyan V. Photoinduced Pd-Catalyzed Direct Sulfonylation of Allylic C-H Bonds. Angew Chem Int Ed Engl 2025; 64:e202413646. [PMID: 39287933 DOI: 10.1002/anie.202413646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Allylic sulfones are valuable motifs due to their medicinal and biological significance and their versatile chemical reactivities. While direct allylic C-H sulfonylation represents a straightforward and desirable approach, these methods are primarily restricted to terminal alkenes, leaving the engagement of the internal counterparts a formidable challenge. Herein we report a photocatalytic approach that accommodates both cyclic and acyclic internal alkenes with diverse substitution patterns and electronic properties. Importantly, the obtained allylic sulfones can be readily diversified into a wide range of products, thus enabling formal alkene transposition and all-carbon quaternary center formation through the sequential C-H functionalization.
Collapse
Affiliation(s)
- Kallol Mukherjee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| |
Collapse
|
15
|
Raps FC, Rivas-Souchet A, Jones CM, Hyster TK. Emergence of a distinct mechanism of C-N bond formation in photoenzymes. Nature 2025; 637:362-368. [PMID: 39378905 PMCID: PMC11771027 DOI: 10.1038/s41586-024-08138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
C-N bond formation is integral to modern chemical synthesis owing to the ubiquity of nitrogen heterocycles in small-molecule pharmaceuticals and agrochemicals. Alkene hydroamination with unactivated alkenes is an atom-economical strategy for constructing these bonds. However, these reactions are challenging to render asymmetric when preparing fully substituted carbon stereocentres. Here we report a photoenzymatic alkene hydroamination to prepare 2,2-disubstituted pyrrolidines by a Baeyer-Villiger mono-oxygenase. Five rounds of protein engineering afforded a mutant, providing excellent product yield and stereoselectivity. Unlike related photochemical hydroaminations, which rely on the oxidation of the amine or alkene for C-N bond formation, this work exploits a through-space interaction of a reductively generated benzylic radical and the nitrogen lone pair. This antibonding interaction lowers the oxidation potential of the radical, enabling electron transfer to the flavin cofactor. Experiments indicate that the enzyme microenvironment is essential in enabling a innovative C-N bond formation mechanism with no parallel in small-molecule catalysis. Molecular dynamics simulations were performed to investigate the substrate in the enzyme active site, which further support this hypothesis. This work is a rare example of an emerging mechanism in non-natural biocatalysis in which an enzyme has access to a mechanism that its individual components do not. Our study showcases the potential of enhancing emergent mechanisms using protein engineering to provide unique mechanistic solutions to unanswered challenges in chemical synthesis.
Collapse
Affiliation(s)
- Felix C Raps
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Ariadna Rivas-Souchet
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
16
|
Chen G, Liu B, Zhang L, Yan F, Pan S, Li F, Cai Z, Chen X, Cai S. Visible-Light-Enabled Catalytic Intramolecular Double Oxidation of Olefins to ortho-Hydroxylactones. Org Lett 2024; 26:11096-11104. [PMID: 39670800 DOI: 10.1021/acs.orglett.4c03875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
We have effectively utilized cost-effective 2-bromoanthraquinone as a photocatalyst to develop an efficient and environmentally friendly method for producing o-hydroxy lactones under mild visible light irradiation. Importantly, this protocol only relies on oxygen as an oxidant, completely eliminating the need for additional chemical reagents and showcasing a sustainable approach to chemical transformation. Operating at room temperature, we utilized a mixed solvent system of DMF and CHCl3, which greatly facilitated the selective conversion of various 2-vinylbenzoic acids and carboxylic acids to functional o-hydroxyl lactones. The process also exhibited excellent diastereoselectivity. Moreover, this versatile strategy is compatible with a wide range of biologically active and complex molecules, offering new opportunities for late-stage structural modifications of these compounds.
Collapse
Affiliation(s)
- Guangxian Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Boyi Liu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Lele Zhang
- Key Laboratory of Chemical Genomics of Guangdong Province, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Feiwei Yan
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Sanmei Pan
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Feiming Li
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Zhixiong Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Xiaoping Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
- Key Laboratory of Chemical Genomics of Guangdong Province, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
17
|
Shi JL, Wang Y, Han Y, Chen J, Pu X, Xia Y. Hydroalkylation of unactivated olefins with C(sp 3)─H compounds enabled by NiH-catalyzed radical relay. SCIENCE ADVANCES 2024; 10:eads6885. [PMID: 39693419 DOI: 10.1126/sciadv.ads6885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
The hydroalkylation reaction of olefins with alkanes is a highly desirable synthetic transformation toward the construction of C(sp3)─C(sp3) bonds. However, such transformation has proven to be challenging for unactivated olefins, particularly when the substrates lack directing groups or acidic C(sp3)─H bonds. Here, we address this challenge by merging NiH-catalyzed radical relay strategy with a HAT (hydrogen atom transfer) process. In this catalytic system, a nucleophilic alkyl radical is generated from a C(sp3)─H compound in the presence of a HAT promotor, which couples with an alkyl metallic intermediate generated from the olefin substrate with a NiH catalyst to form the C(sp3)─C(sp3) bond. Starting from easily available materials, the reaction not only demonstrates wide functional group compatibility but also provides hydroalkylation products with regiodivergence and excellent enantioselectivity through effective catalyst control under mild conditions.
Collapse
Affiliation(s)
- Jiang-Ling Shi
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy,Sichuan University, Chengdu 610041, China
| | - Youcheng Wang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy,Sichuan University, Chengdu 610041, China
| | - Yufeng Han
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy,Sichuan University, Chengdu 610041, China
| | - Jinqi Chen
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy,Sichuan University, Chengdu 610041, China
| | - Xiaolan Pu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy,Sichuan University, Chengdu 610041, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy,Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Zhou X, Hu Y, Huang Y, Xiong Y. Recent advances in photochemical strain-release reactions of bicyclo[1.1.0]butanes. Chem Commun (Camb) 2024; 61:23-32. [PMID: 39601173 DOI: 10.1039/d4cc05108d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Bicyclo[1.1.0]butanes (BCBs) are attractive compounds for their beautiful "butterfly" conformations, distinctive properties, and novel reactivities. As soon as the first example had been synthesized, a wide range of strain-release reactions were explored for the preparation of cyclobutanes and bicyclic systems in the ground state or excited state. In particular, with the demand for the construction of rigid three-dimensional aliphatic skeletons to "escape from flatland" in drug discovery programs, numerous efforts have been devoted in this area to expanding the boundaries of their reactivities and broadening the chemical space of their attractive bioisosteric products. In recent years, with the great resurgence and dramatic evolution of photochemistry, photochemical strain-release reactions generally relying on single electron transfer (SET) or energy transfer (EnT) strategies can provide much more opportunities and capability for innovative transformations of BCBs. In this review, we summarize and highlight the recent advances (year > 2016) of this topic and hope that it will inspire much more wonderful chemistry of BCBs.
Collapse
Affiliation(s)
- Xiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Ye Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yang Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
19
|
Yi L, Kong D, Prabhakar Kale A, Alshehri R, Yue H, Gizatullin A, Maity B, Kancherla R, Cavallo L, Rueping M. Halogen Bonding Initiated Difunctionalization of [1.1.1]Propellane via Photoinduced Polarity Match Additions. Angew Chem Int Ed Engl 2024; 63:e202411961. [PMID: 39193663 DOI: 10.1002/anie.202411961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Bicyclo[1.1.1]pentane (BCP), recognized as a bioisostere for para-disubstituted benzene, has gained widespread interest in drug development due to its ability to enhance the physicochemical properties of pharmaceuticals. In this work, we introduce a photoinduced, halogen bonding-initiated, metal-free strategy for synthesizing various BCP derivatives. This method involves the generation of nucleophilic α-aminoalkyl radicals via halogen-bonding adducts. These undergo selective radical addition to [1.1.1]propellane, yielding electrophilic BCP radicals that subsequently participate in polarity-matched additions, culminating in the difunctionalization of bicyclopentane. The versatility and practicality of this metal-free approach are underscored by its broad substrate scope, which includes late-stage functionalization and a series of valuable transformations, all conducted under mild reaction conditions.
Collapse
Affiliation(s)
- Liang Yi
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Deshen Kong
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Ajit Prabhakar Kale
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Rawan Alshehri
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Huifeng Yue
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Amir Gizatullin
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| |
Collapse
|
20
|
Crawford R, Ortin Y, Twamley B, Baumann M. Direct Photochemical Synthesis of Substituted Benzo[ b]fluorenes. Org Lett 2024; 26:10364-10368. [PMID: 39582232 PMCID: PMC11629382 DOI: 10.1021/acs.orglett.4c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
We report a new and straightforward route toward substituted benzo[b]fluorenes via the direct photochemical conversion of alkynylated chalcones. This transformation exploits a high-power light-emitting diode emitting ultraviolet A light to enable the rapid formation of the target products (tres = 5 min). A continuous flow approach thereby facilitates reproducibility and scalability, granting streamlined access to these important scaffolds and their derivatives. A mechanistic proposal based on a biradical species is presented and supported by deuteration studies.
Collapse
Affiliation(s)
- Ruairi Crawford
- School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Yannick Ortin
- School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Brendan Twamley
- School
of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Marcus Baumann
- School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
21
|
Zeng L, Zhang Y, Hu M, He DL, Ouyang XH, Li JH. Divergent Synthesis of ( E)- and ( Z)-Alkenones via Photoredox C(sp 3)-H Alkenylation-Dehydrogenation of o-Iodoarylalkanols with Alkynes. Org Lett 2024; 26:10096-10101. [PMID: 39546467 DOI: 10.1021/acs.orglett.4c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
A photoredox C(sp3)-H alkenylation-dehydrogenation of o-iodoarylalkanols with terminal alkynes for the synthesis of (E)- and (Z)-quaternary carbon center-containing pent-4-en-1-ones is described. The stereoselectivity depends on the utilization of alkynes and photocatalysts. While using an organic photocatalyst like 4-DPAIPN manipulates the C(sp3)-H alkenylation-dehydrogenation of o-iodoarylalkanols with arylalkynes to assemble (E)-pent-4-en-1-ones, in the case of an Ir potocatalyst such as Ir(ppy)2(dtbbpy)PF6 the reaction with arylalkynes delivers (Z)-pent-4-en-1-ones. For alkylalkynes, the reaction furnishes (E)-pent-4-en-1-ones exclusively in the presence of 4-DPAIPN or Ir(ppy)2(dtbbpy)PF6.
Collapse
Affiliation(s)
- Liang Zeng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yin Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ming Hu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xuan-Hui Ouyang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
22
|
Mitra S, Mukherjee S. Iridium-Catalyzed Enantioselective Vinylogous and Bisvinylogous Allenylic Substitution. JACS AU 2024; 4:4285-4294. [PMID: 39610728 PMCID: PMC11600155 DOI: 10.1021/jacsau.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/30/2024]
Abstract
Compared to the widely explored enol silanes, the applicability of their extended variants especially as bisvinylogous nucleophiles in enantioselective catalysis has been sparse. Herein, we describe the first enantioselective vinylogous and bisvinylogous allenylic substitution using silyl dienol and trienol ethers, respectively, as a nucleophile. With racemic allenylic alcohols as the electrophile, these enantioconvergent reactions are cooperatively catalyzed by an Ir(I)/(phosphoramidite,olefin) complex and Lewis acidic La(OTf)3 and display remarkable regio- and diastereoselectivity in most cases. The ability of such extended silyl enol ethers in distant functionalization and creation of remote stereocenters is evident from the resulting γ- and ε-allenylic unsaturated ketones, bearing δ- and ζ-stereocenters, respectively, which are obtained in moderate to high yields with good to excellent enantioselectivity. The synthetic utility of these unsaturated carbonyls bearing an allene moiety is demonstrated with several transformations, including controlled reductions and stereoselective olefinations, which lead to products with desired degrees of unsaturation.
Collapse
Affiliation(s)
- Sankash Mitra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore560012, India
| |
Collapse
|
23
|
An B, Yue C, Liu S, Sun L, Sun T, Liu JB, Li Y. Radical Isomerization Homopolymerization of Linear α-Olefins to Access C5, C6 or C7 Polymers. Angew Chem Int Ed Engl 2024; 63:e202408487. [PMID: 39134503 DOI: 10.1002/anie.202408487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Indexed: 10/10/2024]
Abstract
Non-activated linear α-olefins are valuable building blocks for organic transformation or olefin (co)polymerization, but they are recognized as textbook knowledge for non-homopolymerizable monomers under radical conditions. In this article, we disclose our effort to achieve an unprecedented library of all carbon-bonded sequence-regulated polymers via radical isomerization homopolymerization of α-olefin derivatives. The success of this distinctive polymerization is attributed to the remarkable efficiency and selectivity exhibited during the cyano group migration or hydrogen atom transfer, which is greatly enhanced by the precise engineering of their monomer structures. This polymerization process enables the elongation of polymer chains by five, six, or seven carbon atoms at each propagation step. These polymers, obtained through the cyano group migration or hydrogen atom transfer involved radical isomerization polymerization processes, emerge as promising candidates resembling polyethylene or polyacrylonitrile copolymers.
Collapse
Affiliation(s)
- Bang An
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Chaowei Yue
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Shuai Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Lixing Sun
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Tingting Sun
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 250014, Jinan, China
| | - Yifan Li
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
24
|
Gharpure SJ, Chavan RS, Fartade DJ. Iron-Mediated Segment Coupling of Alkenols with Acceptors via C-C Radical Translocation and Remote Oxidative 1,5/6-Hydrogen Atom Transfer. Org Lett 2024. [PMID: 39516177 DOI: 10.1021/acs.orglett.4c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Iron-mediated segment coupling followed by oxidative 1,5/6-hydrogen atom transfer (HAT) for synthesis of ε-oxo alkene derivatives is developed. This transformation involved translocation of the radical from H-to-C-to-C-to-C followed by the oxidation under MHAT conditions providing rapid access to 1,6/1,7-keto functionalized esters/ketone/sulfones/phosphonates/arenes. The different outcomes of coupling with acceptors could be explained by bond dissociation energies (BDEs), and mechanistic insights were gained through control experiments, including deuterium labeling studies.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rupali S Chavan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dipak J Fartade
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
25
|
Romano C, Martin R. Ni-catalysed remote C(sp 3)-H functionalization using chain-walking strategies. Nat Rev Chem 2024; 8:833-850. [PMID: 39354168 DOI: 10.1038/s41570-024-00649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/03/2024]
Abstract
The dynamic translocation of a metal catalyst along an alkyl side chain - often coined as 'chain-walking' - has opened new retrosynthetic possibilities that enable functionalization at unactivated C(sp3)-H sites. The use of nickel complexes in chain-walking strategies has recently gained considerable momentum owing to their versatility for forging sp3 architectures and their redox promiscuity that facilitates both one-electron or two-electron reaction manifolds. This Review discusses the relevance and impact that these processes might have in synthetic endeavours, including mechanistic considerations when appropriate. Particular emphasis is given to the latest discoveries that leverage the potential of Ni-catalysed chain-walking scenarios for tackling transformations that would otherwise be difficult to accomplish, including the merger of chain-walking with other new approaches such as photoredox catalysis or electrochemical activation.
Collapse
Affiliation(s)
- Ciro Romano
- Department of Chemistry, University of Manchester, Manchester, UK.
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain.
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
26
|
Lu J, Yuan K, Zheng J, Zhang H, Chen S, Ma J, Liu X, Tu B, Zhang G, Guo R. Photoinduced Electron Donor Acceptor Complex-Enabled α-C(sp 3)-H Alkenylation of Amines. Angew Chem Int Ed Engl 2024; 63:e202409310. [PMID: 39001611 DOI: 10.1002/anie.202409310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 10/25/2024]
Abstract
Allylic amines are prevalent and vital structural components present in many bioactive compounds and natural products. Additionally, they serve as valuable intermediates and building blocks, with wide-ranging applications in organic synthesis. However, direct α-C(sp3)-H alkenylation of feedstock amines, particularly for the preparation of α-alkenylated cyclic amines, has posed a longstanding challenge. Herein, we present a general, mild, operationally simple, and transition-metal-free α-alkenylation of various readily available amines with alkenylborate esters in excellent E/Z - and diastereoselectivities. This method features good compatibility with water and oxygen, broad substrate scope, and excellent functional group tolerance, thereby enabling the late-stage modification of various complex molecules. Mechanistic studies suggest that the formation of a photoactive electron donor-acceptor complex between 2-iodobenzamide and the tetraalkoxyborate anion, which subsequently undergoes photoinduced single electron transfer and intramolecular 1,5-hydrogen atom transfer to generate the crucial α-amino radicals, is the key to success of this chemistry.
Collapse
Affiliation(s)
- Jianzhong Lu
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Kaiyao Yuan
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Jialian Zheng
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - He Zhang
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Shuting Chen
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Ji Ma
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Xinyu Liu
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Binbin Tu
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Guozhu Zhang
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Rui Guo
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| |
Collapse
|
27
|
Lardy S, Lerda VL, Schmidt VA. Polarity-Driven Thiyl Radical-Catalyzed Aerobic Debenzylation of Ethers and Amines. J Org Chem 2024; 89:15062-15067. [PMID: 39380545 PMCID: PMC11494661 DOI: 10.1021/acs.joc.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
We report the use of a strongly electrophilic thiyl radical derived from commercially available pentafluorothiophenol as a demonstration of highly chemoselective H atom abstraction from electron-rich and relatively weak benzylic C-H bonds adjacent to the O and N atoms. This approach enables the selective oxidative removal of benzyl and p-methoxybenzyl groups from amines and ethers under ambient aerobic conditions.
Collapse
Affiliation(s)
- Samuel
W. Lardy
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| | - Victoria L. Lerda
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| | - Valerie A. Schmidt
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| |
Collapse
|
28
|
Tu JL, Huang B. Direct C(sp 3)-H functionalization with aryl and alkyl radicals as intermolecular hydrogen atom transfer (HAT) agents. Chem Commun (Camb) 2024; 60:11450-11465. [PMID: 39268687 DOI: 10.1039/d4cc03383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Recent years have witnessed the emergence of direct intermolecular C(sp3)-H bond functionalization using in situ generated aryl/alkyl radicals as a unique class of hydrogen atom transfer (HAT) agents. A variety of precursors have been exploited to produce these radical HAT agents under photocatalytic, electrochemical or thermal conditions. To date, viable aryl radical precursors have included aryl diazonium salts or aryl azosulfones, diaryliodonium salts, O-benzoyl oximes, aryl sulfonium salts, aryl thioesters, and aryl halides; and applicable alkyl radical sources have included tetrahalogenated methanes (e.g., CCl3Br, CBr4 and CF3I), N-hydroxyphthalimide esters, alkyl bromides, and acetic acid. This review summarizes the current advances in direct intermolecular C(sp3)-H functionalization through key HAT events with in situ generated aryl/alkyl radicals and categorizes the procedures by the specific radical precursors applied. With an emphasis on the reaction conditions, mechanisms and representative substrate scopes of these protocols, this review aims to demonstrate the current trends and future challenges of this emerging field.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Binbin Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
| |
Collapse
|
29
|
Garwood JJA, Chen AD, Nagib DA. Radical Polarity. J Am Chem Soc 2024. [PMID: 39363280 DOI: 10.1021/jacs.4c06774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The polarity of a radical intermediate profoundly impacts its reactivity and selectivity. To quantify this influence and predict its effects, the electrophilicity/nucleophilicity of >500 radicals has been calculated. This database of open-shell species entails frequently encountered synthetic intermediates, including radicals centered at sp3, sp2, and sp hybridized carbon atoms or various heteroatoms (O, N, S, P, B, Si, X). Importantly, these computationally determined polarities have been experimentally validated for electronically diverse sets of >50 C-centered radicals, as well as N- and O- centered radicals. High correlations are measured between calculated polarity and quantified reactivity, as well as within parallel sets of competition experiments (across different radical types and reaction classes). These multipronged analyses show a strong relationship between the computed electrophilicity, ω, of a radical and its relative reactivity (krel vs Δω slopes up to 40; showing mere Δω of 0.1 eV affords up to 4-fold rate enhancement). We expect this experimentally validated database will enable reactivity and selectivity prediction (by harnessing polarity-matched rate enhancement) and assist with troubleshooting in synthetic reaction development.
Collapse
Affiliation(s)
- Jacob J A Garwood
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
30
|
Hirose M, Sakaguchi H, Hashimoto R, Furutani T, Yamawaki M, Suzuki H, Yoshimi Y. Benzoic Acid Serves as Precursor of Catalytic HAT Reagent in a Two-Molecule Photoredox System. Chemistry 2024; 30:e202402285. [PMID: 38987225 DOI: 10.1002/chem.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
The photoinduced regioselective HAT reactions of acetals, ethers, and alcohols using benzoic acids in a two-molecule photoredox system led to the formation of new C-C bonds with alkenes under mild conditions. Aryl carboxy radicals generated from benzoic acids in a two-molecule photoredox system can function as catalytic HAT reagents, even though an excess amount of a hydrogen donor substrate is required. Various acetals, ethers, alcohols, and alkenes can be employed in the photoreaction to provide both high yields of adducts and high recoveries of benzoic acids.
Collapse
Affiliation(s)
- Masami Hirose
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Hina Sakaguchi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Ryoga Hashimoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Toshiki Furutani
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Geshi-cho, Fukui, 916-8507, Japan
| | - Mugen Yamawaki
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Geshi-cho, Fukui, 916-8507, Japan
| | - Hirotsugu Suzuki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
31
|
Hu Y, Liu Q, Zhou X, Huang Y, Fernández I, Xiong Y. Lewis-Acid-Promoted Visible-Light-Mediated C(sp 3)-H Bond Functionalization of Arylvinylpyridines via Diradical Hydrogen Atom Transfer. Org Lett 2024; 26:8005-8010. [PMID: 39109801 DOI: 10.1021/acs.orglett.4c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
A visible-light-induced intramolecular diradical-mediated hydrogen atom transfer (DHAT) of primary, secondary, and tertiary C(sp3)-H bonds and subsequent cyclization is described. This transformation is enabled by triplet energy transfer upon Lewis acid coordination to alkyl-substituted arylvinylpyridines and gives access to a variety of benzocyclobutenes (>40 examples, 32-96% yield). Notably, tri- and tetrasubstituted olefins with tertiary C(sp3)-H bonds effectively delivered sterically hindered products with adjacent all-carbon quaternary centers. Mechanistic evidence and density functional theory (DFT) calculations suggest that Lewis acid coordination was crucial for the success by modulating the reactivity of the diradical intermediates to unlock a challenging carbon-to-carbon DHAT and subsequent cyclization with a rather low barrier, which allows the functionalization of benzylic C(sp3)-H bonds to construct otherwise inaccessible benzocyclobutenes.
Collapse
Affiliation(s)
- Ye Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Qian Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovacion en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Yang Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
32
|
Gu X, Shen J, Xu Z, Liu J, Shi M, Wei Y. Visible-Light-Mediated Activation of Remote C(sp 3)-H Bonds by Carbon-Centered Biradical via Intramolecular 1,5- or 1,6-Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2024; 63:e202409463. [PMID: 39031578 DOI: 10.1002/anie.202409463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
In this study, we introduce a novel intramolecular hydrogen atom transfer (HAT) reaction that efficiently yields azetidine, oxetane, and indoline derivatives through a mechanism resembling the carbon analogue of the Norrish-Yang reaction. This process is facilitated by excited triplet-state carbon-centered biradicals, enabling the 1,5-HAT reaction by suppressing the critical 1,4-biradical intermediates from undergoing the Norrish Type II cleavage reaction, and pioneering unprecedented 1,6-HAT reactions initiated by excited triplet-state alkenes. We demonstrate the synthetic utility and compatibility of this method across various functional groups, validated through scope evaluation, large-scale synthesis, and derivatization. Our findings are supported by control experiments, deuterium labeling, kinetic studies, cyclic voltammetry, Stern-Volmer experiments, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xintao Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiahao Shen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ziyu Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiaxin Liu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
33
|
Satheesh V, Deng Y. Recent Advances in Synthetic Methods by Photocatalytic Single-Electron Transfer Chemistry of Pyridine N-Oxides. J Org Chem 2024; 89:11864-11874. [PMID: 39121338 PMCID: PMC11415123 DOI: 10.1021/acs.joc.4c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
By adoption of the enabling technology of modern photoredox catalysis and photochemistry, the generation of reactive and versatile pyridine N-oxy radicals can be facilely achieved from single-electron oxidation of pyridine N-oxides. This Synopsis highlights recent methodologies mediated by pyridine N-oxy radicals in developing (1) pyridine N-oxide-based hydrogen atom transfer catalysts for C(sp3)-H functionalizations and (2) β-oxyvinyl radical-mediated cascade reactions. In addition, recent research revealed that direct photoexcitation of pyridine N-oxides allowed for the generation of alkyl carbon radicals from alkylboronic acids.
Collapse
Affiliation(s)
- Vanaparthi Satheesh
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
34
|
Mondal S, Ghosh S, Hajra A. Visible-light-induced redox-neutral difunctionalization of alkenes and alkynes. Chem Commun (Camb) 2024; 60:9659-9691. [PMID: 39129429 DOI: 10.1039/d4cc03552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The twelve principles of green chemistry illuminate the pathway in the direction of sustainable and eco-friendly synthesis, marking a fundamental shift in synthetic organic chemistry paradigms. In this realm, harnessing the power of visible light for the difunctionalization of various skeletons without employing any external oxidant or reductant, specifically termed as redox-neutral difunctionalization, has attracted tremendous interest from synthetic organic chemists due to its low cost, easy availability and environmentally friendly nature in contrast to traditional metal-catalyzed difunctionalizations. This review presents an overview of recent updates on visible-light-induced redox-neutral difunctionalization reactions with literature coverage up to May 2024.
Collapse
Affiliation(s)
- Susmita Mondal
- Central Ayurvedic Research Institute, 4-CN Block, Bidhannagar, Kolkata, 700091, West Bengal, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
35
|
Wang M, Huang Y, Hu P. Hydrogen atom transfer-induced selective borylation of C(sp<sup>3</sup>)–H bonds. SCIENTIA SINICA CHIMICA 2024; 54:1445-1454. [DOI: 10.1360/ssc-2024-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Diemer V, Roy E, Agouridas V, Melnyk O. Protein desulfurization and deselenization. Chem Soc Rev 2024; 53:8521-8545. [PMID: 39010733 DOI: 10.1039/d4cs00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Methods enabling the dechalcogenation of thiols or selenols have been investigated and developed for a long time in fields of research as diverse as the study of prebiotic chemistry, the engineering of fuel processing techniques, the study of biomolecule structures and function or the chemical synthesis of biomolecules. The dechalcogenation of thiol or selenol amino acids is nowadays a particularly flourishing area of research for being a pillar of modern chemical protein synthesis, when used in combination with thiol or selenol-based chemoselective peptide ligation chemistries. This review offers a comprehensive and scholarly overview of the field, emphasizing emerging trends and providing a detailed and critical mechanistic discussion of the dechalcogenation methods developed so far. Taking advantage of recently published reports, it also clarifies some unexpected desulfurization reactions that were observed in the past and for which no explanation was provided at the time. Additionally, the review includes a discussion on principal desulfurization methods within the framework of newly introduced green chemistry metrics and toolkits, providing a well-rounded exploration of the subject.
Collapse
Affiliation(s)
- Vincent Diemer
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017, Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Eliott Roy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017, Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Vangelis Agouridas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017, Center for Infection and Immunity of Lille, F-59000 Lille, France.
- Centrale Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017, Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
37
|
Fu H, Zheng W, Duan W, Fang G, Duan X, Wang S, Feng C, Zhu S. Overlooked Roles and Transformation of Carbon-Centered Radicals Produced from Natural Organic Matter in a Thermally Activated Persulfate System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14949-14960. [PMID: 39126387 DOI: 10.1021/acs.est.4c06770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The presence and induced secondary reactions of natural organic matter (NOM) significantly affect the remediation efficacy of in situ chemical oxidation (ISCO) systems. However, it remains unclear how this process relates to organic radicals generated from reactions between the NOM and oxidants. The study, for the first time, reported the vital roles and transformation pathways of carbon-centered radicals (CCR•) derived from NOM in activated persulfate (PS) systems. Results showed that both typical terrestrial/aquatic NOM isolates and collected NOM samples produced CCR• by scavenging activated PS and greatly enhanced the dehalogenation performance under anoxic conditions. Under oxic conditions, newly formed CCR• could be oxidized by O2 and generate organic peroxide intermediates (ROO•) to catalytically yield additional •OH without the involvement of PS. Nuclear magnetic resonance (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) results indicated that CCR• predominantly formed from carboxyl and aliphatic structures instead of aromatics within NOM through hydrogen abstraction and decarboxylation reactions by SO4•- or •OH. Specific anoxic reactions (i.e., dehalogenation and intramolecular cross-coupling reactions) further promoted the transformation of CCR• to more unsaturated and polymerized/condensed compounds. In contrast, oxic propagation of ROO• enhanced bond breakage/ring cleavage and degradation of CCR• due to the presence of additional •OH and self-decomposition. This study provides novel insights into the role of NOM and O2 in ISCO and the development of engineered strategies for creating organic radicals capable of enhancing the remediation of specific contaminants and recovering organic carbon.
Collapse
Affiliation(s)
- Hengyi Fu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Weijian Duan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
38
|
Li WT, Zhang ZX, Huang J, Jiang HM, Luo ZW, Li JH, Ouyang XH. Photochemical Divergent Ring-Closing Metathesis of 1,7-Enynes: Efficient Synthesis of Spirocyclic Quinolin-2-ones. Org Lett 2024; 26:6664-6669. [PMID: 39078505 DOI: 10.1021/acs.orglett.4c02332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A photocatalytic method for the ring-closing 1,7-enyne metathesis using the α-amino radical as an alkene deconstruction auxiliary is present. Preliminary mechanistic studies suggest that intramolecular 1,5-hydrogen atom transfer is the key to the generation and β-scission of the α-amino radical, while the dearomatization of arenes and ring opening of cyclopropanes are the key to construct spirocyclic quinolin-2-ones. This approach highlights the potential of ring-closing 1,7-enyne metathesis, providing a green, efficient, and step-economical way for the synthesis of spirocyclic quinolin-2-ones.
Collapse
Affiliation(s)
- Wan-Ting Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Zhi-Xia Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Jing Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Zhen-Wei Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| |
Collapse
|
39
|
Xu J, Li R, Ma Y, Zhu J, Shen C, Jiang H. Site-selective α-C(sp 3)-H arylation of dialkylamines via hydrogen atom transfer catalysis-enabled radical aryl migration. Nat Commun 2024; 15:6791. [PMID: 39117735 PMCID: PMC11310330 DOI: 10.1038/s41467-024-51239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Site-selective C(sp3)-H arylation is an appealing strategy to synthesize complex arene structures but remains a challenge facing synthetic chemists. Here we report the use of photoredox-mediated hydrogen atom transfer (HAT) catalysis to accomplish the site-selective α-C(sp3)-H arylation of dialkylamine-derived ureas through 1,4-radical aryl migration, by which a wide array of benzylamine motifs can be incorporated to the medicinally relevant systems in the late-stage installation steps. In contrast to previous efforts, this C-H arylation protocol exhibits specific site-selectivity, proforming predominantly on sterically more-hindered secondary and tertiary α-amino carbon centers, while the C-H functionalization of sterically less-hindered N-methyl group can be effectively circumvented in most cases. Moreover, a diverse range of multi-substituted piperidine derivatives can be obtained with excellent diastereoselectivity. Mechanistic and computational studies demonstrate that the rate-determining step for methylene C-H arylation is the initial H atom abstraction, whereas the radical ipso cyclization step bears the highest energy barrier for N-methyl functionalization. The relatively lower activation free energies for secondary and tertiary α-amino C-H arylation compared with the functionalization of methylic C-H bond lead to the exceptional site-selectivity.
Collapse
Affiliation(s)
- Jie Xu
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihan Li
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yijian Ma
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Zhu
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Heng Jiang
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
40
|
Zhou Y, Wu Z, Xu J, Zhang Z, Zheng H, Zhu G. Fluorine-Effect-Enabled Photocatalytic 4-Exo-Trig Cyclization Cascade to Access Fluoroalkylated Cyclobutanes. Angew Chem Int Ed Engl 2024; 63:e202405678. [PMID: 38739309 DOI: 10.1002/anie.202405678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Cyclobutanes are popular structural units in bioactive compounds and versatile intermediates in synthetic chemistry, but their synthesis is challenging owing to high ring strain. In this study, a novel method for highly regio- and diastereoselective synthesis of fluoroalkylcyclobutanes bearing vicinal quaternary and tertiary stereocenters is realized by a photocatalytic 4-exo-trig cyclization cascade of thioalkynes or trifluoromethylalkenes. Density functional theory calculations reveal that a unique fluorine effect, arising from hyperconjugative π→σ*C-F interactions, accounts for the regio-reversed radical addition at the sterically hindered alkene carbon, which facilitates an unprecedented 4-exo-trig ring closure. This chemistry enables the direct and controllable construction of medicinally valuable quaternary-carbon-containing cyclobutanes from readily available raw materials, nicely complementing the existing methods.
Collapse
Affiliation(s)
- Yulu Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zhenzhen Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Jinming Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
41
|
Mauri A, Kiefer P, Neidinger P, Messer T, Bojanowski NM, Yang L, Walden S, Unterreiner AN, Barner-Kowollik C, Wegener M, Wenzel W, Kozlowska M. Two- and three-photon processes during photopolymerization in 3D laser printing. Chem Sci 2024:d4sc03527e. [PMID: 39129779 PMCID: PMC11309088 DOI: 10.1039/d4sc03527e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
The performance of a photoinitiator is key to control efficiency and resolution in 3D laser nanoprinting. Upon light absorption, a cascade of competing photophysical processes leads to photochemical reactions toward radical formation that initiates free radical polymerization (FRP). Here, we investigate 7-diethylamino-3-thenoylcoumarin (DETC), belonging to an efficient and frequently used class of photoinitiators in 3D laser printing, and explain the molecular bases of FRP initiation upon DETC photoactivation. Depending on the presence of a co-initiator, DETC causes radical generation either upon two-photon- or three-photon excitation, but the mechanism for these processes is not well understood so far. Here, we show that the unique three-photon based radical formation by DETC, in the absence of a co-initiator, results from its excitation to highly excited triplet states. They allow a hydrogen-atom transfer reaction from the pentaerythritol triacrylate (PETA) monomer to DETC, enabling the formation of the reactive PETA alkyl radical, which initiates FRP. The formation of active DETC radicals is demonstrated to be less spontaneous. In contrast, photoinitiation in the presence of an onium salt co-initiator proceeds via intermolecular electron transfer after the photosensitization of the photoinitiator to the lowest triplet excited state. Our quantum mechanical calculations demonstrate photophysical processes upon the multiphoton activation of DETC and explain different reactions for the radical formation upon DETC photoactivation. This investigation for the first time describes possible pathways of FRP initiation in 3D laser nanoprinting and permits further rational design of efficient photoinitiators to increase the speed and sensitivity of 3D laser nanoprinting.
Collapse
Affiliation(s)
- Anna Mauri
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - Pascal Kiefer
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - Philipp Neidinger
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Tobias Messer
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - N Maximilian Bojanowski
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - Liang Yang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - Sarah Walden
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - Christopher Barner-Kowollik
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Martin Wegener
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| |
Collapse
|
42
|
Yamada K, Cheung KPS, Gevorgyan V. General Regio- and Diastereoselective Allylic C-H Oxygenation of Internal Alkenes. J Am Chem Soc 2024; 146:18218-18223. [PMID: 38922638 DOI: 10.1021/jacs.4c06421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Branched allylic esters and carboxylates are fundamental motifs prevalent in natural products and drug molecules. The direct allylic C-H oxygenation of internal alkenes represents one of the most straightforward approaches, bypassing the requirement for an allylic leaving group as in the classical Tsuji-Trost reaction. However, current methods suffer from limited scope─often accompanied by selectivity issues─thus hampering further development. Herein we report a photocatalytic platform as a general solution to these problems, enabling the coupling of diverse internal alkenes with carboxylic acids, alcohols, and other O-nucleophiles, typically in a highly regio- and diastereoselective manner.
Collapse
Affiliation(s)
- Kyohei Yamada
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| |
Collapse
|
43
|
Yang J, Li CR, Guo X, Chen Z, Hu K, Li LX. Photoinduced Palladium-Catalyzed 1,2-Aminoalkylation of Aromatic Alkenes with Hydroxyl as the Directing Group. Org Lett 2024; 26:5110-5114. [PMID: 38848135 DOI: 10.1021/acs.orglett.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The hybrid nature of Pd(I)-alkyl radical species has enabled a wide array of radical-based transformations. However, in this transformation, the secondary Pd(I)-alkyl radical species are prone to recombining into Pd(II)-alkyl species to give Heck-type products via β-H loss. Herein, we report a visible-light-induced, three-component Pd-catalyzed 1,2-aminoalkylation of alkenes with readily available alkyl halides and amines to construct C-C and C-N bonds simultaneously. Mechanistic investigation shows that the intermediate of o-quinone methide produced is the key factor in the transformation.
Collapse
Affiliation(s)
- Jing Yang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chen-Rui Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xu Guo
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhuo Chen
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kai Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Li-Xin Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
44
|
Hu Y, Hervieu C, Merino E, Nevado C. Asymmetric, Remote C(sp 3)-H Arylation via Sulfinyl-Smiles Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202319158. [PMID: 38506603 DOI: 10.1002/anie.202319158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 03/21/2024]
Abstract
An efficient asymmetric remote arylation of C(sp3)-H bonds under photoredox conditions is described here. The reaction features the addition radicals to a double bond followed by a site-selective radical translocation (1,n-hydrogen atom transfer) as well as a stereocontrolled aryl migration via sulfinyl-Smiles rearrangement furnishing a wide range of chiral α-arylated amides with up to >99 : 1 er. Mechanistic studies indicate that the sulfinamide group governs the stereochemistry of the product with the aryl migration being the rate determining step preceded by a kinetically favored 1,n-HAT process.
Collapse
Affiliation(s)
- Yawen Hu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| | - Cédric Hervieu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| | - Estíbaliz Merino
- Departamento de Química Orgánica y Química Inorgánica Instituto de Investigación Química "Andrés M. del Río" (IQAR). Facultad de Farmacia, Universidad de Alcalá Alcalá de Henares, 28805, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, Km. 9.100, 28034, Madrid, Spain
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| |
Collapse
|
45
|
Sarkar S, Cheung KPS, Gevorgyan V. Recent Advances in Visible Light Induced Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202311972. [PMID: 37957126 PMCID: PMC10922525 DOI: 10.1002/anie.202311972] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Visible light-induced Pd catalysis has emerged as a promising subfield of photocatalysis. The hybrid nature of Pd radical species has enabled a wide array of radical-based transformations otherwise challenging or unknown via conventional Pd chemistry. In parallel to the ongoing pursuit of alternative, readily available radical precursors, notable discoveries have demonstrated that photoexcitation can alter not only oxidative addition but also other elementary steps. This Minireview highlights the recent progress in this area.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| |
Collapse
|
46
|
Vo DV, Su S, Karmakar R, Lee D. Reactivity of Enyne-Allenes Generated via an Alder-Ene Reaction. Org Lett 2024; 26:1299-1303. [PMID: 38330294 DOI: 10.1021/acs.orglett.3c03696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Tandem transformations of 1,3-diynyl propiolate derivatives are described. The Alder-ene reaction generates an enyne-allene, which undergoes a formal 1,7-H shift or a Diels-Alder reaction, depending on the substituent on the alkyne. A terminal or aryl-substituted alkyne promotes a 1,7-H shift to generate a new enyne-allene, which undergoes a Myers-Saito cycloaromatization followed by a 1,5-H transfer-mediated cyclization to form highly functionalized benzo-fused 6-membered cycles. The reactivity of the preformed enyne-allene shows comparable reactivity profiles.
Collapse
Affiliation(s)
- Duy-Viet Vo
- Department of Chemistry, University of Illinois─Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Siyuan Su
- Department of Chemistry, University of Illinois─Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Rajdip Karmakar
- Department of Chemistry, University of Illinois─Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Daesung Lee
- Department of Chemistry, University of Illinois─Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
47
|
Liu Y, Pickard FC, Sluggett GW, Mustakis IG. Robust fragment-based method of calculating hydrogen atom transfer activation barrier in complex molecules. Phys Chem Chem Phys 2024; 26:1869-1880. [PMID: 38175161 DOI: 10.1039/d3cp05028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Dynamic processes driven by non-covalent interactions (NCI), such as conformational exchange, molecular binding, and solvation, can strongly influence the rate constants of reactions with low activation barriers, especially at low temperatures. Examples of this may include hydrogen-atom-transfer (HAT) reactions involved in the oxidative stress of an active pharmaceutical ingredient (API). Here, we develop an automated workflow to generate HAT transition-state (TS) geometries for complex and flexible APIs and then systematically evaluate the influences of NCI on the free activation energies, based on the multi-conformational transition-state theory (MC-TST) within the framework of a multi-step reaction path. The two APIs studied: fesoterodine and imipramine, display considerable conformational complexity and have multiple ways of forming hydrogen bonds with the abstracting radical-a hydroxymethyl peroxyl radical. Our results underscore the significance of considering conformational exchange and multiple activation pathways in activation calculations. We also show that structural elements and NCIs outside the reaction site minimally influence TS core geometry and covalent activation barrier, although they more strongly affect reactant binding and consequently the overall activation barrier. We further propose a robust and economical fragment-based method to obtain overall activation barriers, by combining the covalent activation barrier calculated for a small molecular fragment with the binding free energy calculated for the whole molecule.
Collapse
Affiliation(s)
- Yizhou Liu
- Analytical Research and Development, Pfizer Research and Development, 445 Eastern Point Road, Groton, CT 06340, USA.
| | - Frank C Pickard
- Pharmaceutical Sciences, Pfizer Research & Development, Groton, CT 06340, USA
- Medicine Design, Pfizer Research & Development, Cambridge, MA 02139, USA
| | - Gregory W Sluggett
- Analytical Research and Development, Pfizer Research and Development, 445 Eastern Point Road, Groton, CT 06340, USA.
| | - Iasson G Mustakis
- Chemical Research & Development, Pfizer Research & Development, Groton, CT 06340, USA
| |
Collapse
|
48
|
Xu GQ, Wang WD, Xu PF. Photocatalyzed Enantioselective Functionalization of C(sp 3)-H Bonds. J Am Chem Soc 2024; 146:1209-1223. [PMID: 38170467 DOI: 10.1021/jacs.3c06169] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
49
|
Cerveri A, Scarica G, Sparascio S, Hoch M, Chiminelli M, Tegoni M, Protti S, Maestri G. Boosting Energy-Transfer Processes via Dispersion Interactions. Chemistry 2024:e202304010. [PMID: 38224554 DOI: 10.1002/chem.202304010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The generation of open-shell intermediates under mild conditions has opened broad synthetic opportunities during this century. However, these reactive species often require a case specific and tailored tuning of experimental parameters in order to efficiently convert substrates into products. We report a general approach that can overcome these ubiquitous limitations for several visible-light promoted energy-transfer processes. The use of either naphthalene (5-20 equiv.) or simple binaphthyl derivatives (10-30 mol %) greatly increases their efficiency, giving rise to a new strategy for catalysis. The trend is consistent among different media, photocatalysts, light sources and substrates, allowing one to improve existing methods, to more easily optimize conditions for new ones, and, moreover, to disclose otherwise inaccessible reaction pathways.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gabriele Scarica
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Sara Sparascio
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Hoch
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, Università di Pavia, Via Taramelli 10, 27100, Pavia, Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
50
|
Abuhafez N, Ehlers AW, de Bruin B, Gramage-Doria R. Markovnikov-Selective Cobalt-Catalyzed Wacker-Type Oxidation of Styrenes into Ketones under Ambient Conditions Enabled by Hydrogen Bonding. Angew Chem Int Ed Engl 2024; 63:e202316825. [PMID: 38037901 DOI: 10.1002/anie.202316825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
The replacement of palladium catalysts for Wacker-type oxidation of olefins into ketones by first-row transition metals is a relevant approach for searching more sustainable protocols. Besides highly sophisticated iron catalysts, all the other first-row transition metal complexes have only led to poor activities and selectivities. Herein, we show that the cobalt-tetraphenylporphyrin complex is a competent catalyst for the aerobic oxidation of styrenes into ketones with silanes as the hydrogen sources. Remarkably, under room temperature and air atmosphere, the reactions were exceedingly fast (up to 10 minutes) with a low catalyst loading (1 mol %) while keeping an excellent chemo- and Markovnikov-selectivity (up to 99 % of ketone). Unprecedently high TOF (864 h-1 ) and TON (5,800) were reached for the oxidation of aromatic olefins under these benign conditions. Mechanistic studies suggest a reaction mechanism similar to the Mukaiyama-type hydration of olefins with a change in the last fundamental step, which controls the chemoselectivity, thanks to a unique hydrogen bonding network between the ethanol solvent and the cobalt peroxo intermediate.
Collapse
Affiliation(s)
- Naba Abuhafez
- Univ Rennes, CNRS, ISCR-UMR6226, 35000, Rennes, France
| | - Andreas W Ehlers
- University of Amsterdam, Science Park 904, 1094 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- University of Amsterdam, Science Park 904, 1094 XH, Amsterdam, The Netherlands
| | | |
Collapse
|