1
|
You H, Hui J, Zhou Y, Vittore K, Zhang J, Chaney LE, Chinta S, Zhao Y, Lim G, Lee D, Ainsworth EA, Dunn JB, Dravid VP, Hersam MC, Rowan SJ. Sustainable Production of Biomass-Derived Graphite and Graphene Conductive Inks from Biochar. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406669. [PMID: 39439141 DOI: 10.1002/smll.202406669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Graphite is a commonly used raw material across many industries and the demand for high-quality graphite has been increasing in recent years, especially as a primary component for lithium-ion batteries. However, graphite production is currently limited by production shortages, uneven geographical distribution, and significant environmental impacts incurred from conventional processing. Here, an efficient method of synthesizing biomass-derived graphite from biochar is presented as a sustainable alternative to natural and synthetic graphite. The resulting bio-graphite equals or exceeds quantitative quality metrics of spheroidized natural graphite, achieving a Raman ID/IG ratio of 0.051 and crystallite size parallel to the graphene layers (La) of 2.08 µm. This bio-graphite is directly applied as a raw input to liquid-phase exfoliation of graphene for the scalable production of conductive inks. The spin-coated films from the bio-graphene ink exhibit the highest conductivity among all biomass-derived graphene or carbon materials, reaching 3.58 ± 0.16 × 104 S m-1. Life cycle assessment demonstrates that this bio-graphite requires less fossil fuel and produces reduced greenhouse gas emissions compared to incumbent methods for natural, synthesized, and other bio-derived graphitic materials. This work thus offers a sustainable, locally adaptable solution for producing state-of-the-art graphite that is suitable for bio-graphene and other high-value products.
Collapse
Affiliation(s)
- Haoyang You
- Department of Chemistry, University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Janan Hui
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Yilun Zhou
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Kayla Vittore
- Department of Crop Sciences, University of Illinois Urbana-Champaign, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - Jinrui Zhang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Sritarun Chinta
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Yunhao Zhao
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 S Ellis Ave, Chicago, IL, 60637, USA
| | - Gilhwan Lim
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- The NUANCE Center, Northwestern University Evanston, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - DoKyoung Lee
- Department of Crop Sciences, University of Illinois Urbana-Champaign, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - Elizabeth A Ainsworth
- USDA-ARS, Global Change and Photosynthesis Research Unit, 1201 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Jennifer B Dunn
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- The NUANCE Center, Northwestern University Evanston, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 S Ellis Ave, Chicago, IL, 60637, USA
- Chemical and Engineering Sciences, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439, USA
| |
Collapse
|
2
|
Hui J, You H, Van Beek A, Zhang J, Elahi A, Downing JR, Chaney LE, Lee D, Ainsworth EA, Chaudhuri S, Dunn JB, Chen W, Rowan SJ, Hersam MC. Biorenewable Exfoliation of Electronic-Grade Printable Graphene Using Carboxylated Cellulose Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57534-57543. [PMID: 39392856 DOI: 10.1021/acsami.4c12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
The absence of scalable and environmentally sustainable methods for producing electronic-grade graphene nanoplatelets remains a barrier to the industrial-scale application of graphene in printed electronics and conductive composites. To address this unmet need, here we report the utilization of carboxylated cellulose nanocrystals (CNCs) extracted from the perennial tall grass Miscanthus × giganteus as a biorenewable dispersant for the aqueous liquid-phase exfoliation of few-layer graphene nanoplatelets. This CNC-based exfoliation procedure was optimized using a Bayesian machine learning model, resulting in a significant graphite-to-graphene conversion yield of 13.4% and a percolating graphene thin-film electrical conductivity of 3.4 × 104 S m-1. The as-exfoliated graphene dispersions were directly formulated into an aerosol jet printing ink using cellulose-based additives to achieve high-resolution printing (∼20 μm line width). Life cycle assessment of this CNC-based exfoliation method showed substantial improvements for fossil fuel consumption, greenhouse gas emissions, and water consumption compared to incumbent liquid-phase exfoliation methods for electronic-grade graphene nanoplatelets. Mechanistically, potential mean force calculations from molecular dynamics simulations reveal that the high exfoliation yield can be traced back to the favorable surface interactions between CNCs and graphene. Ultimately, the use of biorenewable CNCs for liquid-phase exfoliation will accelerate the scalable and eco-friendly manufacturing of graphene for electronically conductive applications.
Collapse
Affiliation(s)
- Janan Hui
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyang You
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Anton Van Beek
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jinrui Zhang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arash Elahi
- Department of Chemical Engineering, University of Illinois at Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - DoKyoung Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Urbana, Illinois 61801, United States
| | - Santanu Chaudhuri
- Department of Chemical Engineering, University of Illinois at Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, Illinois 60607, United States
| | - Jennifer B Dunn
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wei Chen
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
- Chemical and Engineering Sciences, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Mark C Hersam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Chaney LE, van Beek A, Downing JR, Zhang J, Zhang H, Hui J, Sorensen EA, Khalaj M, Dunn JB, Chen W, Hersam MC. Bayesian Optimization of Environmentally Sustainable Graphene Inks Produced by Wet Jet Milling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309579. [PMID: 38530067 DOI: 10.1002/smll.202309579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/24/2024] [Indexed: 03/27/2024]
Abstract
Liquid phase exfoliation (LPE) of graphene is a potentially scalable method to produce conductive graphene inks for printed electronic applications. Among LPE methods, wet jet milling (WJM) is an emerging approach that uses high-speed, turbulent flow to exfoliate graphene nanoplatelets from graphite in a continuous flow manner. Unlike prior WJM work based on toxic, high-boiling-point solvents such as n-methyl-2-pyrollidone (NMP), this study uses the environmentally friendly solvent ethanol and the polymer stabilizer ethyl cellulose (EC). Bayesian optimization and iterative batch sampling are employed to guide the exploration of the experimental phase space (namely, concentrations of graphite and EC in ethanol) in order to identify the Pareto frontier that simultaneously optimizes three performance criteria (graphene yield, conversion rate, and film conductivity). This data-driven strategy identifies vastly different optimal WJM conditions compared to literature precedent, including an optimal loading of 15 wt% graphite in ethanol compared to 1 wt% graphite in NMP. These WJM conditions provide superlative graphene production rates of 3.2 g hr-1 with the resulting graphene nanoplatelets being suitable for screen-printed micro-supercapacitors. Finally, life cycle assessment reveals that ethanol-based WJM graphene exfoliation presents distinct environmental sustainability advantages for greenhouse gas emissions, fossil fuel consumption, and toxicity.
Collapse
Affiliation(s)
- Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Anton van Beek
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jinrui Zhang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hengrui Zhang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Janan Hui
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - E Alexander Sorensen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Maryam Khalaj
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jennifer B Dunn
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Chen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Medicine, Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Szydlowska BM, Pola CC, Cai Z, Chaney LE, Hui J, Sheets R, Carpenter J, Dean D, Claussen JC, Gomes CL, Hersam MC. Biolayer-Interferometry-Guided Functionalization of Screen-Printed Graphene for Label-Free Electrochemical Virus Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25169-25180. [PMID: 38695741 DOI: 10.1021/acsami.4c05264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Additive manufacturing holds promise for rapid prototyping and low-cost production of biosensors for diverse pathogens. Among additive manufacturing methods, screen printing is particularly desirable for high-throughput production of sensing platforms. However, this technique needs to be combined with carefully formulated inks, rapid postprocessing, and selective functionalization to meet all requirements for high-performance biosensing applications. Here, we present screen-printed graphene electrodes that are processed with thermal annealing to achieve high surface area and electrical conductivity for sensitive biodetection via electrochemical impedance spectroscopy. As a proof-of-concept, this biosensing platform is utilized for electrochemical detection of SARS-CoV-2. To ensure reliable specificity in the presence of multiple variants, biolayer interferometry (BLI) is used as a label-free and dynamic screening method to identify optimal antibodies for concurrent affinity to the Spike S1 proteins of Delta, Omicron, and Wild Type SARS-CoV-2 variants while maintaining low affinity to competing pathogens such as Influenza H1N1. The BLI-identified antibodies are robustly bound to the graphene electrode surface via oxygen moieties that are introduced during the thermal annealing process. The resulting electrochemical immunosensors achieve superior metrics including rapid detection (55 s readout following 15 min of incubation), low limits of detection (approaching 500 ag/mL for the Omicron variant), and high selectivity toward multiple variants. Importantly, the sensors perform well on clinical saliva samples detecting as few as 103 copies/mL of SARS-CoV-2 Omicron, following CDC protocols. The combination of the screen-printed graphene sensing platform and effective antibody selection using BLI can be generalized to a wide range of point-of-care immunosensors.
Collapse
Affiliation(s)
- Beata M Szydlowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cícero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Zizhen Cai
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Janan Hui
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Robert Sheets
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jeremiah Carpenter
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Delphine Dean
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Downing JR, Diaz-Arauzo S, Chaney LE, Tsai D, Hui J, Seo JWT, Cohen DR, Dango M, Zhang J, Williams NX, Qian JH, Dunn JB, Hersam MC. Centrifuge-Free Separation of Solution-Exfoliated 2D Nanosheets via Cross-Flow Filtration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212042. [PMID: 36934307 DOI: 10.1002/adma.202212042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Indexed: 06/16/2023]
Abstract
Solution-processed graphene is a promising material for numerous high-volume applications including structural composites, batteries, sensors, and printed electronics. However, the polydisperse nature of graphene dispersions following liquid-phase exfoliation poses major manufacturing challenges, as incompletely exfoliated graphite flakes must be removed to achieve optimal properties and downstream performance. Incumbent separation schemes rely on centrifugation, which is highly energy-intensive and limits scalable manufacturing. Here, cross-flow filtration (CFF) is introduced as a centrifuge-free processing method that improves the throughput of graphene separation by two orders of magnitude. By tuning membrane pore sizes between microfiltration and ultrafiltration length scales, CFF can also be used for efficient recovery of solvents and stabilizing polymers. In this manner, life cycle assessment and techno-economic analysis reveal that CFF reduces greenhouse gas emissions, fossil energy usage, water consumption, and specific production costs of graphene manufacturing by 57%, 56%, 63%, and 72%, respectively. To confirm that CFF produces electronic-grade graphene, CFF-processed graphene nanosheets are formulated into printable inks, leading to state-of-the-art thin-film conductivities exceeding 104 S m-1 . This CFF methodology can likely be generalized to other van der Waals layered solids, thus enabling sustainable manufacturing of the diverse set of applications currently being pursued for 2D materials.
Collapse
Affiliation(s)
- Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Santiago Diaz-Arauzo
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Daphne Tsai
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Janan Hui
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Jung-Woo T Seo
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | | | - Michael Dango
- Cytiva, 100 Results Way, Marlborough, MA, 01752, USA
| | - Jinrui Zhang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Nicholas X Williams
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Justin H Qian
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Jennifer B Dunn
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| |
Collapse
|
6
|
Gamba L, Johnson ZT, Atterberg J, Diaz-Arauzo S, Downing JR, Claussen JC, Hersam MC, Secor EB. Systematic Design of a Graphene Ink Formulation for Aerosol Jet Printing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3325-3335. [PMID: 36608034 DOI: 10.1021/acsami.2c18838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aerosol jet printing is a noncontact, digital, additive manufacturing technique compatible with a wide variety of functional materials. Although promising, development of new materials and devices using this technique remains hindered by limited rational ink formulation, with most recent studies focused on device demonstration rather than foundational process science. In the present work, a systematic approach to formulating a polymer-stabilized graphene ink is reported, which considers the effect of solvent composition on dispersion, rheology, wetting, drying, and phase separation characteristics that drive process outcomes. It was found that a four-component solvent mixture composed of isobutyl acetate, diglyme, dihydrolevoglucosenone, and glycerol supported efficient ink atomization and controlled in-line drying to reduce overspray and wetting instabilities while maintaining high resolution and electrical conductivity, thus overcoming a trade-off in deposition rate and resolution common to aerosol jet printing. Biochemical sensors were printed for amperometric detection of the pesticide parathion, exhibiting a detection limit of 732 nM and a sensitivity of 34 nA μM-1, demonstrating the viability of this graphene ink for fabricating functional electronic devices.
Collapse
Affiliation(s)
- Livio Gamba
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50010, United States
| | - Zachary T Johnson
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50010, United States
| | - Jackie Atterberg
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50010, United States
| | - Santiago Diaz-Arauzo
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50010, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ethan B Secor
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
7
|
Kuo L, Sangwan VK, Rangnekar SV, Chu TC, Lam D, Zhu Z, Richter LJ, Li R, Szydłowska BM, Downing JR, Luijten BJ, Lauhon LJ, Hersam MC. All-Printed Ultrahigh-Responsivity MoS 2 Nanosheet Photodetectors Enabled by Megasonic Exfoliation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203772. [PMID: 35788996 DOI: 10.1002/adma.202203772] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Printed 2D materials, derived from solution-processed inks, offer scalable and cost-effective routes to mechanically flexible optoelectronics. With micrometer-scale control and broad processing latitude, aerosol-jet printing (AJP) is of particular interest for all-printed circuits and systems. Here, AJP is utilized to achieve ultrahigh-responsivity photodetectors consisting of well-aligned, percolating networks of semiconducting MoS2 nanosheets and graphene electrodes on flexible polyimide substrates. Ultrathin (≈1.2 nm thick) and high-aspect-ratio (≈1 μm lateral size) MoS2 nanosheets are obtained by electrochemical intercalation followed by megasonic atomization during AJP, which not only aerosolizes the inks but also further exfoliates the nanosheets. The incorporation of the high-boiling-point solvent terpineol into the MoS2 ink is critical for achieving a highly aligned and flat thin-film morphology following AJP as confirmed by grazing-incidence wide-angle X-ray scattering and atomic force microscopy. Following AJP, curing is achieved with photonic annealing, which yields quasi-ohmic contacts and photoactive channels with responsivities exceeding 103 A W-1 that outperform previously reported all-printed visible-light photodetectors by over three orders of magnitude. Megasonic exfoliation coupled with properly designed AJP ink formulations enables the superlative optoelectronic properties of ultrathin MoS2 nanosheets to be preserved and exploited for the scalable additive manufacturing of mechanically flexible optoelectronics.
Collapse
Affiliation(s)
- Lidia Kuo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sonal V Rangnekar
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ting-Ching Chu
- Applied Physics Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - David Lam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Zhehao Zhu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lee J Richter
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Beata M Szydłowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Benjamin J Luijten
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lincoln J Lauhon
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
8
|
Pola CC, Rangnekar SV, Sheets R, Szydlowska BM, Downing JR, Parate KW, Wallace SG, Tsai D, Hersam MC, Gomes CL, Claussen JC. Aerosol-jet-printed graphene electrochemical immunosensors for rapid and label-free detection of SARS-CoV-2 in saliva. 2D MATERIALS 2022; 9:035016. [PMID: 35785019 PMCID: PMC9245948 DOI: 10.1088/2053-1583/ac7339] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world-wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing (AJP) to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 Spike Receptor-Binding Domain (RBD) in saliva samples acquired non-invasively. This sensor demonstrated limits of detection that are considerably lower than most commercial SARS-CoV-2 antigen tests (22.91 ± 4.72 pg/mL for Spike RBD and 110.38 ± 9.00 pg/mL for Spike S1) as well as fast response time (~30 mins), which was facilitated by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2 polyclonal antibody through the carbodiimide reaction without the need for nanoparticle functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor presents a wide linear sensing range from 1 to 1000 ng/mL and does not react with other coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers a promising alternative to current SARS-CoV-2 antigen tests.
Collapse
Affiliation(s)
- Cícero C. Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Sonal V. Rangnekar
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Robert Sheets
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Beata M. Szydlowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Julia R. Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Kshama W. Parate
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Shay G. Wallace
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Daphne Tsai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Carmen L. Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|