1
|
Lee MH, Thomas JL, Lin YL, Lin HY. In vitro activation of anti-cancer gene expression by delivery of CRISPR/dCas9 ribonucleoproteins to suppress glioblastoma. Int J Biol Macromol 2025; 308:142289. [PMID: 40118423 DOI: 10.1016/j.ijbiomac.2025.142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cancer has been a leading cause of death for decades. While many anti-cancer drugs exist, precisely targeting malignant cells is crucial for successful tumor treatment. This targeting can be achieved by activating anti-cancer genes, which specifically destroy malignant cells. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) therapeutics provide a promising approach for gene activation. The technology involves utilizing the denatured Cas9 (CRISPR-associated) protein conjugated with a protein activator to deliver a ribonucleoprotein (RNP) complex including guide RNA into cells for the overexpression of specific proteins. In this study, several guide RNAs targeting cancer suppressor genes were employed. These genes included tumor protein p53 (TP53), human alpha-lactalbumin made lethal to tumor cells (HAMLET), melanoma differentiation-associated gene-7 (MDA7, IL24), phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, NOXA), pro-apoptotic WT1 regulator (PAWR, PAR4), and TNF superfamily member 10 (TNFSF10, TRAIL). The dCas9/guide RNA complexes were then adsorbed onto magnetic epitope-imprinted nanoparticles. Uppsala 87 malignant glioma (U87MG) cells and induced astrocytes (noncancerous cells) were then treated with the RNP / nanoparticles. The overexpression of MDA7 and NOXA was monitored for at least 30 days using enzyme-linked immunosorbent assay (ELISA) kits. Finally, the induced astrocytes, first activated with these anti-cancer genes, were co-cultured with U87MG cells. This resulted in a "bystander" effect: the malignant U87MG cells underwent apoptosis, while the astrocytes survived.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yu-Ling Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan.
| |
Collapse
|
2
|
Rouatbi N, Walters AA, Zam A, Lim YM, Marrocu A, Liam‐Or R, Anstee JE, Arnold JN, Wang JT, Pollard SM, Al‐Jamal KT. CD47 Knock-Out Using CRISPR-Cas9 RNA Lipid Nanocarriers Results in Reduced Mesenchymal Glioblastoma Growth In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407262. [PMID: 39888280 PMCID: PMC11948039 DOI: 10.1002/advs.202407262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Immune checkpoint (ICP) blockade has shown limited effectiveness in glioblastoma (GBM), particularly in the mesenchymal subtype, where interactions between immune cells and glioblastoma cancer stem cells (GSCs) drive immunosuppression and therapy resistance. Tailoring ICPs specific to GSCs can enhance the antitumor immune response. This study proposes the use of lipid nanoparticles (LNPs) encapsulating CRISPR RNAs as an in vivo screening tool for ICPs in a syngeneic model of mesenchymal GSCs. Using PD-L1 and CD47 to validate the proof of concept, intratumoral administration of LNPs in orthotopic tumors achieved efficient editing of ICPs, leading to enhanced immune cell infiltration within the tumor microenvironment. Targeting CD47 reduced tumor growth, suggesting improved cancer cell sensitization to the immune system post-ICP editing. The study positions LNPs as a robust tool for in vivo validation of ICPs as therapeutic targets in clinically relevant GBM models. LNPs could serve as a screening tool in patient-derived xenografts to identify and optimize ICP combinations, potentially expediting ICP translation and enhancing personalized GBM immunotherapies.
Collapse
Affiliation(s)
- Nadia Rouatbi
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Adam A. Walters
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Alaa Zam
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Yau Mun Lim
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
- Department of Neurodegenerative DiseaseQueen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| | - Alessia Marrocu
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
| | - Revadee Liam‐Or
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionChina
| | - Joanne E. Anstee
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
| | - James N. Arnold
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
| | - Julie Tzu‐Wen Wang
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Steven M. Pollard
- Centre for Regenerative MedicineInstitute for Regeneration and Repair & Cancer Research UK Scotland CentreUniversity of Edinburgh5 Little France DriveEdinburghEH16 4UUUK
| | - Khuloud T. Al‐Jamal
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionChina
| |
Collapse
|
3
|
Dara M, Dianatpour M, Azarpira N, Tanideh N, Tanideh R. Integrating CRISPR technology with exosomes: Revolutionizing gene delivery systems. Biochem Biophys Res Commun 2024; 740:151002. [PMID: 39566123 DOI: 10.1016/j.bbrc.2024.151002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) serves as an adaptive immune system in bacteria and archaea, offering a defense mechanism against invading genetic elements such as viruses (bacteriophages) and plasmids. Today, CRISPR has evolved into a powerful gene-editing technology that enables highly specific and rapid modifications of DNA within a genome. It has a broad range of applications across various fields, including medicine, agriculture, and fundamental research. One of the significant challenges facing this technology is the efficient transfer of CRISPR constructs into target cells for gene editing. There are several methods to deliver this system into target cells, which can be classified as viral and non-viral methods. Each of these approaches has its own advantages and disadvantages. Recently, the use of extracellular vesicles for delivery has garnered particular attention. Exosomes are nano-sized extracellular vesicles that have emerged as promising carriers for drug delivery due to their unique properties. These naturally occurring vesicles, typically ranging from 30 to 150 nm in diameter, facilitate intercellular communication by transferring bioactive molecules such as proteins, lipids, and nucleic acids between cells. Exosome therapy has surfaced as a promising strategy in regenerative medicine, utilizing small extracellular vesicles to deliver therapeutic molecules to target cells. One of the emerging options for transferring the CRISPR system is exosomes. The integration of these two advanced technologies holds significant potential for developing efficient and targeted gene editing and advancing precision medicine. In contemporary medicine, there is an increasing focus on personalized and targeted treatments that cater to the distinct genetic and molecular profiles of individual patients. The synergy of CRISPR technology and exosome therapy presents a remarkable opportunity to develop highly targeted and effective therapeutic strategies customized to individual patient requirements. This review article examines the potential of incorporating CRISPR technology within exosomes for precision therapeutic applications.
Collapse
Affiliation(s)
- Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Romina Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Rouatbi N, Walters AA, Costa PM, Qin Y, Liam-Or R, Grant V, Pollard SM, Wang JTW, Al-Jamal KT. RNA lipid nanoparticles as efficient in vivo CRISPR-Cas9 gene editing tool for therapeutic target validation in glioblastoma cancer stem cells. J Control Release 2024; 375:776-787. [PMID: 39284526 DOI: 10.1016/j.jconrel.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
In vitro and ex-vivo target identification strategies often fail to predict in vivo efficacy, particularly for glioblastoma (GBM), a highly heterogenous tumor rich in resistant cancer stem cells (GSCs). An in vivo screening tool can improve prediction of therapeutic efficacy by considering the complex tumor microenvironment and the dynamic plasticity of GSCs driving therapy resistance and recurrence. This study proposes lipid nanoparticles (LNPs) as an efficient in vivo CRISPR-Cas9 gene editing tool for target validation in mesenchymal GSCs. LNPs co-delivering mRNA (mCas9) and single-guide RNA (sgRNA) were successfully formulated and optimized facilitating both in vitro and in vivo gene editing. In vitro, LNPs achieved up to 67 % reduction in green fluorescent protein (GFP) expression, used as a model target, outperforming a commercial transfection reagent. Intratumoral administration of LNPs in GSCs resulted in ∼80 % GFP gene knock-out and a 2-fold reduction in GFP signal by day 14. This study showcases the applicability of CRISPR-Cas9 LNPs as a potential in vivo screening tool in GSCs, currently lacking effective treatment. By replacing GFP with a pool of potential targets, the proposed platform presents an exciting prospect for therapeutic target validation in orthotopic GSCs, bridging the gap between preclinical and clinical research.
Collapse
Affiliation(s)
- Nadia Rouatbi
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Adam A Walters
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Pedro M Costa
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Yue Qin
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Revadee Liam-Or
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Vivien Grant
- Centre for Regenerative Medicine, Institute for Regeneration and Repair & Cancer Research UK Scotland Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair & Cancer Research UK Scotland Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
5
|
Hao T, Zhang B, Li W, Yang X, Wu S, Yuan Y, Cui H, Chen Q, Li Z. Nordihydroguaiaretic Acid-Cross-Linked Phenylboronic Acid-Functionalized Polyplex Micelles for Anti-angiogenic Gene Therapy of Orthotopic and Metastatic Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34620-34631. [PMID: 38934519 DOI: 10.1021/acsami.4c05311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Polyplexes are required to be equipped with multiple functionalities to accomplish adequate structure stability and gene transfection efficacy for gene therapy. Herein, a 4-carboxy-3-fluorophenylboronic acid (FPBA)-functionalized block copolymer of PEG-b-PAsp(DET/FBA) and PAsp(DET/FBA) (abbreviated as PB and HB) was synthesized and applied for engineering functional polyplex micelles (PMs) through ionic complexation with pDNA followed by strategic cross-linking with nordihydroguaiaretic acid (NDGA) in respect to the potential linkage of polyphenol and FPBA moieties. In relation to polyplex micelles void of cross-linking, the engineered multifunctional polyplex micelles (PBHBN-PMs) were determined to possess improved structural tolerability against the exchange reaction with charged species. Besides, the FPBA/NDGA cross-linking appeared to be selectively cleaved in the acidic endosomal compartments but not the neutral milieu. Furthermore, the PBHB-PMs with the optimal FPBA/NDGA cross-linking degree were identified to possess appreciable cellular uptake and endosomal escape activities, eliciting a significantly high level of gene expression relative to P-PMs and PB-PMs. Eventually, in vivo antitumor therapy by our proposed multifunctional PMs appeared to be capable of facilitating expression of the antiangiogenic genomic payloads (sFlt-1 pDNA) via systemic administration. The enriched antiangiogenic sFlt-1 in the tumors could silence the activities of angiogenic cytokines for the inhibited neo-vasculature and the suppressed growth of orthotopic 4T1 tumors. Of note, the persistent expression of the antiangiogenic sFlt-1 is also presumed to migrate into the blood circulation, thereby accounting for an overall antiangiogenic environment in preventing the potential pulmonary metastasis. Hence, our elaborated multifaceted PMs inspired fascinating potential as an intriguing gene delivery system for the treatment of clinical solid tumors and metastasis.
Collapse
Affiliation(s)
- Tangna Hao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bingning Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Wenjing Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xianxian Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sha Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yujie Yuan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Hongxia Cui
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qixian Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Fang T, Chen G. Non-viral vector-based genome editing for cancer immunotherapy. Biomater Sci 2024; 12:3068-3085. [PMID: 38716572 DOI: 10.1039/d4bm00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Despite the exciting promise of cancer immunotherapy in the clinic, immune checkpoint blockade therapy and T cell-based therapies are often associated with low response rates, intrinsic and adaptive immune resistance, and systemic side effects. CRISPR-Cas-based genome editing appears to be an effective strategy to overcome these unmet clinical needs. As a safer delivery platform for the CRISPR-Cas system, non-viral nanoformulations have been recently explored to target tumor cells and immune cells, aiming to improve cancer immunotherapy on a gene level. In this review, we summarized the efforts of non-viral vector-based CRISPR-Cas-mediated genome editing in tumor cells and immune cells for cancer immunotherapy. Their design rationale and specific applications were highlighted.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| |
Collapse
|
7
|
Sarangi P, Kumar N, Sambasivan R, Ramalingam S, Amit S, Chandra D, Jayandharan GR. AAV mediated genome engineering with a bypass coagulation factor alleviates the bleeding phenotype in a murine model of hemophilia B. Thromb Res 2024; 238:151-160. [PMID: 38718473 DOI: 10.1016/j.thromres.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
It is crucial to develop a long-term therapy that targets hemophilia A and B, including inhibitor-positive patients. We have developed an Adeno-associated virus (AAV) based strategy to integrate the bypass coagulation factor, activated FVII (murine, mFVIIa) gene into the Rosa26 locus using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 mediated gene-editing. AAV vectors designed for expression of guide RNA (AAV8-gRNA), Cas9 (AAV2 neddylation mutant-Cas9), and mFVIIa (AAV8-mFVIIa) flanked by homology arms of the target locus were validated in vitro. Hemophilia B mice were administered with AAV carrying gRNA, Cas9 (1 × 1011 vgs/mouse), and mFVIIa with homology arms (2 × 1011 vgs/mouse) with appropriate controls. Functional rescue was documented with suitable coagulation assays at various time points. The data from the T7 endonuclease assay revealed a cleavage efficiency of 20-42 %. Further, DNA sequencing confirmed the targeted integration of mFVIIa into the safe-harbor Rosa26 locus. The prothrombin time (PT) assay revealed a significant reduction in PT in mice that received the gene-editing vectors (22 %), and a 13 % decline in mice that received only the AAV-FVIIa when compared to mock treated mice, 8 weeks after vector administration. Furthermore, FVIIa activity in mice that received triple gene-editing vectors was higher (122.5mIU/mL vs 28.8mIU/mL) than the mock group up to 15 weeks post vector administration. A hemostatic challenge by tail clip assay revealed that hemophilia B mice injected with only FVIIa or the gene-editing vectors had significant reduction in blood loss. In conclusion, AAV based gene-editing facilitates sustained expression of coagulation FVIIa and phenotypic rescue in hemophilia B mice.
Collapse
Affiliation(s)
- Pratiksha Sarangi
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Narendra Kumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Ramkumar Sambasivan
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Andhra Pradesh, India
| | | | - Sonal Amit
- Autonomous State Medical College, Kumbhi, Akbarpur, Kanpur, UP, India
| | - Dinesh Chandra
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Giridhara R Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India.
| |
Collapse
|
8
|
Wang X, Wang X, Li Y, A S, Qiu B, Bushmalyova A, He Z, Wang W, Lara-Sáez I. CRISPR-Cas9-based non-viral gene editing therapy for topical treatment of recessive dystrophic epidermolysis bullosa. Mol Ther Methods Clin Dev 2023; 31:101134. [PMID: 38027067 PMCID: PMC10630779 DOI: 10.1016/j.omtm.2023.101134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is an autosomal monogenic skin disease caused by mutations in COL7A1 gene and lack of functional type VII collagen (C7). Currently, there is no cure for RDEB, and most of the gene therapies under development have been designed as ex vivo strategies because of the shortage of efficient and safe carriers for gene delivery. Herein, we designed, synthesized, and screened a new group of highly branched poly(β amino ester)s (HPAEs) as non-viral carriers for the delivery of plasmids encoding dual single-guide RNA (sgRNA)-guided CRISPR-Cas9 machinery to delete COL7A1 exon 80 containing the c.6527dupC mutation. The selected HPAEs (named PTTA-DATOD) showed robust transfection efficiency, comparable with or surpassing that of leading commercial gene transfection reagents such as Lipofectamine 3000, Xfect, and jetPEI, while maintaining negligible cytotoxicity. Furthermore, CRISPR-Cas9 plasmids delivered by PTTA-DATOD achieved efficient targeted deletion and restored bulk C7 production in RDEB patient keratinocyte polyclones. The non-viral CRISPR-Cas9-based COL7A1 exon deletion approach developed here has great potential to be used as a topical treatment for RDEB patients with mutations in COL7A1 exon 80. Besides, this therapeutic strategy can easily be adapted for mutations in other COL7A1 exons, other epidermolysis bullosa subtypes, and other genetic diseases.
Collapse
Affiliation(s)
- Xianqing Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Xi Wang
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Yinghao Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Sigen A
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Bei Qiu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Albina Bushmalyova
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Zhonglei He
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
9
|
Bexte T, Reindl LM, Ullrich E. Nonviral technologies can pave the way for CAR-NK cell therapy. J Leukoc Biol 2023; 114:475-486. [PMID: 37403203 DOI: 10.1093/jleuko/qiad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/25/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
Natural killer cells are a promising platform for cancer immunotherapy. Natural killer cells have high intrinsic killing capability, and the insertion of a chimeric antigen receptor can further enhance their antitumor potential. In first-in-human trials, chimeric antigen receptor-natural killer cells demonstrated strong clinical activity without therapy-induced side effects. The applicability of natural killer cells as an "off-the-shelf" product makes them highly attractive for gene-engineered cell therapies. Traditionally, viral transduction has been used for gene editing; however, the use of viral vectors remains a safety concern and is associated with high costs and regulatory requirements. Here, we review the current landscape of nonviral approaches for chimeric antigen receptor-natural killer cell generation. This includes transfection of vector particles and electroporation of mRNA and DNA vectors, resulting in transient modification and chimeric antigen receptor expression. In addition, using nonviral transposon technologies, natural killer cells can be stably modified ensuring long-lasting chimeric antigen receptor expression. Finally, we discuss CRISPR/Cas9 tools to edit key genes for natural killer cell functionality.
Collapse
Affiliation(s)
- Tobias Bexte
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology & Cell Therapy, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
- University Cancer Center (UCT), Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Mildred Scheel Career Center (MSNZ), Hospital of the Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lisa Marie Reindl
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology & Cell Therapy, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology & Cell Therapy, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
- University Cancer Center (UCT), Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Mildred Scheel Career Center (MSNZ), Hospital of the Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Frankfurt/Mainz; Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Dubey AK, Mostafavi E. Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy. Front Chem 2023; 11:1259435. [PMID: 37841202 PMCID: PMC10568484 DOI: 10.3389/fchem.2023.1259435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The use of biomaterials in delivering CRISPR/Cas9 for gene therapy in infectious diseases holds tremendous potential. This innovative approach combines the advantages of CRISPR/Cas9 with the protective properties of biomaterials, enabling accurate and efficient gene editing while enhancing safety. Biomaterials play a vital role in shielding CRISPR/Cas9 components, such as lipid nanoparticles or viral vectors, from immunological processes and degradation, extending their effectiveness. By utilizing the flexibility of biomaterials, tailored systems can be designed to address specific genetic diseases, paving the way for personalized therapeutics. Furthermore, this delivery method offers promising avenues in combating viral illnesses by precisely modifying pathogen genomes, and reducing their pathogenicity. Biomaterials facilitate site-specific gene modifications, ensuring effective delivery to infected cells while minimizing off-target effects. However, challenges remain, including optimizing delivery efficiency, reducing off-target effects, ensuring long-term safety, and establishing scalable production techniques. Thorough research, pre-clinical investigations, and rigorous safety evaluations are imperative for successful translation from the laboratory to clinical applications. In this review, we discussed how CRISPR/Cas9 delivery using biomaterials revolutionizes gene therapy and infectious disease treatment, offering precise and safe editing capabilities with the potential to significantly improve human health and quality of life.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Global Research and Publishing Foundation, New Delhi, India
- Institute of Scholars, Bengaluru, Karnataka, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Nakamura S, Inada E, Saitoh I, Sato M. Recent Genome-Editing Approaches toward Post-Implanted Fetuses in Mice. BIOTECH 2023; 12:biotech12020037. [PMID: 37218754 DOI: 10.3390/biotech12020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Genome editing, as exemplified by the CRISPR/Cas9 system, has recently been employed to effectively generate genetically modified animals and cells for the purpose of gene function analysis and disease model creation. There are at least four ways to induce genome editing in individuals: the first is to perform genome editing at the early preimplantation stage, such as fertilized eggs (zygotes), for the creation of whole genetically modified animals; the second is at post-implanted stages, as exemplified by the mid-gestational stages (E9 to E15), for targeting specific cell populations through in utero injection of viral vectors carrying genome-editing components or that of nonviral vectors carrying genome-editing components and subsequent in utero electroporation; the third is at the mid-gestational stages, as exemplified by tail-vein injection of genome-editing components into the pregnant females through which the genome-editing components can be transmitted to fetal cells via a placenta-blood barrier; and the last is at the newborn or adult stage, as exemplified by facial or tail-vein injection of genome-editing components. Here, we focus on the second and third approaches and will review the latest techniques for various methods concerning gene editing in developing fetuses.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho-shi 501-0296, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
12
|
Delivery of CRISPR/Cas9 Plasmid DNA by Hyperbranched Polymeric Nanoparticles Enables Efficient Gene Editing. Cells 2022; 12:cells12010156. [PMID: 36611948 PMCID: PMC9818138 DOI: 10.3390/cells12010156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Gene editing nucleases such as CRISPR/Cas9 have enabled efficient and precise gene editing in vitro and hold promise of eventually achieving in vivo gene editing based therapy. However, a major challenge for their use is the lack of a safe and effective virus-free system to deliver gene editing nuclease elements. Polymers are a promising class of delivery vehicle due to their higher safety compared to currently used viral vectors, but polymers suffer from lower transfection efficiency. Polymeric vectors have been used for small nucleotide delivery but have yet to be used successfully with plasmid DNA (pDNA), which is often several hundred times larger than small nucleotides, presenting an engineering challenge. To address this, we extended our previously reported hyperbranched polymer (HP) delivery system for pDNA delivery by synthesizing several variants of HPs: HP-800, HP-1.8K, HP-10K, HP-25K. We demonstrate that all HPs have low toxicity in various cultured cells, with HP-25K being the most efficient at packaging and delivering pDNA. Importantly, HP-25K mediated delivery of CRISPR/Cas9 pDNA resulted in higher gene-editing rates than all other HPs and Lipofectamine at several clinically significant loci in different cell types. Consistently, HP-25K also led to more robust base editing when delivering the CRISPR base editor "BE4-max" pDNA to cells compared with Lipofectamine. The present work demonstrates that HP nanoparticles represent a promising class of vehicle for the non-viral delivery of pDNA towards the clinical application of gene-editing therapy.
Collapse
|
13
|
Marino A, Battaglini M, Tapeinos C, Larrañaga A, Ciofani G. Innovative nanotechnology tools for the functional control and tracking of human stem cells. MATERIALS TODAY ADVANCES 2022; 16:100298. [DOI: 10.1016/j.mtadv.2022.100298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Liu H, Chen W, Li Y, Sun L, Chai Y, Chen H, Nie H, Huang C. CRISPR/Cas9 Technology and Its Utility for Crop Improvement. Int J Mol Sci 2022; 23:10442. [PMID: 36142353 PMCID: PMC9499353 DOI: 10.3390/ijms231810442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid growth of the global population has resulted in a considerable increase in the demand for food crops. However, traditional crop breeding methods will not be able to satisfy the worldwide demand for food in the future. New gene-editing technologies, the most widely used of which is CRISPR/Cas9, may enable the rapid improvement of crop traits. Specifically, CRISPR/Cas9 genome-editing technology involves the use of a guide RNA and a Cas9 protein that can cleave the genome at specific loci. Due to its simplicity and efficiency, the CRISPR/Cas9 system has rapidly become the most widely used tool for editing animal and plant genomes. It is ideal for modifying the traits of many plants, including food crops, and for creating new germplasm materials. In this review, the development of the CRISPR/Cas9 system, the underlying mechanism, and examples of its use for editing genes in important crops are discussed. Furthermore, certain limitations of the CRISPR/Cas9 system and potential solutions are described. This article will provide researchers with important information regarding the use of CRISPR/Cas9 gene-editing technology for crop improvement, plant breeding, and gene functional analyses.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wendan Chen
- Beijing Key Laboratory of Forest Food Processing and Safety, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yushu Li
- Beijing Vocational College of Agriculture, Beijing 100097, China
| | - Lei Sun
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuhong Chai
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haixia Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haochen Nie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Conglin Huang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|