1
|
Yang X, Gao X, Jiang X, Yue K, Luo P. Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases. Neural Regen Res 2025; 20:3076-3094. [PMID: 39435635 PMCID: PMC11881733 DOI: 10.4103/nrr.nrr-d-24-00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases. Owing to their therapeutic properties and ability to cross the blood-brain barrier, extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions, including ischemic stroke, traumatic brain injury, neurodegenerative diseases, glioma, and psychosis. However, the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body. To address these limitations, multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles, thereby enabling the delivery of therapeutic contents to specific tissues or cells. Therefore, this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles, exploring their applications in treating traumatic brain injury, ischemic stroke, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, glioma, and psychosis. Additionally, we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases. This review offers new insights for developing highly targeted therapies in this field.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Kangyi Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
Zhang X, Artz N, Steindler DA, Hingtgen S, Satterlee AB. Exosomes: Traversing the blood-brain barrier and their therapeutic potential in brain cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189300. [PMID: 40097050 PMCID: PMC12124962 DOI: 10.1016/j.bbcan.2025.189300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
The blood-brain barrier (BBB) presents a major challenge for the effective delivery of therapeutic agents to the brain tumor cells from the peripheral blood circulation, making the treatment of central nervous system (CNS)-related cancers more difficult and resistant to both standard treatments and emerging therapies. Exosomes, which serve as messengers for intercellular communication throughout the body, can naturally or be modified to penetrate the BBB. Recently, exosomes have been increasingly explored as an invasive or non-invasive approach for delivering therapeutic agents to the CNS. With their low immunogenicity, ease of modification, excellent cargo protection, and inherent ability to cross the BBB, exosomes hold great promise for revolutionizing targeted therapy for CNS-related diseases, including brain cancer. In this review, we highlight recent discoveries and insights into the mechanisms exosomes use to penetrate the BBB, the methods they employ to payload diverse therapeutics, and their roles in transporting therapeutic compounds for brain cancer and other neurological disorders.
Collapse
Affiliation(s)
- Xiaopei Zhang
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Nichole Artz
- Department of Pediatric Hematology/Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Dennis A Steindler
- Steindler Consulting, Boston, MA, USA; Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Sanadgol N, Abedi M, Hashemzaei M, Kamran Z, Khalseh R, Beyer C, Voelz C. Exosomes as nanocarriers for brain-targeted delivery of therapeutic nucleic acids: advances and challenges. J Nanobiotechnology 2025; 23:453. [PMID: 40533746 PMCID: PMC12178025 DOI: 10.1186/s12951-025-03528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Accepted: 06/02/2025] [Indexed: 06/22/2025] Open
Abstract
Recent advancements in gene expression modulation and RNA delivery systems have underscored the immense potential of nucleic acid-based therapies (NA-BTs) in biological research. However, the blood-brain barrier (BBB), a crucial regulatory structure that safeguards brain function, presents a significant obstacle to the delivery of drugs to glial cells and neurons. The BBB tightly regulates the movement of substances from the bloodstream into the brain, permitting only small molecules to pass through. This selective permeability poses a significant challenge for effective therapeutic delivery, especially in the case of NA-BTs. Extracellular vesicles, particularly exosomes, are recognized as valuable reservoirs of potential biomarkers and therapeutic targets. They are also gaining significant attention as innovative drug and nucleic acid delivery (NAD) carriers. Their unique ability to safeguard and transport genetic material, inherent biocompatibility, and capacity to traverse physiological barriers highlight their potential as drug carriers. This review provides a comprehensive overview of current strategies to enhance NAD to the brain, focusing on the emerging potential of exosomes as biocompatible and efficient nanocarriers. It synthesizes recent advances in the use of exosomes for NA-BTs in neurological disorders, comparing their advantages with those of conventional nanodelivery systems and cell-based therapies. Additionally, the review highlights innovative exosome engineering approaches to improve brain-targeted delivery, addresses key methodological limitations such as variability in cargo content, and proposes solutions to enhance standardization and safety. Collectively, these insights highlight the translational potential of exosomes and offer a novel perspective on bridging the gap between fundamental research and clinical application.
Collapse
Affiliation(s)
- Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.
| | - Mohsen Abedi
- Department of Advanced Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Masoud Hashemzaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Kamran
- Department of Medicine, Isfahan University of Medical Sciences, Esfahān, Iran
| | - Roghayeh Khalseh
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Clara Voelz
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
| |
Collapse
|
4
|
Tan L, Zhou H, Lai Z, Yang G, Zheng F, Xiao F, Xiong Z, Huang X, Xiong Z. Brain peptides modified exosome-mediated drug delivery system for adriamycin-induced nephropathy treatment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 66:102819. [PMID: 40174740 DOI: 10.1016/j.nano.2025.102819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Mitigation of adriamycin (ADR)-induced nephropathy remains a significant challenge in clinical management. Brain-targeted administration of losartan demonstrates comparable nephroprotective effects at a 1:500 concentration relative to gavage administration. This study established an exosome-based nano-delivery platform (ExoACP) to reduce drug dosage for alleviating ADR-induced nephropathy. The platform was rigorously tested for toxicity and blood-brain barrier penetration. Additionally, the role and possible mechanism of ExoACP-Los in alleviating ADR-induced nephropathy in mice were investigated. ExoACP showed enhanced penetration in brain microvascular endothelial cells, with a 7.20-fold increase in uptake. In the ADR model, ExoACP-Los exhibited anti-inflammatory and anti-fibrotic effects by downregulating the renin-angiotensin system, reducing extracellular matrix deposition by nearly half. These findings suggest ExoACP-Los can alleviate ADR-induced nephropathy by enhancing targeted drug delivery to the brain while reducing losartan. Overall, ExoACP holds significant potential for future clinical applications in chronic nephropathy.
Collapse
Affiliation(s)
- Lishan Tan
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Huisong Zhou
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen 518000, China; Department of Nephrology, Wenjiang District People's Hospital, Chengdu 610203, China
| | - Zhiwei Lai
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Guang Yang
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Fengping Zheng
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Fei Xiao
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Zuying Xiong
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Xiaoyan Huang
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen 518000, China; Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen 518000, China.
| | - Zibo Xiong
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen 518000, China.
| |
Collapse
|
5
|
Saka OM, Dora DD, Kibar G, Tevlek A. Expanding the role of exosomes in drug, biomolecule, and nanoparticle delivery. Life Sci 2025; 368:123499. [PMID: 39993468 DOI: 10.1016/j.lfs.2025.123499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Exosomes are nanoscale extracellular vesicles released by diverse cell types, serving essential functions in intercellular communication and physiological processes. These vesicles have garnered considerable interest in recent years for their potential as drug delivery systems, attributed to their natural origin, minimal immunogenicity, high biocompatibility, and capacity to traverse biological barriers, including the blood-brain barrier. Exosomes can be obtained from diverse biological fluids, rendering them accessible and versatile vehicles for therapeutic medicines. This study emphasizes the burgeoning significance of exosomes in drug administration, concentrating on their benefits, including improved stability, target selectivity, and the capacity to encapsulate various biomolecules, such as proteins, nucleic acids, and small molecules. Notwithstanding their potential applications, other problems remain, including as effective drug loading, industrial scalability, and the standardization of isolation methodologies. Overcoming these hurdles via new research is essential for fully harnessing the promise of exosomes in therapeutic applications, especially in the treatment of intricate diseases like cancer and neurological disorders.
Collapse
Affiliation(s)
- Ongun Mehmet Saka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06800, Turkey
| | - Devrim Demir Dora
- Department of Pharmacology, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Gunes Kibar
- Micro Nano Particles (MNP) Research Group, Materials and Engineering Department, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey; UNAM-National Nanotech. Research Center and Institute of Materials Science & Nanotech. I.D. Bilkent University, Ankara 06800, Turkey
| | - Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey.
| |
Collapse
|
6
|
Samad MA, Ahmad I, Hasan A, Alhashmi MH, Ayub A, Al‐Abbasi FA, Kumer A, Tabrez S. STAT3 Signaling Pathway in Health and Disease. MedComm (Beijing) 2025; 6:e70152. [PMID: 40166646 PMCID: PMC11955304 DOI: 10.1002/mco2.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a critical transcription factor involved in multiple physiological and pathological processes. While STAT3 plays an essential role in homeostasis, its persistent activation has been implicated in the pathogenesis of various diseases, particularly cancer, bone-related diseases, autoimmune disorders, inflammatory diseases, cardiovascular diseases, and neurodegenerative conditions. The interleukin-6/Janus kinase (JAK)/STAT3 signaling axis is central to STAT3 activation, influencing tumor microenvironment remodeling, angiogenesis, immune evasion, and therapy resistance. Despite extensive research, the precise mechanisms underlying dysregulated STAT3 signaling in disease progression remain incompletely understood, and no United States Food and Drug Administration (USFDA)-approved direct STAT3 inhibitors currently exist. This review provides a comprehensive evaluation of STAT3's role in health and disease, emphasizing its involvement in cancer stem cell maintenance, metastasis, inflammation, and drug resistance. We systematically discuss therapeutic strategies, including JAK inhibitors (tofacitinib, ruxolitinib), Src Homology 2 domain inhibitors (S3I-201, STATTIC), antisense oligonucleotides (AZD9150), and nanomedicine-based drug delivery systems, which enhance specificity and bioavailability while reducing toxicity. By integrating molecular mechanisms, disease pathology, and emerging therapeutic interventions, this review fills a critical knowledge gap in STAT3-targeted therapy. Our insights into STAT3 signaling crosstalk, epigenetic regulation, and resistance mechanisms offer a foundation for developing next-generation STAT3 inhibitors with greater clinical efficacy and translational potential.
Collapse
Affiliation(s)
- Md Abdus Samad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Iftikhar Ahmad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Aakifah Hasan
- Department of BiochemistryFaculty of Life ScienceAligarh Muslim UniversityAligarhIndia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Arusha Ayub
- Department of MedicineCollege of Health SciencesUniversity of GeorgiaGeorgiaUSA
| | - Fahad A. Al‐Abbasi
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ajoy Kumer
- Department of ChemistryCollege of Arts and SciencesInternational University of Business Agriculture & Technology (IUBAT)DhakaBangladesh
| | - Shams Tabrez
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
7
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Maazouzi M, Rasheed M, Mbarek L, Wang X, Liang J, Ma H, Chen Z, Deng Y. Exploring Non-Coding RNA Regulation of the Blood-Brain Barrier in Neurodegenerative Diseases: A Systematic Review. J Neurochem 2025; 169:e70031. [PMID: 40035356 DOI: 10.1111/jnc.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive neuronal loss and dysfunction, leading to significant cognitive and motor impairments. The disruption of the blood-brain barrier (BBB) integrity, a key regulator of central nervous system homeostasis, emerges as a critical factor in the pathogenesis of these disorders. Accumulating evidence implicates non-coding RNAs, particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in BBB regulation. However, the intricate network governing BBB dysfunction and consequent neurodegeneration remains obscure. This systematic review maps the convergent microRNA networks in Alzheimer's, Parkinson's, and multiple sclerosis, unveiling their putative roles in BBB modulation. We analyzed data from 11 peer-reviewed clinical studies, identifying key miRNAs such as hsa-miR-155, hsa-miR-22, hsa-miR-146a, hsa-miR-100-3p, and hsa-miR-182-5p as critical regulators of BBB permeability and inflammatory responses. Enrichment analysis revealed that these miRNAs modulate pathways related to inflammation, oxidative stress, and neuronal survival. Our review also uncovered extensive interactions between these miRNAs and transcription factors like JUN, RELA, STAT3, and TP53, as well as lncRNAs such as MALAT1, NEAT1, NORAD, and SNHG16. These interactions highlight complex regulatory networks involving miRNA sponging and chromatin remodeling, which may play crucial roles in maintaining BBB integrity. These analyses underscore the importance of miRNA-mediated regulatory networks in BBB function and offer insights into potential therapeutic targets for NDs.
Collapse
Affiliation(s)
- Mohamed Maazouzi
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Lamia Mbarek
- Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xuezhe Wang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Junhan Liang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Hong Ma
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
9
|
Xing Y, Hu Y, Wang H, Diao Y, Yue H. An ionic liquid-based delivery system of small interfering RNA targeting Bcl-2 for melanoma therapy. Biomater Sci 2025; 13:466-476. [PMID: 39611237 DOI: 10.1039/d4bm01159g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Melanoma, characterized by rapid tumour progression and a strong tendency to metastasize, poses significant challenges in clinical treatment. Given the vital role of B-cell lymphoma 2 (Bcl-2) protein overexpression in inhibiting apoptosis in tumour cells, the suppression of Bcl-2 has emerged as a promising anticancer therapy. Here, we have developed a straightforward and effective delivery system that combines small interfering RNA (siRNA) targeting Bcl-2 (siBcl-2) with ionic liquids (ILs) for treating melanoma. The unique properties of ILs including structural tunability, inherent charge, and chemical stability have garnered significant attention in the biomedical fields; however, their application in siRNA delivery remains nascent. Rather than the weak function of free siBcl-2, our delivery system (1-hexyl-3-methylimidazolium-siBcl-2, designated as C6-siBcl-2) demonstrated an outstanding capacity to improve the cellular uptake and lysosomal escape, resulting in robust apoptosis and cytotoxicity in melanoma cells. In addition to exhibiting superior gene silencing activity in vitro, such events were also evident in mice bearing melanoma tumours. In particular, this IL-based delivery system showed advantages in suppressing tumour growth, preventing metastasis, and enhancing the survival time of mice with melanoma tumours. Therefore, our study offered a novel and powerful nanoplatform that integrated ILs and RNA interference therapy, presenting new strategies for cancer treatment.
Collapse
Affiliation(s)
- Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongyan Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P. R. China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
10
|
Huang L, Zhan J, Li Y, Huang K, Zhu X, Li J. The roles of extracellular vesicles in gliomas: Challenge or opportunity? Life Sci 2024; 358:123150. [PMID: 39471898 DOI: 10.1016/j.lfs.2024.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Gliomas are increasingly becoming a major disease affecting human health, and current treatments are not as effective as expected. Deeper insights into glioma heterogeneity and the search for new diagnostic and therapeutic strategies appear to be urgent. Gliomas adapt to their surroundings and form a supportive tumor microenvironment (TME). Glioma cells will communicate with the surrounding cells through extracellular vesicles (EVs) carrying bioactive substances such as nucleic acids, proteins and lipids which is related to the modification to various metabolic pathways and regulation of biological behaviors, and this regulation can be bidirectional, widely existing between cells in the TME, constituting a complex network of interactions. This complex regulation can affect glioma therapy, leading to different types of resistance. Because of the feasibility of EVs isolation in various body fluids, they have a promising usage in the diagnosis and monitoring of gliomas. At the same time, the nature of EVs to cross the blood-brain barrier (BBB) confers potential for their use as drug delivery systems. In this review, we will focus on the roles and functions of EVs derived from different cellular origins in the glioma microenvironment and the intercellular regulatory networks, and explore possible clinical applications in glioma diagnosis and precision therapy.
Collapse
Affiliation(s)
- Le Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yao Li
- The 1st affiiated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The 2nd Affiliated Hospital, Jiangxi Medical University, Nanchang University, Nanchang, PR China.
| |
Collapse
|
11
|
Hsu CY, Ahmed AT, Bansal P, Hjazi A, Al-Hetty HRAK, Qasim MT, Sapaev I, Deorari M, Mustafa YF, Elawady A. MicroRNA-enriched exosome as dazzling dancer between cancer and immune cells. J Physiol Biochem 2024; 80:811-829. [PMID: 39316240 DOI: 10.1007/s13105-024-01050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Exosomes are widely recognized for their roles in numerous biological processes and as intercellular communication mediators. Human cancerous and normal cells can both produce massive amounts of exosomes. They are extensively dispersed in tumor-modeling animals' pleural effusions, ascites, and plasma from people with cancer. Tumor cells interact with host cells by releasing exosomes, which allow them to interchange various biological components. Tumor growth, invasion, metastasis, and even tumorigenesis can all be facilitated by this delicate and complex system by modifying the nearby and remote surroundings. Due to the existence of significant levels of biomolecules like microRNA, exosomes can modulate the immune system's stimulation or repression, which in turn controls tumor growth. However, the role of microRNA in exosome-mediated communication between immunological and cancer cells is still poorly understood. This study aims to get the most recent information on the "yin and yang" of exosomal microRNA in the regulation of tumor immunity and immunotherapy, which will aid current cancer treatment and diagnostic techniques.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, 64001, Iraq
| | - Ibrokhim Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan
- School of Engineering, Central Asian University, Tashkent, 111221, Uzbekistan
- Western Caspian University, Scientific researcher, Baku, Azerbaijan
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
12
|
Yu T, Wang J, Zhou Y, Ma C, Bai R, Huang C, Wang S, Liu K, Han B. Harnessing Engineered Extracellular Vesicles from Mesenchymal Stem Cells as Therapeutic Scaffolds for Bone‐Related Diseases. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202402861] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 10/05/2024]
Abstract
AbstractMesenchymal stem cells (MSCs) play a crucial role in maintaining bone homeostasis and are extensively explored for cell therapy in various bone‐related diseases. In addition to direct cell therapy, the secretion of extracellular vesicles (EVs) by MSCs has emerged as a promising alternative approach. MSC‐derived EVs (MSC‐EVs) offer equivalent therapeutic efficacy to MSCs while mitigating potential risks. These EVs possess unique properties that enable them to traverse biological barriers and deliver bioactive cargos to target cells. Furthermore, by employing modification and engineering strategies, the therapeutic effects and tissue targeting specificity of MSC‐EVs can be further enhanced to meet specific therapeutic needs. In this review, the mechanisms and advantages of MSC‐EV therapy in diseased bone tissues are highlighted. Through simple isolation and modification techniques, MSC‐EV‐based biomaterials have demonstrated great promise for bone regeneration. Finally, future perspectives on MSC‐EV therapy are presented, envisioning the development of next‐generation regenerative materials and bioactive agents for clinical translation in the field of bone regeneration.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Jingwei Wang
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Yusai Zhou
- School of Materials Science and Engineering Beihang University Beijing 100191 P. R. China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Rushui Bai
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Cancan Huang
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Shidong Wang
- Musculoskeletal Tumor Center Peking University People's Hospital No.11 Xizhimen South St. Beijing 100044 P. R. China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Bing Han
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| |
Collapse
|
13
|
Chaiyawat P, Sangkhathat S, Chiangjong W, Wongtrakoongate P, Hongeng S, Pruksakorn D, Chutipongtanate S. Targeting pediatric solid tumors in the new era of RNA therapeutics. Crit Rev Oncol Hematol 2024; 200:104406. [PMID: 38834094 DOI: 10.1016/j.critrevonc.2024.104406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Despite substantial progress in pediatric cancer treatment, poor prognosis remained for patients with recurrent or metastatic disease, given the limitations of approved targeted treatments and immunotherapies. RNA therapeutics offer significant potential for addressing a broad spectrum of diseases, including cancer. Advances in manufacturing and delivery systems are paving the way for the rapid development of therapeutic RNAs for clinical applications. This review summarizes therapeutic RNA classifications and the mechanisms of action, highlighting their potential in manipulating major cancer-related pathways and biological effects. We also focus on the pre-clinical investigation of RNA molecules with efficient delivery systems for their therapeutic potential targeting pediatric solid tumors.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Surasak Sangkhathat
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ra-mathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ra-mathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
14
|
Mousavikia SN, Darvish L, Bahreyni Toossi MT, Azimian H. Exosomes: Their role in the diagnosis, progression, metastasis, and treatment of glioblastoma. Life Sci 2024; 350:122743. [PMID: 38806071 DOI: 10.1016/j.lfs.2024.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Exosomes are crucial for the growth and spread of glioblastomas, an aggressive form of brain cancer. These tiny vesicles play a crucial role in the activation of signaling pathways and intercellular communication. They can also transfer a variety of biomolecules such as proteins, lipids and nucleic acids from donor to recipient cells. Exosomes can influence the immune response by regulating the activity of immune cells, and they are crucial for the growth and metastasis of glioblastoma cells. In addition, exosomes contribute to drug resistance during treatment, which is a major obstacle in the treatment of glioblastoma. By studying them, the diagnosis and prognosis of glioblastoma can be improved. Due to their high biocompatibility and lack of toxicity, they have become an attractive option for drug delivery. The development of exosomes as carriers of specific therapeutic agents could overcome some of the obstacles to effective treatment of glioblastoma. In this review, we address the potential of exosomes for the treatment of glioblastoma and show how they can be modified for this purpose.
Collapse
Affiliation(s)
- S N Mousavikia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - L Darvish
- Department of Radiology, Faculty of Paramedicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - M T Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Kumar S, Arwind DA, Kumar B H, Pandey S, Nayak R, Vithalkar MP, Kumar N, Pai KSR. Inhibition of STAT3: A promising approach to enhancing the efficacy of chemotherapy in medulloblastoma. Transl Oncol 2024; 46:102023. [PMID: 38852276 PMCID: PMC11220551 DOI: 10.1016/j.tranon.2024.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024] Open
Abstract
Medulloblastoma is a type of brain cancer that primarily affects children. While chemotherapy has been shown to be effective in treating medulloblastoma, the development of chemotherapy resistance remains a challenge. One potential therapeutic approach is to selectively inhibit the inducible transcription factor called STAT3, which is known to play a crucial role in the survival and growth of tumor cells. The activation of STAT3 has been linked to the growth and progression of various cancers, including medulloblastoma. Inhibition of STAT3 has been shown to sensitize medulloblastoma cells to chemotherapy, leading to improved treatment outcomes. Different approaches to STAT3 inhibition have been developed, including small-molecule inhibitors and RNA interference. Preclinical studies have shown the efficacy of STAT3 inhibitors in medulloblastoma, and clinical trials are currently ongoing to evaluate their safety and effectiveness in patients with various solid tumors, including medulloblastoma. In addition, researchers are also exploring ways to optimize the use of STAT3 inhibitors in combination with chemotherapy and identify biomarkers that can predict treatment that will help to develop personalized treatment strategies. This review highlights the potential of selective inhibition of STAT3 as a novel approach for the treatment of medulloblastoma and suggests that further research into the development of STAT3 inhibitors could lead to improved outcomes for patients with aggressive cancer.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Dube Aakash Arwind
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Raksha Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India.
| |
Collapse
|
16
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
17
|
Wang M, Jin F, Tong X. From bench to bedside: The promising value of exosomes in precision medicine for CNS tumors. Heliyon 2024; 10:e32376. [PMID: 38961907 PMCID: PMC11219334 DOI: 10.1016/j.heliyon.2024.e32376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Exosomes are naturally present extracellular vesicles (EVs) released into the surrounding body fluids upon the fusion of polycystic and plasma membranes. They facilitate intercellular communication by transporting DNA, mRNA, microRNA, long non-coding RNA, circular RNA, proteins, lipids, and nucleic acids. They contribute to the onset and progression of Central Nervous System (CNS) tumors. In addition, they can be used as biomarkers of tumor proliferation, migration, and blood vessel formation, thereby affecting the Tumor Microenvironment (TME). This paper reviews the recent advancements in the diagnosis and treatment of exosomes in various CNS tumors, the promise and challenges of exosomes as natural carriers of CNS tumors, and the therapeutic prospects of exosomes in CNS tumors. Furthermore, we hope this research can contribute to the development of more targeted and effective treatments for central nervous system tumors.
Collapse
Affiliation(s)
- Mengjie Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Feng Jin
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital).266042, Qingdao, Shandong, China
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
18
|
Yadav K, Vijayalakshmi R, Kumar Sahu K, Sure P, Chahal K, Yadav R, Sucheta, Dubey A, Jha M, Pradhan M. Exosome-Based Macromolecular neurotherapeutic drug delivery approaches in overcoming the Blood-Brain barrier for treating brain disorders. Eur J Pharm Biopharm 2024; 199:114298. [PMID: 38642716 DOI: 10.1016/j.ejpb.2024.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Delivering drugs to the brain is a complex challenge in medical research, particularly for disorders like Alzheimer's and Parkinson's. The blood-brain barrier restricts the entry of many therapeutic molecules, hindering their effectiveness. Nanoparticles, a potential solution, face issues like toxicity and limited approvals. A new avenue explores the use of small extracellular vesicles (sEVs), i.e., exosomes, as natural carriers for drug delivery. sEVs, tiny structures below 150 nm, show promise due to their minimal immune response and ability to precisely deliver drugs. This review focuses on the potential of sEVs-based drug delivery systems for treating neurological disorders, brain cancers, and other brain-related issues. Notably, bioengineered sEVs-carrying therapeutic compounds exhibit promise in early studies. The unique features of sEVs, such as their small size and natural properties, position them as candidates to overcome challenges in drug delivery to the brain. Ongoing clinical trials and research into sEVs behavior within the body further highlight their potential for revolutionizing drug delivery and addressing complex brain conditions.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP, 533296, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - Kavita Chahal
- Department of Botany, Government Model Science College Jabalpur, Madhya Pradesh, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru-575018, Karnataka, India
| | - Megha Jha
- Department of Life Science, Mansarovar Global University, Sehore, M.P., India
| | - Madhulika Pradhan
- Gracious College of Pharmacy, Abhanpur, Chhattisgarh, 493661, India.
| |
Collapse
|
19
|
Liu T, Sun L, Ji Y, Zhu W. Extracellular vesicles in cancer therapy: Roles, potential application, and challenges. Biochim Biophys Acta Rev Cancer 2024; 1879:189101. [PMID: 38608963 DOI: 10.1016/j.bbcan.2024.189101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Extracellular vesicles (EVs) have emerged as a novel cell-free strategy for the treatment of many diseases including cancer as they play important roles in cancer development and progression. Considering their natural capacity to facilitate cell-to-cell communication as well as their high physiochemical stability and biocompatibility, EVs serve as superior delivery systems for a wide range of therapeutic agents, including medicines, nanomaterials, nucleic acids, and proteins. Therefore, EVs-based cancer therapy is of greater interest to researchers. Mounting studies indicate that EVs can be improved in efficiency, specificity, and safety for cancer therapy. However, their heterogeneity of physicochemical properties and functions is not fully understood, hindering the achievement of bioactive EVs with high yield and purity. Herein, we paid more attention to the EVs applications and their significance in cancer therapy.
Collapse
Affiliation(s)
- Ting Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, China
| | - Yong Ji
- Department of Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, China.
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
20
|
Ahirwar K, Kumar A, Srivastava N, Saraf SA, Shukla R. Harnessing the potential of nanoengineered siRNAs carriers for target responsive glioma therapy: Recent progress and future opportunities. Int J Biol Macromol 2024; 266:131048. [PMID: 38522697 DOI: 10.1016/j.ijbiomac.2024.131048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Past scientific testimonials in the field of glioma research, the deadliest tumor among all brain cancer types with the life span of 10-15 months after diagnosis is considered as glioblastoma multiforme (GBM). Even though the availability of treatment options such as chemotherapy, radiotherapy, and surgery, are unable to completely cure GBM due to tumor microenvironment complexity, intrinsic cellular signalling, and genetic mutations which are involved in chemoresistance. The blood-brain barrier is accountable for restricting drugs entry at the tumor location and related biological challenges like endocytic degradation, short systemic circulation, and insufficient cellular penetration lead to tumor aggression and progression. The above stated challenges can be better mitigated by small interfering RNAs (siRNA) by knockdown genes responsible for tumor progression and resistance. However, siRNA encounters with challenges like inefficient cellular transfection, short circulation time, endogenous degradation, and off-target effects. The novel functionalized nanocarrier approach in conjunction with biological and chemical modification offers an intriguing potential to address challenges associated with the naked siRNA and efficiently silence STAT3, coffilin-1, EGFR, VEGF, SMO, MGMT, HAO-1, GPX-4, TfR, LDLR and galectin-1 genes in GBM tumor. This review highlights the nanoengineered siRNA carriers, their recent advancements, future perspectives, and strategies to overcome the systemic siRNA delivery challenges for glioma treatment.
Collapse
Affiliation(s)
- Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Ankit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India.
| |
Collapse
|
21
|
Wang Y, Huo Y, Zhao C, Liu H, Shao Y, Zhu C, An L, Chen X, Chen Z. Engineered exosomes with enhanced stability and delivery efficiency for glioblastoma therapy. J Control Release 2024; 368:170-183. [PMID: 38382811 DOI: 10.1016/j.jconrel.2024.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Due to the blood-brain barrier (BBB), the application of chemical drugs for glioblastoma treatment is severely limited. Recently, exosomes have been widely applied for drug delivery to the brain. However, the differences in brain targeting efficiency among exosomes derived from different cell sources, as well as the premature drug leakage during circulation, still limit the therapeutic efficacy. Here, we designed a functional oligopeptide-modified exosome loaded with doxorubicin (Pep2-Exos-DOX) for glioblastoma treatment. BV2 mouse microglial cell line was selected as the exosome source due to the favorable BBB penetration. To avoid drug release in the circulation, a redox-response oligopeptide was designed for incorporation into the membranes of exosomes to lock the drug during circulation. The enrichment of the drug in glioblastoma was confirmed. Pharmacodynamic evaluation showed Pep2-Exos-DOX possessed significant anti-cancer activity against glioblastoma as well as relative biosafety. This exosome-based drug delivery system modified with redox-response oligopeptides provides us a novel strategy for brain diseases treatment.
Collapse
Affiliation(s)
- Yutong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiming Huo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyuan Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Heng Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, China
| | - Yurou Shao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenqi Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lan An
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
22
|
Tabasi H, Mollazadeh S, Fazeli E, Abnus K, Taghdisi SM, Ramezani M, Alibolandi M. Transitional Insight into the RNA-Based Oligonucleotides in Cancer Treatment. Appl Biochem Biotechnol 2024; 196:1685-1711. [PMID: 37402038 DOI: 10.1007/s12010-023-04597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Conventional cancer therapies with chemodrugs suffer from various disadvantages, such as irreversible side effects on the skin, heart, liver, and nerves with even fatal consequences. RNA-based therapeutic is a novel technology which offers great potential as non-toxic, non-infectious, and well-tolerable platform. Herein, we introduce different RNA-based platforms with a special focus on siRNA, miRNA, and mRNA applications in cancer treatment in order to better understand the details of their therapeutic effects. Of note, the co-delivery of RNAs with other distinct RNA or drugs has provided safe, efficient, and novel treatment modalities for cancer treatment.
Collapse
Affiliation(s)
- Hamed Tabasi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elham Fazeli
- Biomedicine Department, Aarhus University, Aarhus, Denmark
| | - Khalil Abnus
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Yang Q, Li S, Ou H, Zhang Y, Zhu G, Li S, Lei L. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application. J Nanobiotechnology 2024; 22:41. [PMID: 38281957 PMCID: PMC10823703 DOI: 10.1186/s12951-024-02298-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Malignancy is a major public health problem and among the leading lethal diseases worldwide. Although the current tumor treatment methods have therapeutic effect to a certain extent, they still have some shortcomings such as poor water solubility, short half-life, local and systemic toxicity. Therefore, how to deliver therapeutic agent so as to realize safe and effective anti-tumor therapy become a problem urgently to be solved in this field. As a medium of information exchange and material transport between cells, exosomes are considered to be a promising drug delivery carrier due to their nano-size, good biocompatibility, natural targeting, and easy modification. In this review, we summarize recent advances in the isolation, identification, drug loading, and modification of exosomes as drug carriers for tumor therapy alongside their application in tumor therapy. Basic knowledge of exosomes, such as their biogenesis, sources, and characterization methods, is also introduced herein. In addition, challenges related to the use of exosomes as drug delivery vehicles are discussed, along with future trends. This review provides a scientific basis for the application of exosome delivery systems in oncological therapy.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shaohong Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
24
|
Singh S, Barik D, Lawrie K, Mohapatra I, Prasad S, Naqvi AR, Singh A, Singh G. Unveiling Novel Avenues in mTOR-Targeted Therapeutics: Advancements in Glioblastoma Treatment. Int J Mol Sci 2023; 24:14960. [PMID: 37834408 PMCID: PMC10573615 DOI: 10.3390/ijms241914960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Karl Lawrie
- College of Saint Benedict, Saint John’s University, Collegeville, MN 56321, USA
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sujata Prasad
- MLM Medical Laboratories, LLC, Oakdale, MN 55128, USA
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, IL 60612, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Kang J, Mun D, Chun Y, Park D, Kim H, Yun N, Joung B. Engineered small extracellular vesicle-mediated NOX4 siRNA delivery for targeted therapy of cardiac hypertrophy. J Extracell Vesicles 2023; 12:e12371. [PMID: 37795828 PMCID: PMC10552075 DOI: 10.1002/jev2.12371] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Small-interfering RNA (siRNA) therapy is considered a powerful therapeutic strategy for treating cardiac hypertrophy, an important risk factor for subsequent cardiac morbidity and mortality. However, the lack of safe and efficient in vivo delivery of siRNAs is a major challenge for broadening its clinical applications. Small extracellular vesicles (sEVs) are a promising delivery system for siRNAs but have limited cell/tissue-specific targeting ability. In this study, a new generation of heart-targeting sEVs (CEVs) has been developed by conjugating cardiac-targeting peptide (CTP) to human peripheral blood-derived sEVs (PB-EVs), using a simple, rapid and scalable method based on bio-orthogonal copper-free click chemistry. The experimental results show that CEVs have typical sEVs properties and excellent heart-targeting ability. Furthermore, to treat cardiac hypertrophy, CEVs are loaded with NADPH Oxidase 4 (NOX4) siRNA (siNOX4). Consequently, CEVs@siNOX4 treatment enhances the in vitro anti-hypertrophic effects by CEVs with siRNA protection and heart-targeting ability. In addition, the intravenous injection of CEVs@siNOX4 into angiotensin II (Ang II)-treated mice significantly improves cardiac function and reduces fibrosis and cardiomyocyte cross-sectional area, with limited side effects. In conclusion, the utilization of CEVs represents an efficient strategy for heart-targeted delivery of therapeutic siRNAs and holds great promise for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ji‐Young Kang
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Dasom Mun
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Yumin Chun
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Da‐Seul Park
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Hyoeun Kim
- Department of Biochemistry and Molecular BiologyYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| | - Nuri Yun
- GNTPharma Science and Technology Center for Health, Giheung‐guYongin‐siIncheonRepublic of Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
- Graduate School of Medical Science, Brain Korea 21 ProjectYonsei University College of MedicineSeodaemun‐guSeoulRepublic of Korea
| |
Collapse
|
26
|
Liu Q, Li D, Pan X, Liang Y. Targeted therapy using engineered extracellular vesicles: principles and strategies for membrane modification. J Nanobiotechnology 2023; 21:334. [PMID: 37717008 PMCID: PMC10505332 DOI: 10.1186/s12951-023-02081-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 09/18/2023] Open
Abstract
Extracellular vesicles (EVs) are 30-150 nm membrane-bound vesicles naturally secreted by cells and play important roles in intercellular communication by delivering regulatory molecules such as proteins, lipids, nucleic acids and metabolites to recipient cells. As natural nano-carriers, EVs possess desirable properties such as high biocompatibility, biological barrier permeability, low toxicity, and low immunogenicity, making them potential therapeutic delivery vehicles. EVs derived from specific cells have inherent targeting capacity towards specific cell types, which is yet not satisfactory enough for targeted therapy development and needs to be improved. Surface modifications endow EVs with targeting abilities, significantly improving their therapeutic efficiency. Herein, we first briefly introduce the biogenesis, composition, uptake and function of EVs, and review the cargo loading approaches for EVs. Then, we summarize the recent advances in surface engineering strategies of EVs, focusing on the applications of engineered EVs for targeted therapy. Altogether, EVs hold great promise for targeted delivery of various cargos, and targeted modifications show promising effects on multiple diseases.
Collapse
Affiliation(s)
- Qisong Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Xiaohua Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China.
| | - Yujie Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China.
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Institute of Mental Health, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
27
|
Nag S, Bhattacharya B, Dutta S, Mandal D, Mukherjee S, Anand K, Eswaramoorthy R, Thorat N, Jha SK, Gorai S. Clinical Theranostics Trademark of Exosome in Glioblastoma Metastasis. ACS Biomater Sci Eng 2023; 9:5205-5221. [PMID: 37578350 DOI: 10.1021/acsbiomaterials.3c00212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Glioblastoma (GBM) is an aggressive type of cancer that has led to the death of a large population. The traditional approach fails to develop a solution for GBM's suffering life. Extensive research into tumor microenvironments (TME) indicates that TME extracellular vesicles (EVs) play a vital role in cancer development and progression. EVs are classified into microvacuoles, apoptotic bodies, and exosomes. Exosomes are the most highlighted domains in cancer research. GBM cell-derived exosomes participate in multiple cancer progression events such as immune suppression, angiogenesis, premetastatic niche formation (PMN), ECM (extracellular matrix), EMT (epithelial-to-mesenchymal transition), metastasis, cancer stem cell development and therapeutic and drug resistance. GBM exosomes also carry the signature of a glioblastoma-related status. The exosome-based GBM examination is part of the new generation of liquid biopsy. It also solved early diagnostic limitations in GBM. Traditional therapeutic approaches do not cross the blood-brain barrier (BBB). Exosomes are a game changer in GBM treatment and it is emerging as a potential platform for effective, efficient, and specific therapeutic development. In this review, we have explored the exosome-GBM interlink, the clinical impact of exosomes on GBM biomarkers, the therapeutics signature of exosomes in GBM, exosome-based research challenges, and future directions in GBM. Therefore, the GBM-derived exosomes offer unique therapeutic opportunities, which are currently under preclinical and clinical testing.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Biosciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Swagata Dutta
- Department of Agricultural and food Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debashmita Mandal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology (MAKAUT), Haringhata, Nadia, West Bengal 741249, India
| | - Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha institute of Medical and Technical sciences (SIMATS) Chennai 600077, India
| | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Limerick V94T9PX, Ireland
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Knowledge Park-III, Institutional Area, Greater Noida 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Sukhamoy Gorai
- Rush University Medical Center, 1620 W Harrison Street, Chicago, Illinois 60612, United States
| |
Collapse
|
28
|
Du S, Guan Y, Xie A, Yan Z, Gao S, Li W, Rao L, Chen X, Chen T. Extracellular vesicles: a rising star for therapeutics and drug delivery. J Nanobiotechnology 2023; 21:231. [PMID: 37475025 PMCID: PMC10360328 DOI: 10.1186/s12951-023-01973-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, natural, cell-derived vesicles that contain the same nucleic acids, proteins, and lipids as their source cells. Thus, they can serve as natural carriers for therapeutic agents and drugs, and have many advantages over conventional nanocarriers, including their low immunogenicity, good biocompatibility, natural blood-brain barrier penetration, and capacity for gene delivery. This review first introduces the classification of EVs and then discusses several currently popular methods for isolating and purifying EVs, EVs-mediated drug delivery, and the functionalization of EVs as carriers. Thereby, it provides new avenues for the development of EVs-based therapeutic strategies in different fields of medicine. Finally, it highlights some challenges and future perspectives with regard to the clinical application of EVs.
Collapse
Affiliation(s)
- Shuang Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Yucheng Guan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Aihua Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Zhao Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Sijia Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 6007, N22, Taipa, 999078, Macau SAR, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 6007, N22, Taipa, 999078, Macau SAR, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China.
| |
Collapse
|
29
|
Tang Y, Liu X, Sun M, Xiong S, Xiao N, Li J, He X, Xie J. Recent Progress in Extracellular Vesicle-Based Carriers for Targeted Drug Delivery in Cancer Therapy. Pharmaceutics 2023; 15:1902. [PMID: 37514088 PMCID: PMC10384044 DOI: 10.3390/pharmaceutics15071902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-based vesicles released by cells that play a critical role in various physiological and pathological processes. They act as vehicles for transporting a variety of endogenous cargo molecules, enabling intercellular communication. Due to their natural properties, EVs have emerged as a promising "cell-free therapy" strategy for treating various diseases, including cancer. They serve as excellent carriers for different therapeutics, including nucleic acids, proteins, small molecules, and other nanomaterials. Modifying or engineering EVs can improve the efficacy, targeting, specificity, and biocompatibility of EV-based therapeutics for cancer therapy. In this review, we comprehensively outline the biogenesis, isolation, and methodologies of EVs, as well as their biological functions. We then focus on specific applications of EVs as drug carriers in cancer therapy by citing prominent recent studies. Additionally, we discuss the opportunities and challenges for using EVs as pharmaceutical drug delivery vehicles. Ultimately, we aim to provide theoretical and technical support for the development of EV-based carriers for cancer treatment.
Collapse
Affiliation(s)
- Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xingyou Liu
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Meng Sun
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jianchao Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Xiao He
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
30
|
Yang Y, Cheng N, Luo Q, Shao N, Ma X, Chen J, Luo L, Xiao Z. How Nanotherapeutic Platforms Play a Key Role in Glioma? A Comprehensive Review of Literature. Int J Nanomedicine 2023; 18:3663-3694. [PMID: 37427368 PMCID: PMC10327925 DOI: 10.2147/ijn.s414736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastoma (GBM), a highly aggressive form of brain cancer, is considered one of the deadliest cancers, and even with the most advanced medical treatments, most affected patients have a poor prognosis. However, recent advances in nanotechnology offer promising avenues for the development of versatile therapeutic and diagnostic nanoplatforms that can deliver drugs to brain tumor sites through the blood-brain barrier (BBB). Despite these breakthroughs, the use of nanoplatforms in GBM therapy has been a subject of great controversy due to concerns over the biosafety of these nanoplatforms. In recent years, biomimetic nanoplatforms have gained unprecedented attention in the biomedical field. With advantages such as extended circulation times, and improved immune evasion and active targeting compared to conventional nanosystems, bionanoparticles have shown great potential for use in biomedical applications. In this prospective article, we endeavor to comprehensively review the application of bionanomaterials in the treatment of glioma, focusing on the rational design of multifunctional nanoplatforms to facilitate BBB infiltration, promote efficient accumulation in the tumor, enable precise tumor imaging, and achieve remarkable tumor suppression. Furthermore, we discuss the challenges and future trends in this field. Through careful design and optimization of nanoplatforms, researchers are paving the way toward safer and more effective therapies for GBM patients. The development of biomimetic nanoplatform applications for glioma therapy is a promising avenue for precision medicine, which could ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yongqing Yang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Nianlan Cheng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Qiao Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xiaocong Ma
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
31
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
32
|
Wang J, Liu Y, Liu F, Gan S, Roy S, Hasan I, Zhang B, Guo B. Emerging extracellular vesicle-based carriers for glioblastoma diagnosis and therapy. NANOSCALE 2023. [PMID: 37337814 DOI: 10.1039/d3nr01667f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Glioblastoma (GBM) treatment is still a big clinical challenge because of its highly malignant, invasive, and lethal characteristics. After treatment with the conventional therapeutic paradigm of surgery combined with radio- and chemotherapy, patients bearing GBMs generally exhibit a poor prognosis, with high mortality and a high disability rate. The main reason is the existence of the formidable blood-brain barrier (BBB), aggressive growth, and the infiltration nature of GBMs. Especially, the BBB suppresses the delivery of imaging and therapeutic agents to lesion sites, and thus this leads to difficulties in achieving a timely diagnosis and treatment. Recent studies have demonstrated that extracellular vesicles (EVs) exhibit favorable merits including good biocompatibility, a strong drug loading capacity, long circulation time, good BBB crossing efficiency, specific targeting to lesion sites, and high efficiency in the delivery of a variety of cargos for GBM therapy. Importantly, EVs inherit physiological and pathological molecules from the source cells, which are ideal biomarkers for molecularly tracking the malignant progression of GBMs. Herein, we start by introducing the pathophysiology and physiology of GBMs, followed by presenting the biological functions of EVs in GBMs with a special focus on their role as biomarkers for GBM diagnosis and as messengers in the modulation of the GBM microenvironment. Furthermore, we provide an update on the recent progress of using EVs in biology, functionality, and isolation applications. More importantly, we systematically summarize the most recent advances of EV-based carriers for GBM therapy by delivering different drugs including gene/RNA-based drugs, chemotherapy drugs, imaging agents, and combinatory drugs. Lastly, we point out the challenges and prospects of future research on EVs for diagnosing and treating GBMs. We hope this review will stimulate interest from researchers with different backgrounds and expedite the progress of GBM treatment paradigms.
Collapse
Affiliation(s)
- Jingjing Wang
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yue Liu
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Fengbo Liu
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shaoyan Gan
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shubham Roy
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ikram Hasan
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Bing Guo
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
33
|
Liang Y, Iqbal Z, Lu J, Wang J, Zhang H, Chen X, Duan L, Xia J. Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering. Mol Ther 2023; 31:1207-1224. [PMID: 36245129 PMCID: PMC10188644 DOI: 10.1016/j.ymthe.2022.10.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Developing strategies toward safe and effective drug delivery into the central nervous system (CNS) with improved targeting abilities and reduced off-target effects is crucial. CNS-targeted drug carriers made of synthetic molecules raise concerns about their biodegradation, clearance, immune responses, and neurotoxicity. Cell-derived nanovesicles (CDNs) have recently been applied in CNS-targeted drug delivery, because of their intrinsic stability, biocompatibility, inherent homing capability, and the ability to penetrate through biological barriers, including the blood-brain barrier. Among these CDNs, extracellular vesicles and exosomes are the most studied because their surface can be engineered and modified to cater to brain targeting. In this review, we focus on the application of CDNs in brain-targeted drug delivery to treat neurological diseases. We cover recently developed methods of exosome derivation and engineering, including exosome-like particles, hybrid exosomes, exosome-associated adeno-associated viruses, and envelope protein nanocages. Finally, we discuss the limitations and project the future development of the CDN-based brain-targeted delivery systems, and conclude that engineered CDNs hold great potential in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China; Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China
| | - Jianhong Wang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu 210096, China; EVLiXiR Biotech Inc., Nanjing, Jiangsu 210032, China
| | - Xi Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China.
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
34
|
Raguraman R, Bhavsar D, Kim D, Ren X, Sikavitsas V, Munshi A, Ramesh R. Tumor-targeted exosomes for delivery of anticancer drugs. Cancer Lett 2023; 558:216093. [PMID: 36822543 PMCID: PMC10025995 DOI: 10.1016/j.canlet.2023.216093] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Exosomes are small phospholipid bilayer vesicles that are naturally produced by all living cells, both prokaryotes and eukaryotes. The exosomes due to their unique size, reduced immunogenicity, and their ability to mimic synthetic liposomes in carrying various anticancer drugs have been tested as drug delivery vehicles for cancer treatment. An added advantage of developing exosomes as a drug carrier is the ease of manipulating their intraluminal content and their surface modification to achieve tumor-targeted drug delivery. In the past ten-years, there has been an exponential increase in the number of exosome-related studies in cancer. Preclinical studies demonstrate exosomes-mediated delivery of chemotherapeutics, biologicals and natural products produce potent anticancer activity both, in vitro and in vivo. In contrast, the number of exosome-based clinical trials are few due to challenges in the manufacturing and scalability related to large-scale production of exosomes and their storage and stability. Herein, we discuss recent advances in exosome-based drug delivery for cancer treatment in preclinical and clinical studies and conclude with challenges to be overcome for translating a larger number of exosome-based therapies into the clinic.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dhaval Bhavsar
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- School of Chemical, Biological and Material Engineering, The University of Oklahoma, Norman, Oklahoma, 73019, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
35
|
Yalamarty SSK, Filipczak N, Li X, Subhan MA, Parveen F, Ataide JA, Rajmalani BA, Torchilin VP. Mechanisms of Resistance and Current Treatment Options for Glioblastoma Multiforme (GBM). Cancers (Basel) 2023; 15:cancers15072116. [PMID: 37046777 PMCID: PMC10093719 DOI: 10.3390/cancers15072116] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer that is difficult to treat due to its resistance to both radiation and chemotherapy. This resistance is largely due to the unique biology of GBM cells, which can evade the effects of conventional treatments through mechanisms such as increased resistance to cell death and rapid regeneration of cancerous cells. Additionally, the blood–brain barrier makes it difficult for chemotherapy drugs to reach GBM cells, leading to reduced effectiveness. Despite these challenges, there are several treatment options available for GBM. The standard of care for newly diagnosed GBM patients involves surgical resection followed by concurrent chemoradiotherapy and adjuvant chemotherapy. Emerging treatments include immunotherapy, such as checkpoint inhibitors, and targeted therapies, such as bevacizumab, that attempt to attack specific vulnerabilities in GBM cells. Another promising approach is the use of tumor-treating fields, a type of electric field therapy that has been shown to slow the growth of GBM cells. Clinical trials are ongoing to evaluate the safety and efficacy of these and other innovative treatments for GBM, intending to improve with outcomes for patients.
Collapse
Affiliation(s)
- Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Xiang Li
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Farzana Parveen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital, Jhang 35200, Pakistan
| | - Janaína Artem Ataide
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
36
|
Mardi N, Salahpour-Anarjan F, Nemati M, Shahsavari Baher N, Rahbarghazi R, Zarebkohan A. Exosomes; multifaceted nanoplatform for targeting brain cancers. Cancer Lett 2023; 557:216077. [PMID: 36731592 DOI: 10.1016/j.canlet.2023.216077] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
At the moment, anaplastic changes within the brain are challenging due to the complexity of neural tissue, leading to the inefficiency of therapeutic protocols. The existence of a cellular interface, namely the blood-brain barrier (BBB), restricts the entry of several macromolecules and therapeutic agents into the brain. To date, several nano-based platforms have been used in laboratory settings and in vivo conditions to overcome the barrier properties of BBB. Exosomes (Exos) are one-of-a-kind of extracellular vesicles with specific cargo to modulate cell bioactivities in a paracrine manner. Regarding unique physicochemical properties and easy access to various biofluids, Exos provide a favorable platform for drug delivery and therapeutic purposes. Emerging data have indicated that Exos enable brain penetration of selective cargos such as bioactive factors and chemotherapeutic compounds. Along with these statements, the application of smart delivery approaches can increase delivery efficiency and thus therapeutic outcomes. Here, we highlighted the recent advances in the application of Exos in the context of brain tumors.
Collapse
Affiliation(s)
- Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Salahpour-Anarjan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Shahsavari Baher
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Liu X, Guo Q, Gao G, Cao Z, Guan Z, Jia B, Wang W, Zhang K, Zhang W, Wang S, Li W, Hao Q, Zhang Y, Li M, Zhang W, Gu J. Exosome-transmitted circCABIN1 promotes temozolomide resistance in glioblastoma via sustaining ErbB downstream signaling. J Nanobiotechnology 2023; 21:45. [PMID: 36755314 PMCID: PMC9906870 DOI: 10.1186/s12951-023-01801-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Although temozolomide (TMZ) provides significant clinical benefit for glioblastoma (GBM), responses are limited by the emergence of acquired resistance. Here, we demonstrate that exosomal circCABIN1 secreted from TMZ-resistant cells was packaged into exosomes and then disseminated TMZ resistance of receipt cells. CircCABIN1 could be cyclized by eukaryotic translation initiation factor 4A3 (EIF4A3) and is highly expressed in GBM tissues and glioma stem cells (GSCs). CircCABIN1 is required for the self-renewal maintenance of GSCs to initiate acquired resistance. Mechanistically, circCABIN1 regulated the expression of olfactomedin-like 3 (OLFML3) by sponging miR-637. Moreover, upregulation of OLFML3 activating the ErbB signaling pathway and ultimately contributing to stemness reprogramming and TMZ resistance. Treatment of GBM orthotopic mice xenografts with engineered exosomes targeting circCABIN1 and OLFML3 provided prominent targetability and had significantly improved antitumor activity of TMZ. In summary, our work proposed a novel mechanism for drug resistance transmission in GBM and provided evidence that engineered exosomes are a promising clinical tool for cancer prevention and therapy.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
- Department of Hematology, Xijing Hospital, Xi’an, China
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Xi’an, China
| | - Guangxun Gao
- Department of Hematology, Xijing Hospital, Xi’an, China
| | - Zhengcong Cao
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Zhihao Guan
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Bo Jia
- Department of Neurosurgery, Xijing Hospital, Xi’an, China
| | - Weizhong Wang
- Department of Neurosurgery, Xijing Hospital, Xi’an, China
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| | - Jintao Gu
- State Key Laboratory of Cancer Biology, School of Pharmacy, Biotechnology Center, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
38
|
Fu W, Hou X, Dong L, Hou W. Roles of STAT3 in the pathogenesis and treatment of glioblastoma. Front Cell Dev Biol 2023; 11:1098482. [PMID: 36923251 PMCID: PMC10009693 DOI: 10.3389/fcell.2023.1098482] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant of astrocytomas mainly involving the cerebral hemispheres and the cerebral cortex. It is one of the fatal and refractory solid tumors, with a 5-year survival rate of merely 5% among the adults. IL6/JAK/STAT3 is an important signaling pathway involved in the pathogenesis and progression of GBM. The expression of STAT3 in GBM tissues is substantially higher than that of normal brain cells. The abnormal activation of STAT3 renders the tumor microenvironment of GBM immunosuppression. Besides, blocking the STAT3 pathway can effectively inhibit the growth and metastasis of GBM. On this basis, inhibition of STAT3 may be a new therapeutic approach for GBM, and the combination of STAT3 targeted therapy and conventional therapies may improve the current status of GBM treatment. This review summarized the roles of STAT3 in the pathogenesis of GBM and the feasibility of STAT3 for GBM target therapy.
Collapse
Affiliation(s)
- Weijia Fu
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xue Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lihua Dong
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wei Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
39
|
Subhan MA, Torchilin VP. Biopolymer-Based Nanosystems for siRNA Drug Delivery to Solid Tumors including Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010153. [PMID: 36678782 PMCID: PMC9861964 DOI: 10.3390/pharmaceutics15010153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nanobiopolymers such as chitosan, gelatin, hyaluronic acid, polyglutamic acid, lipids, peptides, exosomes, etc., delivery systems have prospects to help overwhelmed physiological difficulties allied with the delivery of siRNA drugs to solid tumors, including breast cancer cells. Nanobiopolymers have favorable stimuli-responsive properties and therefore can be utilized to improve siRNA delivery platforms to undruggable MDR metastatic cancer cells. These biopolymeric siRNA drugs can shield drugs from pH degradation, extracellular trafficking, and nontargeted binding sites and are consequently suitable for drug internalization in a controlled-release fashion. In this review, the utilization of numerous biopolymeric compounds such as siRNA drug delivery systems for MDR solid tumors, including breast cancers, will be discussed.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
- Correspondence: (M.A.S.); (V.P.T.)
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, North Eastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, North Eastern University, Boston, MA 02115, USA
- Correspondence: (M.A.S.); (V.P.T.)
| |
Collapse
|
40
|
Nanoparticle-Mediated Delivery of STAT3 Inhibitors in the Treatment of Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14122787. [PMID: 36559280 PMCID: PMC9781630 DOI: 10.3390/pharmaceutics14122787] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is a common malignancy worldwide, with high morbidity and mortality. Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor that not only regulates different hallmarks of cancer, such as tumorigenesis, cell proliferation, and metastasis but also regulates the occurrence and maintenance of cancer stem cells (CSCs). Abnormal STAT3 activity has been found in a variety of cancers, including lung cancer, and its phosphorylation level is associated with a poor prognosis of lung cancer. Therefore, the STAT3 pathway may represent a promising therapeutic target for the treatment of lung cancer. To date, various types of STAT3 inhibitors, including natural compounds, small molecules, and gene-based therapies, have been developed through direct and indirect strategies, although most of them are still in the preclinical or early clinical stages. One of the main obstacles to the development of STAT3 inhibitors is the lack of an effective targeted delivery system to improve their bioavailability and tumor targetability, failing to fully demonstrate their anti-tumor effects. In this review, we will summarize the recent advances in STAT3 targeting strategies, as well as the applications of nanoparticle-mediated targeted delivery of STAT3 inhibitors in the treatment of lung cancer.
Collapse
|
41
|
Li X, Jiang W, Dong S, Li W, Zhu W, Zhou W. STAT3 Inhibitors: A Novel Insight for Anticancer Therapy of Pancreatic Cancer. Biomolecules 2022; 12:1450. [PMID: 36291659 PMCID: PMC9599947 DOI: 10.3390/biom12101450] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
The signal transducer and activator of transcription (STAT) is a family of intracellular cytoplasmic transcription factors involved in many biological functions in mammalian signal transduction. Among them, STAT3 is involved in cell proliferation, differentiation, apoptosis, and inflammatory responses. Despite the advances in the treatment of pancreatic cancer in the past decade, the prognosis for patients with pancreatic cancer remains poor. STAT3 has been shown to play a pro-cancer role in a variety of cancers, and inhibitors of STAT3 are used in pre-clinical and clinical studies. We reviewed the relationship between STAT3 and pancreatic cancer and the latest results on the use of STAT3 inhibitors in pancreatic cancer, with the aim of providing insights and ideas around STAT3 inhibitors for a new generation of chemotherapeutic modalities for pancreatic cancer.
Collapse
Affiliation(s)
- Xin Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wenkai Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Shi Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wancheng Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Weixiong Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
42
|
Li X, Liu Y, Liu X, Du J, Bhawal UK, Xu J, Guo L, Liu Y. Advances in the Therapeutic Effects of Apoptotic Bodies on Systemic Diseases. Int J Mol Sci 2022; 23:ijms23158202. [PMID: 35897778 PMCID: PMC9331698 DOI: 10.3390/ijms23158202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Apoptosis plays an important role in development and in the maintenance of homeostasis. Apoptotic bodies (ApoBDs) are specifically generated from apoptotic cells and can contain a large variety of biological molecules, which are of great significance in intercellular communications and the regulation of phagocytes. Emerging evidence in recent years has shown that ApoBDs are essential for maintaining homeostasis, including systemic bone density and immune regulation as well as tissue regeneration. Moreover, studies have revealed the therapeutic effects of ApoBDs on systemic diseases, including cancer, atherosclerosis, diabetes, hepatic fibrosis, and wound healing, which can be used to treat potential targets. This review summarizes current research on the generation, application, and reconstruction of ApoBDs regarding their functions in cellular regulation and on systemic diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Xu Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Ujjal Kumar Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100006, China
- Correspondence: (L.G.); (Y.L.)
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
- Immunology Research Center for Oral and Systematic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Correspondence: (L.G.); (Y.L.)
| |
Collapse
|
43
|
Fusogenic Hybrid Extracellular Vesicles with PD-1 Membrane Proteins for the Cytosolic Delivery of Cargos. Cancers (Basel) 2022; 14:cancers14112635. [PMID: 35681615 PMCID: PMC9179877 DOI: 10.3390/cancers14112635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived lipid membrane capsules that can deliver functional molecules, such as nucleic acids, to target cells. Currently, the application of EVs is limited because of the difficulty of loading cargo into EVs. We constructed hybrid EVs by the fusion of liposomes and insect cell-derived EVs expressing recombinant programmed cell death 1 (PD-1) protein and baculoviral fusogenic glycoprotein gp64, and evaluated delivery of the model cargo molecule, Texas Red-labeled dextran (TR-Dex), into the cytosol. When PD-1 hybrid EVs were added to HeLa cells, the intracellular uptake of the hybrid EVs was increased compared with hybrid EVs without PD-1. After cellular uptake, the PD-1 hybrid EVs were shown to be localized to late endosomes or lysosomes. The results of fluorescence resonance energy transfer (FRET) indicated that membrane fusion between the hybrid EVs and organelles had occurred in the acidic environment of the organelles. When TR-Dex-loaded liposomes were fused with the PD-1 EVs, confocal laser scanning microscopy indicated that TR-Dex was distributed throughout the cells, which suggested that endosomal escape of TR-Dex, through membrane fusion between the hybrid EVs and acidic organelles, had occurred. These engineered PD-1 hybrid EVs have potential as delivery carriers for biopharmaceuticals.
Collapse
|