1
|
Kim N, You DK, Kim S, Kim D, Cho K, Lee KM. Influence of Intermolecular Structural Effects on Radiative Efficiency in Xanthene-Based Carboranyl Luminophores. Inorg Chem 2024; 63:15044-15052. [PMID: 39074868 DOI: 10.1021/acs.inorgchem.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Two o-carboranes with (i) 9,9-dimethyl-9H-xanthene and (ii) spiro[fluorene-9,9'-xanthene] moieties (XTC and sXTC, respectively) were prepared and characterized. Single X-ray crystallography analysis revealed the presence of intermolecular hydrogen bonds in XTC crystals. Although both compounds did not exhibit emission in tetrahydrofuran solutions at 298 K, intense bluish emission was observed in the solid states and frozen tetrahydrofuran solutions at 77 K. According to the results of theoretical calculations, this emission originated from an intramolecular charge transfer (ICT) transition with the o-carborane moiety. The absolute quantum efficiency (Φem) of the ICT-based emission in the film state equaled 49% for XTC and 20% for sXTC but was as high as 90% for the crystals of both compounds. The crystal structures of XTC and sXTC revealed that the o-carboranyl-appended phenyl plane was orthogonal (85-89°) to the carbon-carbon bonding axis in the o-carborane, indicating the existence of a strong exo-π-interaction, which was identified as the structural basis for the ICT-based transition. These results implied that the intermolecular structural effect of XTC in the randomly aggregated solid state (film) helped maintain the above orthogonality and, hence, the high efficiency from the ICT radiative mechanism. Thus, we concluded that the ICT radiative efficiency of o-carboranyl luminophores in the aggregated solid state can be controlled by specific intermolecular interactions and that the molecular geometric design inducing this feature can be important for developing highly efficient carboranyl luminophores.
Collapse
Affiliation(s)
- Namkyun Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dong Kyun You
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Soyeon Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kanghee Cho
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
2
|
Tang A, Cong P, Dai T, Wang Z, Zhou E. A 2-A 1-D-A 1-A 2-Type Nonfullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300175. [PMID: 37907430 DOI: 10.1002/adma.202300175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Indexed: 11/02/2023]
Abstract
The A2-A1-D-A1-A2-type molecules consist of one electron-donating (D) core flanked by two electron-accepting units (A1 and A2) and have emerged as an essential branch of nonfullerene acceptors (NFAs). These molecules generally possess higher molecular energy levels and wider optical bandgaps compared with those of the classic A-D-A- and A-DA'D-A-type NFAs, owing to the attenuated intramolecular charge transfer effect. These characteristics make them compelling choices for the fabrication of high-voltage organic photovoltaics (OPVs), ternary OPVs, and indoor OPVs. Herein, the recent progress in the A2-A1-D-A1-A2-type NFAs are reviewed, including the molecular engineering, structure-property relationships, voltage loss (Vloss), device stability, and photovoltaic performance of binary, ternary, and indoor OPVs. Finally, the challenges and provided prospects are discussed for the further development of this type of NFAs.
Collapse
Affiliation(s)
- Ailing Tang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Peiqing Cong
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Tingting Dai
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zongtao Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Erjun Zhou
- National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Liu Q, Vandewal K. Understanding and Suppressing Non-Radiative Recombination Losses in Non-Fullerene Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302452. [PMID: 37201949 DOI: 10.1002/adma.202302452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Organic solar cells benefit from non-fullerene acceptors (NFA) due to their high absorption coefficients, tunable frontier energy levels, and optical gaps, as well as their relatively high luminescence quantum efficiencies as compared to fullerenes. Those merits result in high yields of charge generation at a low or negligible energetic offset at the donor/NFA heterojunction, with efficiencies over 19% achieved for single-junction devices. Pushing this value significantly over 20% requires an increase in open-circuit voltage, which is currently still well below the thermodynamic limit. This can only be achieved by reducing non-radiative recombination, and hereby increasing the electroluminescence quantum efficiency of the photo-active layer. Here, current understanding of the origin of non-radiative decay, as well as an accurate quantification of the associated voltage losses are summarized. Promising strategies for suppressing these losses are highlighted, with focus on new material design, optimization of donor-acceptor combination, and blend morphology. This review aims at guiding researchers in their quest to find future solar harvesting donor-acceptor blends, which combine a high yield of exciton dissociation with a high yield of radiative free carrier recombination and low voltage losses, hereby closing the efficiency gap with inorganic and perovskite photovoltaics.
Collapse
Affiliation(s)
- Quan Liu
- Hasselt University, IMOMEC, Wetenschapspark 1, Diepenbeek, 3590, Belgium
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Koen Vandewal
- Hasselt University, IMOMEC, Wetenschapspark 1, Diepenbeek, 3590, Belgium
| |
Collapse
|
4
|
Wang L, Zhang L, Kim S, Wang T, Yuan Z, Yang C, Hu Y, Zhao X, Chen Y. Halogen-Free Donor Polymers Based on Dicyanobenzotriazole with Low Energy Loss and High Efficiency in Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206607. [PMID: 36717277 DOI: 10.1002/smll.202206607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/17/2022] [Indexed: 05/04/2023]
Abstract
Halogenation of organic semiconductors is an efficient strategy for improving the performance of organic solar cells (OSCs), while the introduction of halogens usually involves complex synthetic process and serious environment pollution problems. Herein, three halogen-free ternary copolymer donors (PCNx, x = 3, 4, 5) based on electron-withdrawing dicyanobenzotriazole are reported. When blended with the Y6, PCN3 with strong interchain interactions results in appropriate crystallinity and thermodynamic miscibility of the blend film. Grazing-incidence wide-angle X-ray scattering measurements indicate that PCN3 has more ordered arrangement and stronger π-π stacking than previous PCN2. Fourier-transform photocurrent spectroscopy and external quantum efficiency of electroluminescence measurements show that PCN3-based OSCs have lower energy loss than PCN2, which leads to their higher open-circuit voltage (0.873 V). The device based on PCN3 reaches power conversion efficiency (PCE) of 15.33% in binary OSCs, one of the highest values for OSCs with halogen-free donor polymers. The PCE of 17.80% and 18.10% are obtained in PM6:PCN3:Y6 and PM6:PCN3:BTP-eC9 ternary devices, much higher than those of PM6:Y6 (16.31%) and PM6:BTP-eC9 (17.33%) devices. Additionally, this ternary OSCs exhibit superior stability compared to binary host system. This work gives a promising path for halogen-free donor polymers to achieve low energy loss and high PCE.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Lifu Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| | - Seoyoung Kim
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Tingting Wang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Zhongyi Yuan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Yu Hu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Xiaohong Zhao
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| |
Collapse
|
5
|
Zhang L, Sun R, Zhang Z, Zhang J, Zhu Q, Ma W, Min J, Wei Z, Deng D. Donor End-Capped Alkyl Chain Length Dependent Non-Radiative Energy Loss in All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207020. [PMID: 36263872 DOI: 10.1002/adma.202207020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
A critical bottleneck for further efficiency breakthroughs in organic solar cells (OSCs) is to minimize the non-radiative energy loss (eΔVnr ) while maximizing the charge generation. With the development of highly emissive low-bandgap non-fullerene acceptors, the design of high-performance donors becomes critical to enable the blend with the electroluminescence quantum efficiency to approach or surpass the pristine acceptor. Herein, by shortening the end-capped alkyl chains of the small-molecular donors from hexyl (MPhS-C6) to ethyl (MPhS-C2), the material obtained aggregation that was insensitive to thermal annealing (TA) along with condensed packing simultaneously. The former leads to small phase separation and suppressed upshifts of the highest occupied molecular orbital energy level during TA, and the latter facilitates its efficient charge-transport at aggregation-less packing. Hence, the ΔVnr decreases from 0.242 to 0.182 V, from MPhS-C6 to MPhS-C2 based OSCs. An excellent PCE of 17.11% is obtained by 1,8-diiodoctane addition due to almost unchanged high Jsc (26.6 mA cm-2 ) and Voc (0.888 V) with improved fill factor, which is the record efficiency with the smallest energy loss (0.497 eV) and ΔVnr (0.192 V) in all-small-molecule OSCs. These results emphasize the potential material design direction of obtaining concurrent TA-insensitive aggregation and condensed packing to maximize the device performances with a super low ΔVnr .
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Ziqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Qinglian Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Li X, Tang A, Guo Q, Guo X, Chen J, Guo Q, Ji M, Meng Y, Li X, Zhou E. Carboxylate-Containing Wide-Bandgap Polymers for High-Voltage Non-Fullerene Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32308-32318. [PMID: 35793493 DOI: 10.1021/acsami.2c07251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As one of the polymer modification strategies, carboxylate functionalization has proved effective in downshifting the energy levels and enhancing polymer crystallinity and aggregation. However, high-performance carboxylate-containing polymers are still limited for organic solar cells (OSCs), especially with open-circuit voltage (VOC) above 1.0 V. Herein, we utilize two carboxylate-functionalized wide-band gap (WBG) donor polymers (TTC-F and TTC-Cl) to pair with two WBG electron acceptors (BTA5 and F-BTA5) for high-voltage OSCs. Due to the deeper molecular energy levels, chlorinated polymer TTC-Cl shows higher VOC than fluorinated polymer TTC-F. Furthermore, because of the stronger aggregation in the film, the TTC-Cl-based devices attain suppressed energetic disorders and trap-assisted recombination, decreasing voltage loss and JSC loss. Finally, the TTC-Cl: F-BTA5 blend achieves a higher VOC of 1.17 V and an excellent PCE of 10.98%, one of the best results for high-voltage carboxylate-containing polymers. In addition, the TTC-Cl: BTA5 combination demonstrates the highest VOC of 1.25 V with an ultralow nonradiative energy loss of 0.17 eV. Our results indicate that the carboxylate-containing polymer donors have significant application potential for high-voltage OSCs due to reduced energy loss and improved charge transport and dissociation. Furthermore, the matched absorption spectra with the indoor light sources and low voltage loss promote these material combinations to construct high-performance indoor photovoltaics.
Collapse
Affiliation(s)
- Xianda Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ailing Tang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qing Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jianhua Chen
- Department of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qiang Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengwei Ji
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuhan Meng
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiangyu Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
7
|
Dai T, Tang A, Wang J, He Z, Li X, Guo Q, Chen X, Ding L, Zhou E. The subtle Structure Modulation of A 2 -A 1 -D-A 1 -A 2 type Nonfullerene Acceptors Extends the Photoelectric Response for High Voltage Organic Photovoltaic Cells. Macromol Rapid Commun 2022; 43:e2100810. [PMID: 35080281 DOI: 10.1002/marc.202100810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Indexed: 11/09/2022]
Abstract
To realize high-voltage organic photovoltaic (OPV) for indoor application and tandem solar cells, both electron-donor and acceptor in the active layer usually adopt wide-bandgap materials. However, the consequent small energy offsets may impede the dissociation of excitons, together with the inadequate light-harvesting, usually leading to the relatively low photocurrent. In this work, we utilize molecular structural modifications to improve the short-circuit current (JSC ) of the high-voltage OPV. With the classic non-fullerene acceptor (NFA), BTA3, as a benchmark, BTA3b contains the linear alkyl chains on the middle core, and JC14 further fuses thiophene ring on BTA unit. We deeply studied the effect of structural modification on broadening the photoelectric response and device performance by using a benzotriazole-based polymer J52-F as donor. The photovoltaic devices based o N J52-F: : BTA3b an D J52-F: : JC14 achieve wider external quantum efficiency (EQE) responses with band edges of 730 and 800 nm respectively, which are about 15 and 85 nm wider than that of the device based o N J52-F: : BTA3. The JSC of the BTA3b and JC14 are accordingly increased to 14.08 and 15.78 mA cm-2 respectively in comparison with BTA3 (11.56 mA cm-2 ). The smaller Urbach energy of 28.16 meV and higher electroluminescence efficiency guarante E J52-F: : JC14 a decreased energy loss (0.528 eV) and a high VOC of 1.07 V. Finally , J52-F: : JC14 combination achieves an increased PCE of 10.33% than that o F J52-F: : BTA3b (PCE = 9.81%) an D J52-F: : BTA3 (PCE = 9.04%). Overall, our research results indicate that subtle structure modification of non-fullerene acceptors, especially introducing fused ring, is a simple and effective strategy to extend the photoelectric response and achieve small energy loss, consequently boosting the JSC and ensuring a high VOC beyond 1.0 V. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tingting Dai
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ailing Tang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jiacheng Wang
- Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zehua He
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Xianda Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Qing Guo
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Xingguo Chen
- Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Liming Ding
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|