1
|
Wang ZC, Stegall H, Miyazawa T, Keatinge-Clay AT. A CRISPR-Cas9 system for knock-out and knock-in of high molecular weight DNA enables module-swapping of the pikromycin synthase in its native host. Microb Cell Fact 2025; 24:125. [PMID: 40426207 PMCID: PMC12117839 DOI: 10.1186/s12934-025-02741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Engineers seeking to generate natural product analogs through altering modular polyketide synthases (PKSs) face significant challenges when genomically editing large stretches of DNA. RESULTS We describe a CRISPR-Cas9 system that was employed to reprogram the PKS in Streptomyces venezuelae ATCC 15439 that helps biosynthesize the macrolide antibiotic pikromycin. We first demonstrate its precise editing ability by generating strains that lack megasynthase genes pikAI-pikAIV or the entire pikromycin biosynthetic gene cluster but produce pikromycin upon complementation. We then employ it to replace 4.4-kb modules in the pikromycin synthase with those of other synthases to yield two new macrolide antibiotics with activities similar to pikromycin. CONCLUSION Our gene-editing tool has enabled the efficient replacement of extensive and repetitive DNA regions within streptomycetes.
Collapse
Affiliation(s)
- Zhe-Chong Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hayden Stegall
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Huang Z, Xie S, Liu RZ, Xiang C, Yao S, Zhang L. Plug-and-play engineering of modular polyketide synthases. Nat Chem Biol 2025:10.1038/s41589-025-01878-4. [PMID: 40251436 DOI: 10.1038/s41589-025-01878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/10/2025] [Indexed: 04/20/2025]
Abstract
Modular polyketide synthases (PKSs) are multidomain, assembly line enzymes that biosynthesize complex antibiotics such as erythromycin and rapamycin. The modular characteristic of PKSs makes them an ideal platform for the custom production of designer polyketides by combinatorial biosynthesis. However, engineered hybrid PKS pathways often exhibit severe loss of enzyme activity, and a general principle for PKS reprogramming has not been established. Here we present a widely applicable strategy for designing hybrid PKSs. We reveal that two conserved motifs are robust cut sites to connect modules from different PKS pathways and demonstrate the custom production of polyketides with different starter units, extender units and variable reducing states. Furthermore, we expand the applicability of these cut sites to construct hybrid pathways involving cis-AT PKS, trans-AT PKS and even nonribosomal peptide synthetase. Collectively, our findings enable plug-and-play reprogramming of modular PKSs and facilitate the application of assembly line enzymes toward the bioproduction of designer molecules.
Collapse
Affiliation(s)
- Zilei Huang
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Shengling Xie
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Run-Zhou Liu
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Changjun Xiang
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Shunyu Yao
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Lihan Zhang
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
3
|
Wang ZC, Stegall H, Miyazawa T, Keatinge-Clay AT. A CRISPR-Cas9 System for Knock-out and Knock-in of High Molecular Weight DNA Enables Module-Swapping of the Pikromycin Synthase in its Native Host. RESEARCH SQUARE 2025:rs.3.rs-6229288. [PMID: 40195982 PMCID: PMC11975015 DOI: 10.21203/rs.3.rs-6229288/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background Engineers seeking to generate natural product analogs through altering modular polyketide synthases (PKSs) face significant challenges when genomically editing large stretches of DNA. Results We describe a CRISPR-Cas9 system that was employed to reprogram the PKS in Streptomyces venezuelae ATCC 15439 that helps biosynthesize the macrolide antibiotic pikromycin. We first demonstrate its precise editing ability by generating strains that lack megasynthase genes pikAI-pikAIV or the entire pikromycin biosynthetic gene cluster but produce pikromycin upon complementation. We then employ it to replace 4.4-kb modules in the pikromycin synthase with those of other synthases to yield two new macrolide antibiotics with activities similar to pikromycin. Conclusion Our gene-editing tool has enabled the efficient replacement of extensive and repetitive DNA regions within streptomycetes.
Collapse
|
4
|
Ray KA, Lin SN, Keatinge-Clay AT. Distinct Acyl Carrier Protein Docking Sites Help Mediate the Opposite Stereoselectivities of A- and B-type Modular Polyketide Synthase Ketoreductases. Biochemistry 2025; 64:1136-1145. [PMID: 39933508 PMCID: PMC11920649 DOI: 10.1021/acs.biochem.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The domains of modular polyketide synthases (PKSs) collaborate to extend and process polyketide intermediates; however, most of their interactions with one another remain mysterious. We used AlphaFold 2 to investigate how acyl carrier proteins (ACPs) present intermediates to ketoreductases (KRs), processing domains capable of not only setting the stereochemical orientations of β-hydroxyl substituents but also of α-substituents. In modules that do not contain a dehydratase (DH), the A- and B-type KRs that, respectively, generate l- and d-oriented β-hydroxy groups are predicted to possess distinct ACP docking sites. In modules containing DHs, where A-type KRs are much less common, both KR types are predicted to possess an ACP-docking site equivalent to that of B-type KRs from modules without DHs. To investigate this most common ACP docking site, mutagenesis was performed on 20 residues of the KR from the second pikromycin module within the model triketide synthase P1-P2-P7. The least active variants are those with mutations to a conserved hydrophobe, 2 residues downstream of the LDD motif of B-type KRs, predicted to insert into a hole adjacent to the phosphopantetheinylated serine of ACP.
Collapse
Affiliation(s)
- Katherine A Ray
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sally N Lin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Keatinge-Clay A, Miyazawa T. Refactoring the pikromycin synthase for the modular biosynthesis of macrolide antibiotics in E. coli. RESEARCH SQUARE 2025:rs.3.rs-5640596. [PMID: 39866879 PMCID: PMC11760250 DOI: 10.21203/rs.3.rs-5640596/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
While engineering modular polyketide synthases (PKSs) using the recently updated module boundary has yielded libraries of triketide-pentaketides, this strategy has not yet been applied to the combinatorial biosynthesis of macrolactones or macrolide antibiotics. We developed a 2-plasmid system for the construction and expression of PKSs and employed it to obtain a refactored pikromycin synthase in E. coli that produces 85 mg of narbonolide per liter of culture. The replacement, insertion, deletion, and mutagenesis of modules enabled access to hexaketide, heptaketide, and octaketide derivatives. Supplying enzymes for desosamine biosynthesis and transfer enabled production of narbomycin, pikromycin, YC-17, methymycin, and 6 derivatives thereof. Knocking out pathways competing with desosamine biosynthesis and supplying the editing thioesterase PikAV boosted the titer of narbomycin 55-fold to 37 mgL-1. The replacement of the 3rd pikromycin module with its 5th yielded a new macrolide antibiotic and demonstrates how libraries of macrolide antibiotics can be readily accessed.
Collapse
|
6
|
Hirsch M, Desai RR, Annaswamy S, Keatinge-Clay AT. Mutagenesis Supports AlphaFold Prediction of How Modular Polyketide Synthase Acyl Carrier Proteins Dock With Downstream Ketosynthases. Proteins 2024; 92:1375-1384. [PMID: 39078105 PMCID: PMC11543512 DOI: 10.1002/prot.26733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
The docking of an acyl carrier protein (ACP) domain with a downstream ketosynthase (KS) domain in each module of a polyketide synthase (PKS) helps ensure accurate biosynthesis. If the polyketide chain bound to the ACP has been properly modified by upstream processing enzymes and is compatible with gatekeeping residues in the KS tunnel, a transacylation reaction can transfer it from the 18.1-Å phosphopantetheinyl arm of the ACP to the reactive cysteine of the KS. AlphaFold-Multimer predicts a general interface for these transacylation checkpoints. Half of the solutions obtained for 50 ACP/KS pairs show the KS motif TxLGDP forming the first turn of an α-helix, as in reported structures, while half show it forming a type I β-turn not previously observed. Solutions with the latter conformation may represent how these domains are relatively positioned during the transacylation reaction, as the entrance to the KS active site is relatively open and the phosphopantetheinylated ACP serine and the reactive KS cysteine are relatively closer-17.2 versus 20.9 Å, on average. To probe the predicted interface, 20 mutations were made to KS surface residues within the model triketide lactone synthase P1-P6-P7. The activities of these mutants are consistent with the proposed interface.
Collapse
Affiliation(s)
- Melissa Hirsch
- Department of Chemistry, The University of Texas at Austin, 100 E. 24 St., Austin, TX 78712
| | - Ronak R. Desai
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24 St., Austin, TX 78712
| | - Shreyas Annaswamy
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24 St., Austin, TX 78712
| | - Adrian T. Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24 St., Austin, TX 78712
| |
Collapse
|
7
|
Buyachuihan L, Reiners S, Zhao Y, Grininger M. The malonyl/acetyl-transferase from murine fatty acid synthase is a promiscuous engineering tool for editing polyketide scaffolds. Commun Chem 2024; 7:187. [PMID: 39181936 PMCID: PMC11344766 DOI: 10.1038/s42004-024-01269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Modular polyketide synthases (PKSs) play a vital role in the biosynthesis of complex natural products with pharmaceutically relevant properties. Their modular architecture makes them an attractive target for engineering to produce platform chemicals and drugs. In this study, we demonstrate that the promiscuous malonyl/acetyl-transferase domain (MAT) from murine fatty acid synthase serves as a highly versatile tool for the production of polyketide analogs. We evaluate the relevance of the MAT domain using three modular PKSs; the short trimodular venemycin synthase (VEMS), as well as modules of the PKSs deoxyerythronolide B synthase (DEBS) and pikromycin synthase (PIKS) responsible for the production of the antibiotic precursors erythromycin and pikromycin. To assess the performance of the MAT-swapped PKSs, we analyze the protein quality and run engineered polyketide syntheses in vitro. Our experiments include the chemoenzymatic synthesis of fluorinated macrolactones. Our study showcases MAT-based reprogramming of polyketide biosynthesis as a facile option for the regioselective editing of substituents decorating the polyketide scaffold.
Collapse
Affiliation(s)
- Lynn Buyachuihan
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Simon Reiners
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Yue Zhao
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Ray KA, Saif N, Keatinge-Clay AT. Modular polyketide synthase ketosynthases collaborate with upstream dehydratases to install double bonds. Chem Commun (Camb) 2024; 60:8712-8715. [PMID: 39056119 PMCID: PMC11321453 DOI: 10.1039/d4cc03034f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
A VMYH motif was determined to help ketosynthases in polyketide assembly lines select α,β-unsaturated intermediates from an equilibrium mediated by an upstream dehydratase. Alterations of this motif decreased ketosynthase selectivity within a model tetraketide synthase, most significantly when replaced by the TNGQ motif of ketosynthases that accept D-β-hydroxy intermediates.
Collapse
Affiliation(s)
- Katherine A Ray
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712, USA.
| | - Nisha Saif
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712, USA.
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712, USA.
| |
Collapse
|
9
|
Ray KA, Lutgens JD, Bista R, Zhang J, Desai RR, Hirsch M, Miyazawa T, Cordova A, Keatinge-Clay AT. Assessing and harnessing updated polyketide synthase modules through combinatorial engineering. Nat Commun 2024; 15:6485. [PMID: 39090122 PMCID: PMC11294587 DOI: 10.1038/s41467-024-50844-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The modular nature of polyketide assembly lines and the significance of their products make them prime targets for combinatorial engineering. The recently updated module boundary has been successful for engineering short synthases, yet larger synthases constructed using the updated boundary have not been investigated. Here we describe our design and implementation of a BioBricks-like platform to rapidly construct 5 triketide, 25 tetraketide, and 125 pentaketide synthases to test every module combination of the pikromycin synthase. Anticipated products are detected from 60% of the triketide synthases, 32% of the tetraketide synthases, and 6.4% of the pentaketide synthases. We determine ketosynthase gatekeeping and module-skipping are the principal impediments to obtaining functional synthases. The platform is also employed to construct active hybrid synthases by incorporating modules from the erythromycin, spinosyn, and rapamycin assembly lines. The relaxed gatekeeping of a ketosynthase in the rapamycin synthase is especially encouraging in the quest to produce designer polyketides.
Collapse
Affiliation(s)
- Katherine A Ray
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Joshua D Lutgens
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ramesh Bista
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ronak R Desai
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Melissa Hirsch
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Antonio Cordova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Scat S, Weissman KJ, Chagot B. Insights into docking in megasynthases from the investigation of the toblerol trans-AT polyketide synthase: many α-helical means to an end. RSC Chem Biol 2024; 5:669-683. [PMID: 38966669 PMCID: PMC11221535 DOI: 10.1039/d4cb00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
The fidelity of biosynthesis by modular polyketide synthases (PKSs) depends on specific moderate affinity interactions between successive polypeptide subunits mediated by docking domains (DDs). These sequence elements are notably portable, allowing their transplantation into alternative biosynthetic and metabolic contexts. Herein, we use integrative structural biology to characterize a pair of DDs from the toblerol trans-AT PKS. Both are intrinsically disordered regions (IDRs) that fold into a 3 α-helix docking complex of unprecedented topology. The C-terminal docking domain (CDD) resembles the 4 α-helix type (4HB) CDDs, which shows that the same type of DD can be redeployed to form complexes of distinct geometry. By carefully re-examining known DD structures, we further extend this observation to type 2 docking domains, establishing previously unsuspected structural relations between DD types. Taken together, these data illustrate the plasticity of α-helical DDs, which allow the formation of a diverse topological spectrum of docked complexes. The newly identified DDs should also find utility in modular PKS genetic engineering.
Collapse
Affiliation(s)
- Serge Scat
- Université de Lorraine, CNRS, IMoPA F-54000 Nancy France
| | | | | |
Collapse
|
11
|
Nava A, Roberts J, Haushalter RW, Wang Z, Keasling JD. Module-Based Polyketide Synthase Engineering for de Novo Polyketide Biosynthesis. ACS Synth Biol 2023; 12:3148-3155. [PMID: 37871264 PMCID: PMC10661043 DOI: 10.1021/acssynbio.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 10/25/2023]
Abstract
Polyketide retrobiosynthesis, where the biosynthetic pathway of a given polyketide can be reversibly engineered due to the colinearity of the polyketide synthase (PKS) structure and function, has the potential to produce millions of organic molecules. Mixing and matching modules from natural PKSs is one of the routes to produce many of these molecules. Evolutionary analysis of PKSs suggests that traditionally used module boundaries may not lead to the most productive hybrid PKSs and that new boundaries around and within the ketosynthase domain may be more active when constructing hybrid PKSs. As this is still a nascent area of research, the generality of these design principles based on existing engineering efforts remains inconclusive. Recent advances in structural modeling and synthetic biology present an opportunity to accelerate PKS engineering by re-evaluating insights gained from previous engineering efforts with cutting edge tools.
Collapse
Affiliation(s)
- Alberto
A. Nava
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jacob Roberts
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Robert W. Haushalter
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zilong Wang
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
- Center
for Synthetic Biochemistry, Shenzhen Institutes
for Advanced Technologies, Shenzhen 518055, P.R. China
- The
Novo
Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens Lyngby 2800, Denmark
| |
Collapse
|
12
|
Schmidt M, Lee N, Zhan C, Roberts JB, Nava AA, Keiser LS, Vilchez AA, Chen Y, Petzold CJ, Haushalter RW, Blank LM, Keasling JD. Maximizing Heterologous Expression of Engineered Type I Polyketide Synthases: Investigating Codon Optimization Strategies. ACS Synth Biol 2023; 12:3366-3380. [PMID: 37851920 PMCID: PMC10661030 DOI: 10.1021/acssynbio.3c00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 10/20/2023]
Abstract
Type I polyketide synthases (T1PKSs) hold enormous potential as a rational production platform for the biosynthesis of specialty chemicals. However, despite great progress in this field, the heterologous expression of PKSs remains a major challenge. One of the first measures to improve heterologous gene expression can be codon optimization. Although controversial, choosing the wrong codon optimization strategy can have detrimental effects on the protein and product levels. In this study, we analyzed 11 different codon variants of an engineered T1PKS and investigated in a systematic approach their influence on heterologous expression in Corynebacterium glutamicum, Escherichia coli, and Pseudomonas putida. Our best performing codon variants exhibited a minimum 50-fold increase in PKS protein levels, which also enabled the production of an unnatural polyketide in each of these hosts. Furthermore, we developed a free online tool (https://basebuddy.lbl.gov) that offers transparent and highly customizable codon optimization with up-to-date codon usage tables. In this work, we not only highlight the significance of codon optimization but also establish the groundwork for the high-throughput assembly and characterization of PKS pathways in alternative hosts.
Collapse
Affiliation(s)
- Matthias Schmidt
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52062 Aachen, Germany
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Namil Lee
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Chunjun Zhan
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jacob B. Roberts
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint
Program in Bioengineering, University of
California, Berkeley, California 94720, United States
| | - Alberto A. Nava
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Leah S. Keiser
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Aaron A. Vilchez
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Yan Chen
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Petzold
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Robert W. Haushalter
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lars M. Blank
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52062 Aachen, Germany
| | - Jay D. Keasling
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint
Program in Bioengineering, University of
California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Center
for Synthetic Biochemistry, Institute for
Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen 518071, China
| |
Collapse
|
13
|
Ray KA, Lutgens JD, Bista R, Zhang J, Desai RR, Hirsch M, Miyazawa T, Cordova A, Keatinge-Clay AT. Assessing and harnessing updated polyketide synthase modules through combinatorial engineering. RESEARCH SQUARE 2023:rs.3.rs-3157617. [PMID: 37546965 PMCID: PMC10402262 DOI: 10.21203/rs.3.rs-3157617/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The modular nature of polyketide assembly lines and the significance of their products make them prime targets for combinatorial engineering. While short synthases constructed using the recently updated module boundary have been shown to outperform those using the traditional boundary, larger synthases constructed using the updated boundary have not been investigated. Here we describe our design and implementation of a BioBricks-like platform to rapidly construct 5 triketide, 25 tetraketide, and 125 pentaketide synthases from the updated modules of the Pikromycin synthase. Every combinatorial possibility of modules 2-6 inserted between the first and last modules of the native synthase was constructed and assayed. Anticipated products were observed from 60% of the triketide synthases, 32% of the tetraketide synthases, and 6.4% of the pentaketide synthases. Ketosynthase gatekeeping and module-skipping were determined to be the principal impediments to obtaining functional synthases. The platform was also used to create functional hybrid synthases through the incorporation of modules from the Erythromycin, Spinosyn, and Rapamycin assembly lines. The relaxed gatekeeping observed from a ketosynthase in the Rapamycin synthase is especially encouraging in the quest to produce designer polyketides.
Collapse
Affiliation(s)
- Katherine A. Ray
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Joshua D. Lutgens
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Ramesh Bista
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Jie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Ronak R. Desai
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Melissa Hirsch
- Department of Chemistry, The University of Texas at Austin, Austin, TX
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Antonio Cordova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | | |
Collapse
|
14
|
Zhang J, Bista R, Miyazawa T, Keatinge-Clay AT. Boosting titers of engineered triketide and tetraketide synthases to record levels through T7 promoter tuning. Metab Eng 2023; 78:93-98. [PMID: 37257684 PMCID: PMC11059570 DOI: 10.1016/j.ymben.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
Modular polyketide synthases (PKS's) are promising platforms for the rational engineering of designer polyketides and commodity chemicals, yet their low productivities are a barrier to the practical biosynthesis of these compounds. Previously, we engineered triketide lactone synthases such as Pik167 using the recently updated module definition and showed they generate hundreds of milligrams of product per liter of Escherichia coli K207-3 shake flask culture. As the molar ratio between the 2 polypeptides of Pik167 is highly skewed, we sought to attenuate the strength of the T7 promoter controlling the production of the smaller, better-expressing polypeptide and thereby increase production of the first polypeptide under the control of an unoptimized T7 promoter. Through this strategy, a 1.8-fold boost in titer was obtained. After a further 1.5-fold boost obtained by increasing the propionate concentration in the media from 20 to 80 mM, a record titer of 791 mg L-1 (627 mg L-1 isolated) was achieved, a 2.6-fold increase overall. Spurred on by this result, the tetraketide synthase Pik1567 was engineered and the T7 promoter attenuation strategy was applied to its second and third genes. A 5-fold boost, from 20 mg L-1 to 100 mg L-1, in the titer of its tetraketide product was achieved.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX, 78712, USA
| | - Ramesh Bista
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX, 78712, USA
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX, 78712, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Keatinge-Clay AT, Miyazawa T, Zhang J, Ray KA, Lutgens JD, Bista R, Lin SN. Crystal structures reveal the framework of cis -acyltransferase modular polyketide synthases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528132. [PMID: 36798387 PMCID: PMC9934609 DOI: 10.1101/2023.02.11.528132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Although the domains of cis -acyltransferase ( cis -AT) modular polyketide synthases (PKS's) have been understood at atomic resolution for over a decade, the domain-domain interactions responsible for the architectures and activities of these giant molecular assembly lines remain largely uncharacterized. The multimeric structure of the α 6 β 6 fungal fatty acid synthase (FAS) provides 6 equivalent reaction chambers for its acyl carrier protein (ACP) domains to shuttle carbon building blocks and the growing acyl chain between surrounding, oriented enzymatic domains. The presumed homodimeric oligomerization of cis -AT assembly lines is insufficient to provide similar reaction chambers; however, the crystal structure of a ketosynthase (KS)+AT didomain presented here and three already reported show an interaction between the AT domains appropriate for lateral multimerization. This interaction was used to construct a framework for the pikromycin PKS from its KS, AT, and docking domains that contains highly-ordered reaction chambers. Its AT domains also mediate vertical interactions, both with upstream KS domains and downstream docking domains.
Collapse
|
16
|
Metabolic pathway assembly using docking domains from type I cis-AT polyketide synthases. Nat Commun 2022; 13:5541. [PMID: 36130947 PMCID: PMC9492657 DOI: 10.1038/s41467-022-33272-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Engineered metabolic pathways in microbial cell factories often have no natural organization and have challenging flux imbalances, leading to low biocatalytic efficiency. Modular polyketide synthases (PKSs) are multienzyme complexes that synthesize polyketide products via an assembly line thiotemplate mechanism. Here, we develop a strategy named mimic PKS enzyme assembly line (mPKSeal) that assembles key cascade enzymes to enhance biocatalytic efficiency and increase target production by recruiting cascade enzymes tagged with docking domains from type I cis-AT PKS. We apply this strategy to the astaxanthin biosynthetic pathway in engineered Escherichia coli for multienzyme assembly to increase astaxanthin production by 2.4-fold. The docking pairs, from the same PKSs or those from different cis-AT PKSs evidently belonging to distinct classes, are effective enzyme assembly tools for increasing astaxanthin production. This study addresses the challenge of cascade catalytic efficiency and highlights the potential for engineering enzyme assembly. Assembly artificial pathway in design connecting media can increase biosynthetic efficiency, but the choice of connecting media is limited. Here, the authors develop a new protein assembly strategy using a pool of docking peptides from polyketide synthase and show its application in astaxanthin biosynthesis in E. coli.
Collapse
|
17
|
Dickinson MS, Miyazawa T, McCool RS, Keatinge-Clay AT. Priming enzymes from the pikromycin synthase reveal how assembly-line ketosynthases catalyze carbon-carbon chemistry. Structure 2022; 30:1331-1339.e3. [PMID: 35738283 PMCID: PMC9444953 DOI: 10.1016/j.str.2022.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
The first domain of modular polyketide synthases (PKSs) is most commonly a ketosynthase (KS)-like enzyme, KSQ, that primes polyketide synthesis. Unlike downstream KSs that fuse α-carboxyacyl groups to growing polyketide chains, it performs an extension-decoupled decarboxylation of these groups to generate primer units. When Pik127, a model triketide synthase constructed from modules of the pikromycin synthase, was studied by cryoelectron microscopy (cryo-EM), the dimeric didomain comprised of KSQ and the neighboring methylmalonyl-selective acyltransferase (AT) dominated the class averages and yielded structures at 2.5- and 2.8-Å resolution, respectively. Comparisons with ketosynthases complexed with their substrates revealed the conformation of the (2S)-methylmalonyl-S-phosphopantetheinyl portion of KSQ and KS substrates prior to decarboxylation. Point mutants of Pik127 probed the roles of residues in the KSQ active site, while an AT-swapped version of Pik127 demonstrated that KSQ can also decarboxylate malonyl groups. Mechanisms for how KSQ and KS domains catalyze carbon-carbon chemistry are proposed.
Collapse
Affiliation(s)
- Miles S Dickinson
- Sauer Structural Biology Lab, The University of Texas at Austin, 102 E. 24th Street, Austin, TX 78712, USA
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th Street, Austin, TX 78712, USA
| | - Ryan S McCool
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th Street, Austin, TX 78712, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th Street, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Feng J, Hauser M, Cox RJ, Skellam E. Engineering Aspergillus oryzae for the Heterologous Expression of a Bacterial Modular Polyketide Synthase. J Fungi (Basel) 2021; 7:1085. [PMID: 34947068 PMCID: PMC8708903 DOI: 10.3390/jof7121085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Microbial natural products have had phenomenal success in drug discovery and development yet form distinct classes based on the origin of their native producer. Methods that enable metabolic engineers to combine the most useful features of the different classes of natural products may lead to molecules with enhanced biological activities. In this study, we modified the metabolism of the fungus Aspergillus oryzae to enable the synthesis of triketide lactone (TKL), the product of the modular polyketide synthase DEBS1-TE engineered from bacteria. We established (2S)-methylmalonyl-CoA biosynthesis via introducing a propionyl-CoA carboxylase complex (PCC); reassembled the 11.2 kb DEBS1-TE coding region from synthetic codon-optimized gene fragments using yeast recombination; introduced bacterial phosphopantetheinyltransferase SePptII; investigated propionyl-CoA synthesis and degradation pathways; and developed improved delivery of exogenous propionate. Depending on the conditions used titers of TKL ranged from <0.01-7.4 mg/L. In conclusion, we have demonstrated that A. oryzae can be used as an alternative host for the synthesis of polyketides from bacteria, even those that require toxic or non-native substrates. Our metabolically engineered A. oryzae may offer advantages over current heterologous platforms for producing valuable and complex natural products.
Collapse
Affiliation(s)
- Jin Feng
- Institute for Organic Chemistry and Biomolekular Wirkstoff Zentrum, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany; (J.F.); (M.H.)
| | - Maurice Hauser
- Institute for Organic Chemistry and Biomolekular Wirkstoff Zentrum, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany; (J.F.); (M.H.)
| | - Russell J. Cox
- Institute for Organic Chemistry and Biomolekular Wirkstoff Zentrum, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany; (J.F.); (M.H.)
| | - Elizabeth Skellam
- Institute for Organic Chemistry and Biomolekular Wirkstoff Zentrum, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany; (J.F.); (M.H.)
- Department of Chemistry, BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76201, USA
| |
Collapse
|
19
|
Hirsch M, Fitzgerald BJ, Keatinge-Clay AT. How cis-Acyltransferase Assembly-Line Ketosynthases Gatekeep for Processed Polyketide Intermediates. ACS Chem Biol 2021; 16:2515-2526. [PMID: 34590822 PMCID: PMC9879353 DOI: 10.1021/acschembio.1c00598] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
With the redefinition of polyketide synthase (PKS) modules, a new appreciation of their most downstream domain, the ketosynthase (KS), is emerging. In addition to performing its well-established role of generating a carbon-carbon bond between an acyl-CoA building block and a growing polyketide, it may gatekeep against incompletely processed intermediates. Here, we investigate 739 KSs from 92 primarily actinomycete, cis-acyltransferase assembly lines. When KSs were separated into 16 families based on the chemistries at the α- and β-carbons of their polyketide substrates, a comparison of 32 substrate tunnel residues revealed unique sequence fingerprints. Surprisingly, additional fingerprints were detected when the chemistry at the γ-carbon was considered. Representative KSs were modeled bound to their natural polyketide substrates to better understand observed patterns, such as the substitution of a tryptophan by a smaller residue to accommodate an l-α-methyl group or the substitution of four smaller residues by larger ones to make better contact with a primer unit or diketide. Mutagenesis of a conserved glutamine in a KS within a model triketide synthase indicates that the substrate tunnel is sensitive to alteration and that engineering this KS to accept unnatural substrates may require several mutations.
Collapse
Affiliation(s)
- Melissa Hirsch
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brendan J. Fitzgerald
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrian T. Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2021. [DOI: 10.1039/d1np90037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as chlorahupetone A from Chloranthus henryi var. hupehensis.
Collapse
Affiliation(s)
- Robert A. Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|