1
|
Nene LC, Nkune NW, Abrahamse H. Anticancer photodynamic activities of triphenylphosphine-labelled phthalocyanines and their bovine serum albumin-gold nanoparticles- complexes on melanoma A375 cell lines in vitro. J Inorg Biochem 2024; 256:112570. [PMID: 38685138 DOI: 10.1016/j.jinorgbio.2024.112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
This work reports on the synthesis of triphenylphosphine-labelled cationic phthalocyanines (Pc) complexed with bovine serum albumin (BSA) and gold nanoparticles (Au NPs). This nano-complex (Pc-BSA-Au) is studied for its photodynamic therapy (PDT) activity compared to the non-complexed Pc counterpart. The photochemical properties and in vitro PDT efficacies of the Pc and the nano-complex were determined and are compared herein. The singlet oxygen (1O2) yields of the Pcs were determined and are reported in DMF. A singlet oxygen quantum yield of 0.47 was obtained for the Pcs. The PDT efficacies of the complexes were thereafter determined using malignant melanoma A375 cancer cell line in vitro. An increase in the cell toxicity was observed for cells treated with Pc-BSA-Au compared to those treated with the Pc alone. The cell survival percentages were 23.1% for cells treated with Pc-BSA-Au and 48.7% for those treated with Pc alone under PDT treatments.
Collapse
Affiliation(s)
- Lindokuhle Cindy Nene
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Nkune Williams Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
2
|
Magadla A, Mpeta LS, Britton J, Nyokong T. Photodynamic antimicrobial chemotherapy activities of phthalocyanine-antibiotic conjugates against bacterial biofilms and interactions with extracellular polymeric substances. Photodiagnosis Photodyn Ther 2023; 44:103878. [PMID: 37918559 DOI: 10.1016/j.pdpdt.2023.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
This study sheds light on how to rationally design efficient photodynamic antimicrobial chemotherapy (PACT) agents by covalently linking phthalocyanines (Pcs) as photosensitizers with an antibiotic: Ciprofloxacin (CIP). Pcs used are zinc (II) 3-(4-((3,17,23-tris(4-(Benzo(d)thiazol-2-yl] thiol) phthalocyanine-9-yl) oxy) phenyl) propanoic acid (1) and zinc (II) 3-(4-(3,17,23-tris(3-(4-(triphenylphosphine) butyl) benzo[d]thiazol-3-ium bromide phthalocyanine-9-yl) oxy) phenyl) propanoic acid (2). High singlet oxygen quantum yields are observed in the presence of CIP. Square wave voltammetry was used to analyse the Pc-CIP uptake by bacteria biofilms of Streptococcus pneumoniae (S. pneumonia) and Escherichia coli (E. coli). Electrochemical impedance spectroscopy and scanning electron spectroscopy were used to study the stability of the biofilms in the presence Pc-CIP complexes and when exposed to light. Raman and time of flight-secondary ion mass spectrometry (TOF-SIMS) are used to identify the breakdown of cellular components of the biofilm and penetration of the Pc-CIP into the biofilms, respectively.
Collapse
Affiliation(s)
- Aviwe Magadla
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Lekhetho S Mpeta
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Jonathan Britton
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
3
|
ÖMEROĞLU İ, DURMUŞ M. Water-soluble phthalocyanine photosensitizers for photodynamic therapy. Turk J Chem 2023; 47:837-863. [PMID: 38173755 PMCID: PMC10760830 DOI: 10.55730/1300-0527.3583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/31/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024] Open
Abstract
Photodynamic therapy (PDT) is based on a photochemical reaction that is started when a photosensitizing process is activated by the light and results in the death of tumor cells. Solubility is crucial in PDT applications to investigate the physical and chemical characteristics of phthalocyanines, but, unfortunately, most phthalocyanines show limited solubility especially in water. To increase the solubility of phthalocyanines in polar solvents and water, ionic groups such as -SO3-, -NR3+, -COO-, and nonionic groups such as polyoxy chains are frequently added to the peripheral or nonperipheral positions of the phthalocyanine framework. Since water-solubility and NIR-absorbing properties are essential for efficient PDT activation, studies have been focused on the synthesis of these types of phthalocyanine derivatives. This review focuses on the photophysical, photochemical, and some in vitro or in vivo studies of the recently published ionic and nonionic phthalocyanine-mediated photosensitizers carried out in the last five years. This review will have positive contributions to future studies on phthalocyanine chemistry and their PDT applications as well as photochemistry.
Collapse
Affiliation(s)
- İpek ÖMEROĞLU
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli,
Turkiye
| | - Mahmut DURMUŞ
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli,
Turkiye
| |
Collapse
|
4
|
Lima E, Reis LV. Photodynamic Therapy: From the Basics to the Current Progress of N-Heterocyclic-Bearing Dyes as Effective Photosensitizers. Molecules 2023; 28:5092. [PMID: 37446758 DOI: 10.3390/molecules28135092] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy, an alternative that has gained weight and popularity compared to current conventional therapies in the treatment of cancer, is a minimally invasive therapeutic strategy that generally results from the simultaneous action of three factors: a molecule with high sensitivity to light, the photosensitizer, molecular oxygen in the triplet state, and light energy. There is much to be said about each of these three elements; however, the efficacy of the photosensitizer is the most determining factor for the success of this therapeutic modality. Porphyrins, chlorins, phthalocyanines, boron-dipyrromethenes, and cyanines are some of the N-heterocycle-bearing dyes' classes with high biological promise. In this review, a concise approach is taken to these and other families of potential photosensitizers and the molecular modifications that have recently appeared in the literature within the scope of their photodynamic application, as well as how these compounds and their formulations may eventually overcome the deficiencies of the molecules currently clinically used and revolutionize the therapies to eradicate or delay the growth of tumor cells.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Lucinda V Reis
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
5
|
Magadla A, Openda YI, Mpeta L, Nyokong T. Evaluation of the antibacterial activity of gallic acid anchored phthalocyanine-doped silica nanoparticles towards Escherichia coli and Staphylococcus aureus biofilms and planktonic cells. Photodiagnosis Photodyn Ther 2023; 42:103520. [PMID: 36931365 DOI: 10.1016/j.pdpdt.2023.103520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
In this work, we have described the synthesis of phthalocyanine complexes Zn(II) tetrakis 4-(5-formylpyridin-2-yl)oxy) phthalocyanine (2), Zn(II) tetrakis-1-butyl-4-(2-(6- (tetra-phenoxy)pyridin-3-yl) vinyl)pyridin-1-ium phthalocyanine (3) and Zn(II) tetrakis 1-butyl-5-(2-(1-butylpyridin-1-ium-4-yl)vinyl)-2-(tetra-phenoxy)pyridin-1-ium phthalocyanine (4). The effect of a varying number of charges when the Pc complexes are alone or grafted in gallic acid (GA) tagged silica nanoparticles on photodynamic antimicrobial chemotherapy (PACT) is investigated toward Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli) in both planktonic and biofilm forms. Complex 4, bearing a total of 8 cationic charges, displayed the highest activity with log CFU values of 8.60 and 6.42 against E.coli and S.aureus biofilms, respectively. The surface stability of E.coli and S.aureus biofilms in the presence of 4 and its conjugate was analysed using cyclic voltammetry. Scanning electron microscopy (SEM) and Raman spectra are also used to study the conformational and biochemical changes within biofilm upon subjecting them to PACT.
Collapse
Affiliation(s)
- Aviwe Magadla
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Yolande Ikala Openda
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Lekhetho Mpeta
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
6
|
Photoantimicrobial activity of Schiff-base Morpholino phthalocyanines against drug resistant micro-organisms in their planktonic and biofilm forms. Photodiagnosis Photodyn Ther 2023; 42:103519. [PMID: 36931368 DOI: 10.1016/j.pdpdt.2023.103519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Antimicrobial photodynamic inactivation (aPDI) is an alternative treatment for the eradication of drug-resistant micro-organisms. One of the advantages of this technique, it that there is no possibility of microbial resistance. Hence, herein, the preparation and characterization of novel neutral and cationic morpholine containing Schiff base phthalocyanines are reported. The cationic complexes (4 and 5) gave moderate singlet oxygen quantum yields (ΦΔ) of ∼0.2 in aqueous media. Conversely, the neutral complexes generated very low ΦΔ values making them very poor candidates for antimicrobial studies. The cationic phthalocyanines showed excellent photodynamic activity against planktonic cells of all micro-organisms (Candida albicans, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica subspecies enterica serovar Choleraesuis, vancomycin-resistant E. faecium, and methicillin-resistant Staphylococcus aureus). The efficiency of aPDI was shown to be both concentration and light-dose-dependent. Mono biofilms were susceptible when treated with 200 µM of cationic Pcs at 108 J/cm2. However, ∼10% of the mixed biofilm survived after treatment.
Collapse
|
7
|
Şahal H. Zinc(II) phthalocyanine substituted by sulfonamide derivative: Photophysical and photochemical properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Sindelo A, Sen P, Nyokong T. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus using pyrrolidinium containing Schiff base phthalocyanines. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Öncül GA, Öztürk ÖF, Pişkin M. Spectroscopic and photophysicochemical properties of zinc(II) phthalocyanine substituted with benzenesulfonamide units containing schiff base. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this study, compounds (E)-4-((5-bromo-2-hydroxy-3-methoxybenzylidene)amino)-N-(pyridin-2-yl)benzenesul-fonamide 1, (E)-4-((5-bromo-2-(3,4-dicyanophenoxy)-3-methoxybenzylidene)amino)-N-(pyridin-2-yl)benzenesulfonamide 2 and, complex 2(3),9(10),16(17),23(24)-tetra-[(E)-4-((5-bromo-3-methoxy-2-(λ 1-oxidanyl)benzylidene)amino)-N-(pyridine-2-yl)benzenesulfonamide]phthalocyaninato zinc(II) 3 were synthesized for the first time. Their structures (1 –3) were characterized by spectroscopic methods such as FTIR, 1H NMR,13C NMR, UV–vis, MALDI-TOF mass spectra and elemental analysis. The spectroscopic, aggregation, photophysical and photochemical properties of zinc(II) phthalocyanine 3 in dimethyl sulfoxide were investigated and the effects on the above-mentioned properties were reported as a result of the presence of benzenesulfonamide derivatives containing different bioactive groups, in their peripheral positions. In addition, its above-mentioned properties were also reported by comparing different species with those of their substituted and/or unsubstituted counterparts. The zinc(II) phthalocyanine 3 can be a potential photosensitizer candidate in photodynamic therapy, which is an effective alternative therapy in cancer treatment, due to its good solubility in commonly known solvents and monomeric species, as well as its adequate and favorable fluorescence, singlet oxygen production and photostability.
Collapse
Affiliation(s)
- Gülen Atiye Öncül
- Department of Chemistry, Çanakkale Onsekiz Mart University, Faculty of Arts & Sciences, Çanakkale, Turkey
| | - Ömer Faruk Öztürk
- Department of Chemistry, Çanakkale Onsekiz Mart University, Faculty of Arts & Sciences, Çanakkale, Turkey
| | - Mehmet Pişkin
- Department of Food Technology, Çanakkale Onsekiz Mart University, Vocational School of Technical Sciences, Çanakkale, Turkey
| |
Collapse
|
10
|
Nene LC, Magadla A, Nyokong T. Enhanced mitochondria destruction on MCF-7 and HeLa cell lines in vitro using triphenyl-phosphonium-labelled phthalocyanines in ultrasound-assisted photodynamic therapy activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112553. [PMID: 36084362 DOI: 10.1016/j.jphotobiol.2022.112553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
This work reports on the reactive oxygen species (ROS) generation and the therapeutic activities of new triphenyl-phosphonium-labelled phthalocyanines (Pcs), the 2,9,16,23-tetrakis(N-(N-butyl-4-triphenyl-phosphonium)- pyridine-4-yloxy) Zn(II) Pc (3) and 2,9,16,23-tetrakis-(N-(N-butyl-4-triphenyl-phosphonium)-morpholino) Zn(II) Pc (4) upon exposure to light, ultrasound and the combination of light and ultrasound. Two types of ROS were detected: the singlet oxygen (1O2) and hydroxyl radicals. For light irradiations, only the 1O2 was detected. An increase in the ROS generation was observed for samples treated with the combination of light and ultrasound compared to the light and ultrasound mono-treatments. The in vitro anticancer activity through photodynamic (PDT) and sonodynamic (SDT) therapy for the Pcs were also determined and compared to the photo-sonodynamic combination therapy (PSDT). The two cancer cell lines used for the in vitro studies included the Michigan Cancer Foundation-7 (MCF-7) breast cancer and Henrietta Lacks (HeLa) cervical cancer cell lines. The SDT treatments showed improved therapeutic efficacy on the cancer cells for both the Pcs compared to PDT. PSDT showed better therapeutic efficacy compared to both the PDT and SDT mono-treatments.
Collapse
Affiliation(s)
- Lindokuhle Cindy Nene
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa
| | - Aviwe Magadla
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
11
|
Hirakawa K, Katayama A, Yamaoka S, Ikeue T, Okazaki S. Photosensitized protein damage by water-soluble phthalocyanine zinc(II) and gallium(III) complexes through electron transfer and singlet oxygen production. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Samal PP, Dekshinamoorthy A, Arunachalam S, Vijayaraghavan S, Krishnamurty S. Free base phthalocyanine coating as a superior corrosion inhibitor for copper surfaces: A combined experimental and theoretical study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Magadla A, Openda YI, Nyokong T. The implications of Ortho-, Meta- and Para- Directors on the In-Vitro Photodynamic Antimicrobial Chemotherapy Activity of Cationic Pyridyl-dihydrothiazole Phthalocyanines. Photodiagnosis Photodyn Ther 2022; 39:103029. [PMID: 35872353 DOI: 10.1016/j.pdpdt.2022.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Cationic Zn phthalocyanine complexes derived by alkylation reaction of tetra-(pyridinyloxy) phthalocyanines at the ortho, meta, and para positions to form Zn (II) Tetrakis 3-(4-(2-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (2), Zn (II) Tetrakis 3-(4-(3-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (4) and Zn (II) Tetrakis 3-(4-(4-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (6). The photophysicochemical behaviours of the Pc complexes are assessed. The meta and para-substituted complexes demonstrate high singlet oxygen quantum yields. The cationic Pcs demonstrate good planktonic antibacterial activity towards Staphylococcus aureus and Escherichia coli with the highest log reduction values of 9.29 and 8.55, respectively. The cationic complexes also demonstrate a significant decrease in the viability of in vitro biofilms after photo-antimicrobial chemotherapy at 100 µM for both Staphylococcus aureus and Escherichia coli biofilms.
Collapse
Affiliation(s)
- Aviwe Magadla
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Grahamstown 6140, South Africa
| | - Yolande Ikala Openda
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
14
|
Magaela NB, Matshitse R, Babu B, Managa M, Prinsloo E, Nyokong T. Sn(IV) porphyrin-biotin decorated nitrogen doped graphene quantum dots nanohybrids for photodynamic therapy. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Li X, Cao Y, Xu B, Zhao Y, Zhang T, Wang Y, Wang D, Liu J, Song S, Zhang H. Bimetallic nanozyme with cascade effect for synergistic therapy of cancer. ChemMedChem 2022; 17:e202100663. [PMID: 35092363 DOI: 10.1002/cmdc.202100663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoqing Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Yue Cao
- Jilin University First Hospital Department of Neurosurgery CHINA
| | - Bo Xu
- Jilin University First Hospital Department of Urology CHINA
| | - Ying Zhao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Tianqi Zhang
- Jilin University Second Hospital Department of Radiology CHINA
| | - Yinghui Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Daguang Wang
- Jilin University First Hospital Department of Gastric and Colorectal Surgery CHINA
| | - Jianhua Liu
- Jilin University Second Hospital Deparment of Radiology CHINA
| | - Shuyan Song
- Changchun Institute of Applied Chemistry 5625 Renmin Street Changchun CHINA
| | - Hongjie Zhang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| |
Collapse
|
16
|
Yüceel Ç, Şahin Z, İşci Ü. Substituent effect on iron phthalocyanines as cyclohexene oxidation catalysts. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621501285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two iron phthalocyanines peripherally octasubstituted either with electron-withdrawing isobutylsulfonyl moities or electron-donating isobutoxy moieties were designed to investigate the effect of the substitution pattern on their oxidation catalytic activity, and were then tested in oxidation of cyclohexene as a reaction model. For both catalysts, the main product of oxidation was 2-cyclohexen-1-ol which is an allylic oxidation product. The electron-withdrawing isobutylsulfonyl substituted iron phthalocyanine 1exhibited better catalytic activities than the electron-donating isobutoxy substituted iron phthalocyanine 2.
Collapse
Affiliation(s)
- Çiğdem Yüceel
- Gebze Technical University, Chemical Engineering Department, 41400 Gebze Kocaeli, Turkey
| | - Zeynel Şahin
- Department of Metallurgical and Materials Engineering, Marmara University, Faculty of Technology, Istanbul, Turkey
| | - Ümit İşci
- Gebze Technical University, Chemistry Department, 41400 Gebze Kocaeli, Turkey
| |
Collapse
|