1
|
Gao S, Li Y, Zhang X, Cao Z, Guo Y, Zhao R, Li L, Lin H, Qin Q, Yi B, Zhao G. Efficient Screening of α-Glucosidase Inhibitory Peptides From Seahorse Through the Innovative Joint Technique: De Novo Sequencing and Parallel SPOT Synthesis. J Pept Sci 2025; 31:e70023. [PMID: 40289856 DOI: 10.1002/psc.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/15/2025] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
In this research, de novo sequencing was innovatively combined with parallel SPOT synthesis for the efficient screening of biological peptides from TCM or seafood: seahorse with synergistic antioxidant and α-glucosidase inhibitory activities, which is promising for postprandial hyperglycemia management. Gastrointestinal digestion mimic and de novo sequencing were sequentially carried out to predict new peptides from seahorse. After bioinformatic analysis using Peptide Ranker, 82 peptides were eventually synthesized by efficient parallel SPOT technique, and Ser-Val-Try-Leu-Gly-Gly-Ser-Leu-Leu (SVWLGGSLL) was screened out as the most efficient peptide with synergistic antioxidant (DPPH radical scavenging activity of 77%) and α-glucosidase inhibitory activity (IC50 = 0.36 mM). Molecular docking was further carried out to illustrate the favorable ligand-receptor interactions formed such as hydrogen bonding and van der Waals force with low binding free energy of -7.8 kcal/mol. Moreover, pharmacokinetic analysis indicated that SVWLGGSLL was unrelated to toxicity with the advantage of gastrointestinal stability.
Collapse
Affiliation(s)
- Shengfang Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yimeng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuo Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youyou Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Runkun Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lifan Li
- Qi-Huang Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Hongying Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bingqing Yi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guodong Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, China
| |
Collapse
|
2
|
Phan VHG, Nguyen BPT, Nguyen NY, Tran CND, Nguyen QND, Luu CH, Manivasagan P, Jang ES, Yang DC, Yang DU, Li Y, Conde J, Thambi T. Longan-inspired chitosan-pectin core-shell hydrogel beads for oral delivery of biodrugs to enhance osteoporosis therapy. Int J Biol Macromol 2025; 308:142254. [PMID: 40120907 DOI: 10.1016/j.ijbiomac.2025.142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Osteoporosis, a common disorder, is characterized by a systemic reduction in bone mass and structural integrity, resulting in brittle bones. Reducing bone loss and enhancing bone density through oral administration of biopharmaceuticals provides significant advantages, including convenience and non-invasiveness for patients. However, challenges such as poor absorption and enzymatic degradation necessitate the development of innovative drug delivery systems. This research introduces a core-shell hydrogel system inspired by the natural architecture of Longan fruit, constructed from pectin and chitosan biopolymers, designed to create biocapsules and sustain the release of biodrugs. In this system, salmon calcitonin (sCT) was encapsulated within mesoporous silica nanoparticles (MSNs) and incorporated into the core of the beads. The synthesis of the core-shell hydrogel beads was carefully regulated by adjusting the immersion time and concentration of the crosslinker. The hydrogel beads demonstrated durability, with the pectin shell effectively preventing rapid degradation in the stomach, while the chitosan layer enhanced adhesion to the intestinal walls, safeguarded sCT, and enabled sustained drug release over an extended period of up to 30 h. Furthermore, biocompatibility tests indicated minimal cytotoxicity and hemolysis. Cellular uptake assays demonstrated that the core-shell beads effectively encapsulated sCT and ensured its prolonged release to CT-26 cells. This study presents a promising platform for oral sCT delivery, offering enhanced efficacy, patient compliance, and a potential replacement for injection-based therapies.
Collapse
Affiliation(s)
- V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Bich-Phuong Thi Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nhi Yen Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Cam-Nhung Dinh Tran
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Quynh-Nhu Doan Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Cuong Hung Luu
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Panchanathan Manivasagan
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Dong Uk Yang
- AIBIOME, 6, Jeonmin-ro 30beon-gil, Yuseong-gu, Daejeon 34214, Republic of Korea.
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang Province, PR China.
| | - João Conde
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea.
| |
Collapse
|
3
|
Chai M, Wang S, Chen Y, Pei X, Zhen X. Targeted and intelligent nano-drug delivery systems for colorectal cancer treatment. Front Bioeng Biotechnol 2025; 13:1582659. [PMID: 40352359 PMCID: PMC12061940 DOI: 10.3389/fbioe.2025.1582659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Colorectal cancer (CRC) remains a highly heterogeneous malignancy with significant morbidity and mortality worldwide. Despite advancements in surgery, chemotherapy, immunotherapy, and targeted therapy, treatment efficacy is often hampered by drug resistance and systemic toxicity. In recent years, nano-drug delivery systems (NDDS) have emerged as a promising strategy to enhance therapeutic precision, reduce adverse effects, and overcome resistance in CRC treatment. This review discusses the recent advancements in NDDS for CRC treatment, focusing on the optimization of oral drug delivery systems, the development of tumor-specific targeting strategies, and the design of intelligent delivery systems responsive to the tumor microenvironment (TME). Furthermore, we summarize current challenges in NDDS translation and explore future research directions for enhancing their clinical feasibility and therapeutic impact.
Collapse
Affiliation(s)
- Meihong Chai
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Shihua Wang
- School of Medicine, Xi’an Peihua University, Xi’an, Shaanxi, China
| | - Yuxin Chen
- Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xing Pei
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xueyan Zhen
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Budiyanto C, Ningrum A, Murdiati A, Indrati R. A novel approach to assessing the bioavailability of biopeptide inhibitor of HMG CoA reductase from germinated and ungerminated Kara Kratok ( Phaseolus lunatus L.). PeerJ 2025; 13:e19262. [PMID: 40292097 PMCID: PMC12032960 DOI: 10.7717/peerj.19262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
Background The bioavailability of biopeptide compounds is a development challenge, mainly because of their resistance to the digestion system. This study aimed to determine the bioavailability of HMG CoA reductase biopeptide inhibitors from germinated and ungerminated Kara Kratok (Phaseolus lunatus L.). Methods Germinated and ungerminated brown P. lunatus were simulated for digestion enzyme in vitro (120 minutes for pepsin and pancreatin), followed by an in situ method for absorption. Perfusate samples were measured for the absorption percentage, inhibition of HMG CoA reductase, molecular weight (MW), peptide concentration, and hydrolysis degree (%DH). Results The results showed that germinated brown P. lunatus exhibited the highest absorption (32.42%), and the percentage of HMG CoA reductase inhibition during enzymatic digestion was at 210 minutes (87.51%), with MW < 10 kDa, peptide concentration of 2.39 mg/mL, and %DH of 48.90%. These findings suggest that germinated brown P. lunatus is a potent HMG CoA reductase inhibitor with significantly higher bioavailability than that of its ungerminated counterpart. This finding underscores its superiority in this context and open new possibilities for biopeptide research.
Collapse
Affiliation(s)
- Cahyo Budiyanto
- Faculty of Agricultural Technology, Universitas Gadjah Mada, Department of Food and Agricultural Product Technology, Yogyakarta, Yogyakarta, Indonesia
| | - Andriati Ningrum
- Faculty of Agricultural Technology, Universitas Gadjah Mada, Department of Food and Agricultural Product Technology, Yogyakarta, Yogyakarta, Indonesia
| | - Agnes Murdiati
- Faculty of Agricultural Technology, Universitas Gadjah Mada, Department of Food and Agricultural Product Technology, Yogyakarta, Yogyakarta, Indonesia
| | - Retno Indrati
- Faculty of Agricultural Technology, Universitas Gadjah Mada, Department of Food and Agricultural Product Technology, Yogyakarta, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Kozu H, Kobayashi I, Ichikawa S. A Review on In Vitro Evaluation of Chemical and Physical Digestion for Controlling Gastric Digestion of Food. Foods 2025; 14:1435. [PMID: 40282836 PMCID: PMC12027026 DOI: 10.3390/foods14081435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Food digestion in the gastrointestinal is a series of processes consisting of chemical and physical digestion. Recently, developing foods with controlled digestion in the stomach may attract more attention. Hydrogel foods are useful tools for designing foods with controlled digestion because it is relatively easy to design their food characteristics by adjusting the type and content of the additives. This review introduces the latest status of in vitro gastric digestion as a food characterization system. The in vitro evaluation of chemical gastric digestion by gastric acid and digestive enzymes focuses on INFOGEST-standardized gastrointestinal digestion protocols for healthy adults, infants, and older adults. For the in vitro evaluation of physical gastric digestion by peristalsis, the current development of gastrointestinal tract devices that precisely or efficiently simulate the shape of the stomach and gastric peristalsis is described. In addition, we introduce studies that have utilized these devices to investigate the gastric digestion behavior of hydrocolloid foods with different mechanical characteristics.
Collapse
Affiliation(s)
- Hiroyuki Kozu
- Institute of Food Research, NARO, 2-1-12 Kannondai, Tsukuba 305–8642, Ibaraki, Japan;
| | - Isao Kobayashi
- Institute of Food Research, NARO, 2-1-12 Kannondai, Tsukuba 305–8642, Ibaraki, Japan;
| | - Sosaku Ichikawa
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305–8572, Ibaraki, Japan
| |
Collapse
|
6
|
Cai H, Yuan R, Huang S, Huang Y, Lin C, Lin Y, Luo F, Lin Z, Wang L. Sensitive trypsin sensor based on the regulation of microscale ionic current rectification by the selectivity hydrolysis of hydrogel filled in microchannel. Talanta 2025; 285:127422. [PMID: 39709827 DOI: 10.1016/j.talanta.2024.127422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Filling the microchannel with negatively charged hydrogel can exhibit microsacle ion current rectification (ICR) behavior, which is attributed to the space negative charge and structural asymmetry of hydrogel. In this study, this character had been applied to develop a trypsin sensor for the first time. A hydrogel synthesized with bovine serum albumin (BSA) and glyoxal (BSAG hydrogel) was filled at the tip of microchannel firstly. Subsequently, the BSAG hydrogel-filled microchannel was immersed in a trypsin solution to hydrolyze the BSA within the BSAG hydrogel. This process changes the space charge density and pore size of the BSAG hydrogel-filled microchannel, leading to a change in microscale ICR, which can be used for quantifying trypsin. Then the key parameters affecting the sensing performance such as the concentration of BSA, strength of the electrolyte, pH and reaction time were optimized. The detection range was from 10.0 ng/mL to 100 μg/mL with a detection limit as low as 2.55 ng/mL (S/N = 3). Due to the distinctive three-dimensional pore structure of the hydrogel and the specificity of trypsin for BSA hydrolysis, the sensor exhibits high sensitivity and specificity, as well as remarkable reproducibility and stability. This sensor has been effectively used to measure trypsin levels in human serum samples.
Collapse
Affiliation(s)
- Huabin Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Runhao Yuan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shaokun Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yanling Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Yue Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Xiamen Hospital, Fudan University, Xiamen, 361015, China.
| |
Collapse
|
7
|
Azhagesan A, Chandrasekaran N. Exposure of Polystyrene Micro- and Nanoplastics to Simulated Human Digestive Enzymatic Systems: Structural and Functional Implications. ACS OMEGA 2025; 10:10866-10877. [PMID: 40160751 PMCID: PMC11948151 DOI: 10.1021/acsomega.4c07974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 04/02/2025]
Abstract
The current in vitro study explores the exposure of the emerging pollutants polystyrene micro- and nanoplastics (PS-MNPs) within the digestive system and their interaction with key digestive enzymes such as α-amylase, pepsin, and pancreatin. The present research aims to elucidate the potential health implications of digestive enzymes by PS-MNPs based on the previously estimated mean of ingested microplastics (MPs) (0.714 g/day). The study deepens our understanding of the environmental pollutants' impact on human health by examining the interactions between polystyrene (PS) microplastics (PS MPs, 37-50 μm approx.) and PS nanoplastics (PS NPs, 100 nm) with digestive enzymes. The study analyzes the effects of micro- and nanosized plastics on enzyme activity using multiple spectroscopic techniques, revealing the molecular mechanisms of enzyme inhibition and structural changes caused by PS NPs, more than those by PS MPs. The fluorescence emission spectra indicated a static quenching mechanism across all the digestive enzymes at K q = 3.638, 4.615, and 1.855 (∼× 1018 M-1·s-1), predominantly affecting tyrosine (Tyr) and tryptophan (Trp) residues. Resonance light scattering (RLS) spectra confirmed the formation of enzyme-PS NPs complexes, leading to aggregation. Fourier transform infrared (FT-IR) and circular dichroism (CD) spectrometry results showed a decrease in protein content and structural alterations in the enzymes, potentially affecting their function. The half inhibitory concentration (IC50) values of PS NPs for salivary α-amylase (180 μg/mL), pepsin (580 μg/mL), and pancreatic protease (314 μg/mL) indicate uncompetitive inhibition, and that of pancreatic α-amylase (592 μg/mL) indicates mixed reversible inhibition of digestive enzymes. The study highlights the potential health risks associated with PS NPs exposure and gives a broader understanding of the interplay between environmental plastic pollutants and human health.
Collapse
Affiliation(s)
- Ananthaselvam Azhagesan
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| |
Collapse
|
8
|
Leng J, Jiang Y, Zhou T, Zhang S, Zhu C, Wang B, Li L, Zhao W. Unveiling the slow digestion and peptide profiles of polymerised whey gel via heat and TGase crosslinking: An in vitro/vivo perspective. Food Chem 2025; 464:141829. [PMID: 39488046 DOI: 10.1016/j.foodchem.2024.141829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Polymerised whey is widely used in dairy products and can affect digestibility when its high-molecular-weight aggregates and gel structure are modified. This study investigated the digestibility, peptide profiles and satiety of modified whey protein isolate (MWPI) pre-heated with transglutaminase. Results showed that 43.06 % of MWPI was digested during the 4-h in vitro digestion, indicating a slow digestion rate. Compared with whey protein isolate (WPI), MWPI yielded 103 peptides with higher abundance following in vitro digestion, including 17 angiotensin-converting enzyme inhibitors and 1 dipeptidyl peptidase-4 inhibitor. Visual analytics indicated differential peptides located at distinct α-helix and β-sheet of β-lactoglobulin, α-lactalbumin and bovine serum albumin. MWPI gavage extended stomach retention time, decreased intestinal propulsion rate from 75.60 % (WPI group) to 33.72 % in 30 min and enhanced satiety within 120 min compared with WPI. Overall, whey polymerisation modulates protein-enzyme interactions, releasing different peptides and enhancing satiety.
Collapse
Affiliation(s)
- Juncai Leng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yiming Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Tingyi Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Shiqi Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Chenlu Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Beibei Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Li Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Wei Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
9
|
Liu J, Wang Y, Wang B, Zhang W, Ren X, Zhang Y, Jiang L, Dong C, Zhao G. Optimization of Black Garlic Protein Extraction Process and Exploration of Its Properties and Functions with Enzymatic Hydrolysis Products. Molecules 2024; 30:125. [PMID: 39795181 PMCID: PMC11721984 DOI: 10.3390/molecules30010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
This study optimized the process of extracting protein from black garlic using an alkaline dissolution and acid precipitation method through response surface methodology. The optimal extraction conditions were determined as a solid-to-liquid ratio of 1:50, an extraction time of 100 min, an extraction temperature of 30 °C, and an alkaline extraction pH of 9.0. Under these optimized conditions, the actual black garlic protein (BGP) extraction yield was 12.10% ± 0.21%, and the isoelectric point of the obtained BGP was 3.1. Subsequently, this study extracted black garlic protein under optimal conditions and subjected it to enzymatic hydrolysis using different enzymes (trypsin, pepsin, and their mixed enzymes). The functional characteristics, antioxidant activity, and hypoglycemic activity of black garlic protein before and after enzymatic hydrolysis were compared. Among the hydrolysates, the pepsin hydrolysate (BGPH-P) had the smallest particle size (188.57 ± 1.93 nm) and the highest Zeta potential (-29.93 ± 0.42 mV). Scanning electron microscopy showed that BGPH-P had the smallest and most dispersed particles. Fourier-transform infrared (FTIR) spectroscopy revealed that the dual enzymatic hydrolysis hydrolysate (BGPH-PT) exhibited the most stable structure. Compared to BGP, the hydrolysates demonstrated significantly improved solubility, water-holding capacity, and foaming ability (p < 0.05), while their emulsifying activity, emulsion stability, DPPH radical scavenging capacity, and hypoglycemic activity decreased. In summary, the BGP extracted using the optimized process demonstrated good antioxidant and hypoglycemic activities, while its enzymatic hydrolysate BGPH-P exhibited excellent solubility, water-holding capacity, and emulsifying properties, providing valuable insights for the further development of black garlic protein and its hydrolysates.
Collapse
Affiliation(s)
- Jian Liu
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (J.L.); (Y.W.); (B.W.); (X.R.); (Y.Z.); (L.J.)
- Institute of Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Yuanyuan Wang
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (J.L.); (Y.W.); (B.W.); (X.R.); (Y.Z.); (L.J.)
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bo Wang
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (J.L.); (Y.W.); (B.W.); (X.R.); (Y.Z.); (L.J.)
| | - Wei Zhang
- Inspection and Testing Center of Linshu County, Linyi 276700, China;
| | - Xiaoyu Ren
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (J.L.); (Y.W.); (B.W.); (X.R.); (Y.Z.); (L.J.)
| | - Youchuang Zhang
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (J.L.); (Y.W.); (B.W.); (X.R.); (Y.Z.); (L.J.)
| | - Lijun Jiang
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (J.L.); (Y.W.); (B.W.); (X.R.); (Y.Z.); (L.J.)
| | - Chunming Dong
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guihong Zhao
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China; (J.L.); (Y.W.); (B.W.); (X.R.); (Y.Z.); (L.J.)
| |
Collapse
|
10
|
Li X, Tao Q, Hu Q, Ma N, Ma G. In vitro gastrointestinal digestion and fecal fermentation of Pleurotus eryngii proteins extracted using different methods: insights for the utilization of edible mushroom-based proteins as novel nutritional and functional components. Food Funct 2024; 15:8865-8877. [PMID: 39120615 DOI: 10.1039/d4fo02604g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Pleurotus eryngii (P. eryngii) protein is considered a high-quality protein because it is rich in essential amino acids and displays multiple significant functional characterizations that vary with its fabrication processes. We aimed to investigate the differences in P. eryngii protein extracted via alkaline extraction and acid precipitation (AA), cellulase complex alkaline extraction and acid precipitation (CAA), ultrasound-assisted alkaline extraction and acid precipitation (UAA), and salt dissolution (S) in terms of gastrointestinal digestion and fecal fermentation consequences. Protein hydrolysis and structural analysis were performed after in vitro gastrointestinal digestion, and it was found that AA showed the highest hydrolysis degree, whereas CAA showed the lowest. The results of fluorescence chromatography and infrared chromatography indicated that the reasons for the digestion difference might be the unfolding degrees of the protein tertiary structure and polysaccharide content, which is the major component of crude proteins and can prevent protein hydrolysis. Metagenomic analysis suggested that compared with other groups, AA had excellent biological functions, including regulating obesity and insulin-related microbiota. This study could provide a new theoretical basis for the P. eryngii protein as a novel type of nutritional and functional component and contributes to the development of a diversified emerging food protein supply system.
Collapse
Affiliation(s)
- Xinyi Li
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| | - Qi Tao
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| | - Qiuhui Hu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| | - Ning Ma
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| | - Gaoxing Ma
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| |
Collapse
|
11
|
Yan S, Wu K, Han C, Guo J, Wang J, Yang X. Aggregation structure induced by heat treatments mediated the gastric digestion behavior of soybean protein. Food Funct 2024; 15:6731-6742. [PMID: 38836315 DOI: 10.1039/d4fo01327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The common belief that heat treatment enhances the gastric digestion of proteins is largely based on findings from animal proteins and may not apply to all proteins, particularly plant proteins. Here, we compared the digestion characteristics of soybean protein isolates (SPI) in an in vitro semi-dynamic digestion model and found distinct effects of heat treatment on the digestion properties of plant proteins. The results revealed that heat-treated SPIs formed clots during the early stages of digestion, although the clots gradually became smaller and looser as digestion progressed, the systems remained turbid at the end of gastric digestion, indicating the lag in their emptying. Furthermore, heat treatment altered the rheological properties of SPI, resulting in increased viscosity and slower gastric emptying. These effects became more pronounced with increasing heat treatment temperatures. The fluorescence spectrum analysis indicated that heat treatment altered its conformation. This led to protein unfolding and exposure of hydrophobic groups, facilitating the formation of larger aggregates during digestion. Additionally, heat treatment exposed more cleavage sites for gastric proteases, increasing the extent of hydrolysis. Elevated levels of free amino acids and a smaller molecular weight distribution further corroborated these findings. These findings contribute to a deeper understanding of the gastric digestion characteristics of plant proteins and the relationship between protein aggregation structure and the digestion process.
Collapse
Affiliation(s)
- Shanyueru Yan
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| | - Kaiyun Wu
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| | - Chuanwu Han
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| | - Jian Guo
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| | - Jinmei Wang
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| | - Xiaoquan Yang
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
12
|
Lin Z, Zhan L, Qin K, Li Y, Qin Y, Yang L, Sun Q, Ji N, Xie F. Design and Characterization of a Novel Core-Shell Nano Delivery System Based on Zein and Carboxymethylated Short-Chain Amylose for Encapsulation of Curcumin. Foods 2024; 13:1837. [PMID: 38928779 PMCID: PMC11202432 DOI: 10.3390/foods13121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin is a naturally occurring hydrophobic polyphenolic compound with a rapid metabolism, poor absorption, and low stability, which severely limits its bioavailability. Here, we employed a starch-protein-based nanoparticle approach to improve the curcumin bioavailability. This study focused on synthesizing nanoparticles with a zein "core" and a carboxymethylated short-chain amylose (CSA) "shell" through anti-solvent precipitation for delivering curcumin. The zein@CSA core-shell nanoparticles were extensively characterized for physicochemical properties, structural integrity, ionic stability, in vitro digestibility, and antioxidant activity. Fourier-transform infrared (FTIR) spectroscopy indicates nanoparticle formation through hydrogen-bonding, hydrophobic, and electrostatic interactions between zein and CSA. Zein@CSA core-shell nanoparticles exhibited enhanced stability in NaCl solution. At a zein-to-CSA ratio of 1:1.25, only 15.7% curcumin was released after 90 min of gastric digestion, and 66% was released in the intestine after 240 min, demonstrating a notable sustained release effect. Furthermore, these nanoparticles increased the scavenging capacity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical compared to those composed solely of zein and were essentially nontoxic to Caco-2 cells. This research offers valuable insights into curcumin encapsulation and delivery using zein@CSA core-shell nanoparticles.
Collapse
Affiliation(s)
- Zhiwei Lin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Linjie Zhan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Kaili Qin
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China;
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Lu Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK;
| |
Collapse
|
13
|
Torp Nielsen M, Roman L, Corredig M. In vitro gastric digestion of polysaccharides in mixed dispersions: Evaluating the contribution of human salivary α-amylase on starch molecular breakdown. Curr Res Food Sci 2024; 8:100759. [PMID: 38764978 PMCID: PMC11101712 DOI: 10.1016/j.crfs.2024.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
The aim of this work was to investigate the impact of the addition of salivary α-amylase on starch hydrolysis in protein-containing dispersions during an in vitro digestion process. In vitro digestion provides useful insights on the fate of nutrients during gastro-intestinal transit in complex food matrices, an important aspect to consider when developing highly nutritious foods. Many foods contain polysaccharides, and as their disruption in the gastric stage is limited, salivary α-amylase is often neglected in in vitro studies. A reference study on the effect of salivary α-amylase using one of the most advanced and complex in vitro digestion models (INFOGEST) is, however, not available. Hence, this work reports the gastrointestinal breakdown of three mixed dispersions containing whey protein isolate with different polysaccharides: potato starch, pectin from citrus peel and maize starch. The latter was also studied after heating. No polysaccharide or salivary α-amylase-dependent effect on protein digestion was found, based on the free NH2 and SDS-PAGE. However, in the heat-treated samples, the addition of salivary α-amylase showed a significantly higher starch hydrolysis compared to the sample without α-amylase, due to the gelatinization of the starch granules, which improved the accessibility of the starch molecules to the enzyme. This work demonstrated that the presence of different types of polysaccharides does not affect protein digestion, but also it emphasizes the importance of considering the influence of processing on food structure and its digestibility, even in the simplest model systems.
Collapse
Affiliation(s)
- M. Torp Nielsen
- Aarhus University, Department of Food Science, CiFOOD Center for Innovative Foods, Agro Food Park 48, 8200, Aarhus N, Denmark
| | | | - M. Corredig
- Aarhus University, Department of Food Science, CiFOOD Center for Innovative Foods, Agro Food Park 48, 8200, Aarhus N, Denmark
| |
Collapse
|
14
|
Yu H, Zheng Y, Zhou C, Liu L, Wang L, Cao J, Sun Y, He J, Pan D, Cai Z, Xia Q. Tunability of Pickering particle features of whey protein isolate via remodeling partial unfolding during ultrasonication-assisted complexation with chitosan/chitooligosaccharide. Carbohydr Polym 2024; 325:121583. [PMID: 38008470 DOI: 10.1016/j.carbpol.2023.121583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
The potential of ultrasonication-driven molecular self-assembly of whey protein isolate (WPI) with chitosan (CS)/chitooligosaccharide (COS) to stabilize Pickering emulsions was examined, based on CS/COS ligands-induced partial unfolding in remodeling the Pickering particles features. Multi-spectral analysis suggested obvious changes in conformational structures of WPI due to interaction with CS/COS, with significantly higher unfolding degrees of WPI induced by COS. Non-covalent interactions were identified as the major forces for WPI-CS/COS conjugates. Ultrasonication enhanced electrostatic interaction between CS's -NH3 groups and WPI's -COO- groups which improved emulsification activity and storability of WPI-COS stabilized Pickering emulsion. This was attributed to increased surface hydrophobicity and decreased particle size compared to WPI-CS associated with differential unfolding degrees induced by different saccharide ligands. CLSM and SEM consistently observed smaller emulsion droplets in WPI-COS complexes than WPI-CS/COS particles tightly adsorbed at the oil-water interface. The electrostatic self-assembly of WPI with CS/COS greatly enhanced the encapsulation efficiency of quercetin than those stabilized by WPI alone and ultrasound further improved encapsulation efficiency. This corresponded well with the quantitative affinity parameters between quercetin and WPI-CS/COS complexes. This investigation revealed the great potential of glycan ligands-induced conformational transitions of extrinsic physical disruption in tuning Pickering particle features.
Collapse
Affiliation(s)
- Hongmei Yu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Lianliang Liu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yangyin Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jun He
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Zhendong Cai
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
15
|
Gammoh S, Alu’datt MH, Alhamad MN, Tranchant CC, Rababah T, Al-U’datt D, Hussein N, Alrosan M, Tan TC, Kubow S, Alzoubi H, Almajwal A. Functional and Bioactive Properties of Wheat Protein Fractions: Impact of Digestive Enzymes on Antioxidant, α-Amylase, and Angiotensin-Converting Enzyme Inhibition Potential. Molecules 2023; 28:6012. [PMID: 37630264 PMCID: PMC10459969 DOI: 10.3390/molecules28166012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
This research aimed to determine the biofunctional properties of wheat flour (WF) protein fractions and modifications to the antioxidant, anti-α-amylase and anti-angiotensin-I converting enzyme (ACE) activities induced by the action of digestive endopeptidases in vitro. A molecular characterization of the most abundant protein fractions, i.e., albumins, glutelins-1, glutelins-2 and prolamins, showed that low- and high-MW polypeptides rich in cysteine, glutamic acid and leucine were present in albumins and glutelins, whereas low-MW subunits with a high proportion of polar amino acids prevailed in prolamins. Prolamins exhibited the second-highest water holding capacity (54%) after WF (84%), while albumins provided superior foam stability (76%). Prolamins, glutenins-1 and globulins demonstrated the highest antioxidant activity (up to 95%, 68% and 59%, respectively) both before and after hydrolysis with pepsin (P-H) or trypsin-chymotrypsin (TC-H). Prolamins, globulins and WF strongly inhibited α-amylase (>90%) before and after TC-H, and before P-H (55-71%). Moreover, P-H significantly increased α-amylase inhibition by albumins from 53 to 74%. The fractions with strong ACE inhibitory activity (70-89%) included prolamins and globulins after TC-H or P-H, as well as globulins before TC-H and WF before P-H. This novel evidence indicates that WF protein fractions and their peptide-enriched P and TC hydrolysates are excellent sources of multifunctional bioactives with antioxidant, antihyperglycemic and antihypertensive potential.
Collapse
Affiliation(s)
- Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Muhammad H. Alu’datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Mohammad N. Alhamad
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Carole C. Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Doa’a Al-U’datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Neveen Hussein
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Mohammad Alrosan
- Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan;
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, QC H9X 3V9, Canada;
| | - Haya Alzoubi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| |
Collapse
|
16
|
Xiao XC, Lin D, Cao KY, Sun LC, Chen YL, Weng L, Zhang LJ, Cao MJ. Properties of Pacific white shrimp (Litopenaeus vannamei) collagen and its degradation by endogenous proteinases during cold storage. Food Chem 2023; 419:136071. [PMID: 37027974 DOI: 10.1016/j.foodchem.2023.136071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Many factors are responsible for the diminished quality of shrimp during cold storage, while the role of collagen has rarely been studied. This study therefore investigated the relationship between collagen degradation and changes of textural properties of Pacific white shrimp, and its hydrolysis by endogenous proteinases. The textural properties of shrimp decreased gradually along with disruption of shrimp muscle tissues, and the chewiness property of shrimp muscle showed a linear relationship with collagen contents in muscle during 6-day-storage at 4 °C. Pepsin-solubilized collagen in shrimp muscle consisted of one α1 chain and two α2 chains, revealing a typical tripeptide sequence (i.e., Gly-X-Y) in their molecules. In addition, collagen could be hydrolyzed by crude endogenous proteinases extracted from shrimp hepatopancreas, and serine proteinase plays a critical role in the process. These findings strongly suggested that the quality reduction of shrimp during cold storage is closely associated with collagen degradation.
Collapse
|
17
|
Wang M, Yu B, He J, Yu J, Luo Y, Luo J, Mao X, Chen D. Effects of dietary supplementation with saccharicterpenin alleviates diarrhea of piglets. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
18
|
Ahmad MS, Akbar Z, Choudhary MI. Insight into the structural basis of the dual inhibitory mode of Lima bean (Phaseolus lunatus) serine protease inhibitor. Proteins 2023; 91:22-31. [PMID: 35927030 DOI: 10.1002/prot.26407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Bovine pancreatic trypsin was crystallized, in-complex with Lima bean trypsin inhibitor (LBTI) (Phaseolus lunatus L.), in the form of a ternary complex. LBTI is a Bowman-Birk-type bifunctional serine protease inhibitor, which has two independent inhibitory loops. Both of the loops can inhibit trypsin, however, only the hydrophobic loop is specific for inhibiting chymotrypsin. The structure of trypsin incomplex with the LBTI has been solved and refined at 2.25 Å resolution, in the space group P41, with Rwork /Rfree values of 18.1/23.3. The two binding sites of LBTI differ in only two amino acids. Lysine and leucine are the key residues of the two different binding loops positioned at the P1, and involved in binding the S1 binding site of trypsin. The asymmetric unit cell contains two molecules of trypsin and one molecule of LBTI. The key interactions include hydrogen bonds between LBTI and active site residues of trypsin. The 3D structure of the enzyme-inhibitor complex provided details insight into the trypsin inhibition by LBTI. To the best of our knowledge, this is the first report on the structure of trypsin incomplex with LBTI.
Collapse
Affiliation(s)
- Malik Shoaib Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zeeshan Akbar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Mehwish N, Chen Y, Zaeem M, Wang Y, Lee BH, Deng H. Novel biohybrid spongy scaffolds for fabrication of suturable intraoral graft substitutes. Int J Biol Macromol 2022; 214:617-631. [PMID: 35753514 DOI: 10.1016/j.ijbiomac.2022.06.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Despite the fact that classic autograft is the gold standard material for periodontal plastic surgery, it has some drawbacks, including the need for a second surgical site and the scarcity of palatal donor tissue. However, only a few research works on the manufacturing of bioengineered intraoral connective tissue grafts have been conducted. In this work, porous bovine serum albumin methacryloyl/gelatin methacryloyl (BG) biohybrid scaffolds were developed for super-elasticity, shape recovery, suturability for persistent stability, sufficient scaffolding function, and convenient manipulating characteristics to fabricate an intraoral graft substitute with superb stability to resist frequent dynamic forces caused by functional movement (speaking, masticating, and swallowing). Furthermore, in a 3D cell culture assay, BG scaffolds demonstrated excellent cell adhesion and proliferation of L929 cells. In addition, the BG scaffolds were able to release Ibuprofen in a controlled manner for postoperative recovery. The use of a low-cost, optimized cryogelation technique for functional biomacromolecules offers up new possibilities to develop promising scaffolds for dental clinical settings.
Collapse
Affiliation(s)
- Nabila Mehwish
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China
| | - Yuan Chen
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China; Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Muhammad Zaeem
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Department of Orthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Bae Hoon Lee
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
20
|
Jiménez-Munoz L, Tsochatzis ED, Corredig M. Impact of the Structural Modifications of Potato Protein in the Digestibility Process under Semi-Dynamic Simulated Human Gastrointestinal In Vitro System. Nutrients 2022; 14:nu14122505. [PMID: 35745236 PMCID: PMC9230451 DOI: 10.3390/nu14122505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The raising consumer demand for plant-derived proteins has led to an increased production of alternative protein ingredients with varying processing histories. In this study, we used a commercially available potato protein ingredient with a nutritionally valuable amino acid profile and high technological functionality to evaluate if the digestibility of a suspension with the same composition is affected by differences in the structure. Four isocaloric (4% protein, w/w) matrices (suspension, gel, foam and heat-set foam) were prepared and their gastrointestinal fate was followed utilizing a semi-dynamic in vitro digestion model. The microstructure was observed by confocal laser scanning microscopy, protein breakdown was tested by electrophoresis and free amino acids after intestinal digestion was estimated using liquid chromatography/triple-quadruple-mass spectrometry (LC-TQMS). The heat-treated samples showed a higher degree of hydrolysis and lower trypsin inhibitory activity than the non-heat-treated samples. An in vitro digestible indispensable amino acid score was calculated based on experimental data, showing a value of 0.9 based on sulfur amino acids/valine as the limiting amino acids. The heated samples also showed a slower gastric emptying rate. The study highlights the effect of the food matrix on the distribution of the peptides created during various stages of gastric emptying.
Collapse
Affiliation(s)
- Luis Jiménez-Munoz
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
- Correspondence: author:
| | - Emmanouil D. Tsochatzis
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
- European Food Safety Authority-EFSA, Via Carlo Magno 1A, 43146 Parma, Italy
| | - Milena Corredig
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
| |
Collapse
|
21
|
Assessing Hydrolyzed Gluten Content in Dietary Enzyme Supplements Following Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Partially digested gluten fragments from grains including wheat, rye, spelt and barley are responsible for triggering an inflammatory response in the intestinal tract of Celiac Disease (CD) and Non-Celiac Gluten Sensitive (NCGS) individuals. Fermentation is an effective method to metabolize gluten, with enzymes from bacterial or fungal species being released to help in this process. However, the levels of gluten in commercially available enzymes, including those involved in gluten fermentation, are unknown. In this study we investigated gluten levels in commercially available dietary enzymes combined with assessing their effect on inflammatory response in human cell culture assays. Using antibodies that recognize different gluten epitopes (G12, R5, 2D4, MloBS and Skerritt), we employed ELISA and immunoblotting methodologies to determine gluten content in crude gluten, crude gliadin, pepsin-trypsin digested gluten and a selection of commercially available enzymes. We further investigated the effect of these compounds on inflammatory response in immortalized immune and intestinal human cell lines, as well as in peripheral blood mononuclear cells (PBMCs) from coeliac individuals. All tested supplemental enzyme products reported a gluten concentration that was equivalent to or below 20 parts per million (ppm) as compared with an intact wheat reference standard and a pepsin-trypsin digested standard. Similarly, the inflammatory response to IL-8 and TNF-α inflammatory cytokines in mammalian cell lines and PBMCs from coeliac individuals to the commercial enzymes was not significantly different to 20 ppm of crude gluten, crude gliadin or pepsin-trypsin digested gluten. This combined approach provides insight into the extent of gluten breakdown in the fermentation process and the safety of these products to gluten-sensitive individuals.
Collapse
|
22
|
Rivera Del Rio A, Möller AC, Boom RM, Janssen AEM. In vitro gastro-small intestinal digestion of conventional and mildly processed pea protein ingredients. Food Chem 2022; 387:132894. [PMID: 35397266 DOI: 10.1016/j.foodchem.2022.132894] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/21/2022] [Accepted: 04/02/2022] [Indexed: 11/04/2022]
Abstract
We report on the effect of processing, particularly heating, on the digestion dynamics of pea proteins using the standardised semi-dynamic in vitro digestion method. Fractions with native proteins were obtained by mild aqueous fractionation of pea flour. A commercial pea protein isolate was chosen as a benchmark. Heating dispersions of pea flour and mild protein fractions reduced the trypsin inhibitory activity to levels similar to that of the protein isolate. Protein-rich and non-soluble protein fractions were up to 18% better hydrolysed after being thermally denatured, particularly for proteins emptied later in the gastric phase. The degree of hydrolysis throughout the digestion was similar for these heated fractions and the conventional isolate. Further heating of the protein isolate reduced its digestibility as much as 9%. Protein solubility enhances the digestibility of native proteins, while heating aggregates the proteins, which ultimately reduces the achieved extent of hydrolysis from gastro-small intestinal enzymes.
Collapse
Affiliation(s)
- Andrea Rivera Del Rio
- Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands.
| | - Anna C Möller
- Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands.
| | - Remko M Boom
- Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands.
| | - Anja E M Janssen
- Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands.
| |
Collapse
|
23
|
Rivera del Rio A, van der Wielen N, Gerrits WJ, Boom RM, Janssen AE. In silico modelling of protein digestion: A case study on solid/liquid and blended meals. Food Res Int 2022; 157:111271. [DOI: 10.1016/j.foodres.2022.111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
|