1
|
Fortunatus RM, Balog S, Sousa F, Vanhecke D, Rothen-Rutishauser B, Taladriz-Blanco P, Petri-Fink A. Taylor dispersion analysis and release studies of β-carotene-loaded PLGA nanoparticles and liposomes in simulated gastrointestinal fluids. RSC Adv 2025; 15:1095-1104. [PMID: 39807192 PMCID: PMC11727072 DOI: 10.1039/d4ra08138b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility. This study compares two formulations, i.e. βC-loaded poly(lactic-co-glycolic acid) (PLGA) NPs and liposomes before and after exposure to simulated gastrointestinal fluids using various methods such as Taylor dispersion analysis (TDA), cryo-transmission electron microscopy, dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA). TDA, a microfluidic technique, proved more effective than DLS and NTA in determining nanoparticle size in simulated gastrointestinal fluids. This highlights TDA's potential for assessing nanoparticle colloidal stability in simulated gastro-intestinal fluids, crucial for evaluating encapsulated bioactives' bioavailability. High-performance liquid chromatography (HPLC) revealed that PLGA nanoparticles incorporate and preserve βC more effectively during long-term storage compared to liposomes. Adding ascorbic acid significantly reduced degradation in simulated gastrointestinal fluids. Release studies showed that liposomes released 52% of βC after 36 hours, while PLGA nanoparticles released only 9% over 168 hours. These results provide valuable insights for selecting an appropriate βC nanocarrier for oral delivery based on desired release rates.
Collapse
Affiliation(s)
- Roman M Fortunatus
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
| | - Flávia Sousa
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen 9713 AV Groningen The Netherlands
| | - Dimitri Vanhecke
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
| | | | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
- Department of Chemistry, University of Fribourg 1700 Fribourg Switzerland
| |
Collapse
|
2
|
Bischoff NS, Undas AK, van Bemmel G, Briedé JJ, van Breda SG, Verhoeven J, Verbruggen S, Venema K, Sijm DTHM, de Kok TM. Investigating the ROS Formation and Particle Behavior of Food-Grade Titanium Dioxide (E171) in the TIM-1 Dynamic Gastrointestinal Digestion Model. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:8. [PMID: 39791769 PMCID: PMC11721885 DOI: 10.3390/nano15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Food-grade titanium dioxide (E171) is widely used in food, feed, and pharmaceuticals for its opacifying and coloring properties. This study investigates the formation of reactive oxygen species (ROS) and the aggregation behavior of E171 using the TNO Gastrointestinal (GI) model, which simulates the stomach and small intestine. E171 was characterized using multiple techniques, including electron spin resonance spectroscopy, single-particle inductively coupled plasma-mass spectrometry, transmission electron microscopy, and dynamic light scattering. In an aqueous dispersion (E171-aq), E171 displayed a median particle size of 79 nm, with 73-75% of particles in the nano-size range (<100 nm), and significantly increased ROS production at concentrations of 0.22 and 20 mg/mL. In contrast, when E171 was mixed with yogurt (E171-yog), the particle size increased to 330 nm, with only 20% of nanoparticles, and ROS production was inhibited entirely. After GI digestion, the size of dE171-aq increased to 330 nm, while dE171-yog decreased to 290 nm, with both conditions showing a strongly reduced nanoparticle fraction. ROS formation was inhibited post-digestion in this cell-free environment, likely due to increased particle aggregation and protein corona formation. These findings highlight the innate potential of E171 to induce ROS and the need to consider GI digestion and food matrices in the hazard identification/characterization and risk assessment of E171.
Collapse
Affiliation(s)
- Nicolaj S. Bischoff
- Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (J.J.B.); (S.G.v.B.); (T.M.d.K.)
| | - Anna K. Undas
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, 6708 WB Wageningen, The Netherlands; (A.K.U.); (G.v.B.)
| | - Greet van Bemmel
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, 6708 WB Wageningen, The Netherlands; (A.K.U.); (G.v.B.)
| | - Jacco J. Briedé
- Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (J.J.B.); (S.G.v.B.); (T.M.d.K.)
| | - Simone G. van Breda
- Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (J.J.B.); (S.G.v.B.); (T.M.d.K.)
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Villafloraweg 1, 5928 SZ Venlo, The Netherlands (S.V.); (K.V.)
| | - Sanne Verbruggen
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Villafloraweg 1, 5928 SZ Venlo, The Netherlands (S.V.); (K.V.)
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Villafloraweg 1, 5928 SZ Venlo, The Netherlands (S.V.); (K.V.)
| | - Dick T. H. M. Sijm
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands
| | - Theo M. de Kok
- Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (J.J.B.); (S.G.v.B.); (T.M.d.K.)
| |
Collapse
|
3
|
Aswathy KV, Beulah KC, Nalina M, Sunil Ambedkar D, Leela Sairam A, Priyadarshini P, Panneerselvam A, Rao PJ. Hydroxypropyl methylcellulose stabilized clove oil nanoemulsified orodispersible films: Study of physicochemical properties, release profile, mucosal permeation, and anti-bacterial activity. Int J Biol Macromol 2024; 283:137577. [PMID: 39542288 DOI: 10.1016/j.ijbiomac.2024.137577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Hydroxypropyl methylcellulose (HPMC)-based nanoemulsions for quick dissolving orodispersible (OD) films were prepared to encapsulate clove oil (CO) to harness its anti-bacterial properties. The influence of additives maltodextrin, pectin, and glycerol on the OD films was studied. The nanoemulsion particle size varied from 135 nm to 195 nm. A decrease in tensile strength and, an increase in elongation at break and opacity were observed in OD films compared to neat HPMC film. The AFM images showed an increase in HPMC films' average roughness from 6.95 to 90 nm after adding CO and additives. The additives controlled CO in-vitro release from HPMC following the Higuchi model. The ex-vivo permeation through porcine mucosal membrane was 9-33 % while the permeation coefficient and flux were 0.282-0.879 cm s-1 and 0.191-1.318 μg cm-2 s-1, respectively. The OD films exhibited significant inhibition of Staphylococcus aureus, Streptococcus mutans, and Porphyromonas gingivalis suggesting their therapeutic potential in oral healthcare.
Collapse
Affiliation(s)
- K V Aswathy
- Plantation Products, Spices & Flavour Technology Department, India
| | - K C Beulah
- Plantation Products, Spices & Flavour Technology Department, India
| | - M Nalina
- Molecular Nutrition Department, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - D Sunil Ambedkar
- Molecular Nutrition Department, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | | | - Poornima Priyadarshini
- Molecular Nutrition Department, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Arunkumar Panneerselvam
- Food Packaging Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Pooja J Rao
- Plantation Products, Spices & Flavour Technology Department, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
4
|
Becht JM, Kohlleppel H, Schins RPF, Kämpfer AAM. Effect of Butyrate on Food-Grade Titanium Dioxide Toxicity in Different Intestinal In Vitro Models. Chem Res Toxicol 2024; 37:1501-1514. [PMID: 39213652 PMCID: PMC11409378 DOI: 10.1021/acs.chemrestox.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Short-chain fatty acids (SCFA) are an important energy source for colonocytes and crucial messenger molecules both locally in the intestine and systemically. Butyrate, one of the most prominent and best-studied SCFA, was demonstrated to exert anti-inflammatory effects, improve barrier integrity, enhance mucus synthesis in the intestine, and promote cell differentiation of intestinal epithelial cells in vitro. While the physiological relevance is undisputed, it remains unclear if and to what extent butyrate can influence the effects of xenobiotics, such as food-grade titanium dioxide (E171, fgTiO2), in the intestine. TiO2 has been controversially discussed for its DNA-damaging potential and banned as a food additive within the European Union (EU) since 2022. First, we used enterocyte Caco-2 monocultures to test if butyrate affects the cytotoxicity and inflammatory potential of fgTiO2 in a pristine state or following pretreatment under simulated gastric and intestinal pH conditions. We then investigated pretreated fgTiO2 in intestinal triple cultures of Caco-2, HT29-MTX-E12, and THP-1 cells in homeostatic and inflamed-like state for cytotoxicity, barrier integrity, cytokine release as well as gene expression of mucins, oxidative stress markers, and DNA repair. In Caco-2 monocultures, butyrate had an ambivalent role: pretreated but not pristine fgTiO2 induced cytotoxicity in Caco-2 cells, which was not observed in the presence of butyrate. Conversely, fgTiO2 induced the release of interleukin 8 in the presence but not in the absence of butyrate. In the advanced in vitro models, butyrate did not affect the characteristics of the healthy or inflamed states and caused negligible effects in the investigated end points following fgTiO2 exposure. Taken together, the effects of fgTiO2 strongly depend on the applied testing approach. Our findings underline the importance of the experimental setup, including the choice of in vitro model and the physiological relevance of the exposure scenario, for the hazard testing of food-grade pigments like TiO2.
Collapse
Affiliation(s)
- Janine M Becht
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Hendrik Kohlleppel
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Roel P F Schins
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Angela A M Kämpfer
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| |
Collapse
|
5
|
Xiao Z, Zheng M, Deng J, Shi Y, Jia M, Li W. Nano-TiO 2 regulates the MAPK (ERK, P38) pathway to promote apoptosis and inhibit proliferation of human colon cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116973. [PMID: 39213753 DOI: 10.1016/j.ecoenv.2024.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Nano titanium dioxides (TiO2) are widely used in drug development, food additives and packaging materials. Although several studies have demonstrated the poisonousness of TiO2 in vivo and in vitro, the underlying molecular mechanisms have not been fully revealed. METHODS Characterization of TiO2 by FTIR, XRD, TEM and DLS. The NCM460 cell line, representing normal colon epithelial cells, was utilized as a model to assess the impact of TiO2 nanoparticles (TiO2-NPs) on cell proliferation and apoptosis. The potential molecular mechanisms underlying its toxic effects were investigated through transcriptome analysis, RT-qPCR, and western blot experiments. RESULTS The particle size of the TiO2-NPs used is about 25 nm, which has typical characteristics of anatase. TiO2-NPs at a concentration of 30-60 μg/mL will cause changes in colon cell morphology, decreased proliferation ability, and increased number of apoptotic cells. TiO2-NPs at a concentration of 6 μg/mL did not significantly modify the transcriptome expression profile of colon cells; while 30 μg/mL had a significant effect, leading to up-regulation of gene expression. The differentially expressed genes predominantly modulate the MAPK signaling pathway, TNF signaling pathway, cytokine-cytokine receptor interaction, and other related pathways. Further, western blot analysis revealed that higher concentrations of TiO2-NPs (30-60 μg/mL) could up-regulate the expression of P53, P21 and Bax, while down-regulating the expression of Bcl2 by regulating the MAPK (ERK, P38) signaling pathway. Simultaneously, it also promoted the decreased in Fos protein expression and inhibited the phosphorylation of Jun and Fos. CONCLUSION This study demonstrates that TiO2-NPs may exert potential toxic effects on colon cells, and therefore the intake of TiO2-NPs should be strictly regulated in practical applications.
Collapse
Affiliation(s)
- Zhigang Xiao
- Department of General Surgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Mingchuan Zheng
- Department of General Surgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Jing Deng
- Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yi Shi
- Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Mingxi Jia
- Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Wen Li
- Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
6
|
Bérard R, Sassoye C, Terrisse H, Bertoncini P, Humbert B, Cassaignon S, Le Caër S. Effect of Crystalline Phase and Facet Nature on the Adsorption of Phosphate Species onto TiO 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16258-16271. [PMID: 39039729 DOI: 10.1021/acs.langmuir.4c01447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The current use of TiO2 nanoparticles raises questions about their impact on our health. Cells interact with these nanoparticles via the phospholipid membrane and, in particular, the phosphate head. This highlights the significance of understanding the interaction between phosphates and nanoparticles possessing distinct crystalline structures, specifically anatase and rutile. It is crucial to determine whether this adsorption varies based on the exposed facet(s). Consequently, various nanoparticles of anatase and rutile TiO2, characterized by well-defined morphologies, were synthesized. In the case of the anatase samples, bipyramids, needles, and cubes were obtained. For the rutile samples, all exhibited a needle-like shape, featuring {110} facets along the long direction of the needles and facets {111} on the upper and lower parts. Phosphate adsorption experiments carried out at pH 2 revealed that the maximum adsorption was relatively consistent across all samples, averaging around 1.5 phosphate·nm-2 in all cases. Experiments using infrared spectroscopy on dried TiO2 powders showed that phosphates were chemisorbed on the surfaces and that the mode of adsorption depended on the crystalline phase and the nature of the facet: the anatase phase favors bidentate adsorption more than the rutile crystalline phase.
Collapse
Affiliation(s)
- Rémi Bérard
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Capucine Sassoye
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Hélène Terrisse
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, UMR 6502, 2 rue de la Houssinière, 44000 Nantes, France
| | - Patricia Bertoncini
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, UMR 6502, 2 rue de la Houssinière, 44000 Nantes, France
| | - Bernard Humbert
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, UMR 6502, 2 rue de la Houssinière, 44000 Nantes, France
| | - Sophie Cassaignon
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Sophie Le Caër
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France
| |
Collapse
|
7
|
Lei C, Tao M, Xu L, Yue L, Cao X, Cheng B, Wang C, Wang Z. Different functional groups of carbon dots influence the formation of protein crowns and pepsin characteristic in vitro digestion. Food Chem 2024; 440:138224. [PMID: 38134824 DOI: 10.1016/j.foodchem.2023.138224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Application of nanomaterials (NMs) in agriculture poses an ingestion risk to humans and may affect the digestive process. Different fates of NMs with differential charges in the gastrointestinal tract should be considered. In this study, the interaction between three carbon dots (CDs) carried with different functional groups (-NH2, -OH, and -COOH) and pepsin was analyzed through an in vitro digestion model. The results showed that CDs significantly reduced pepsin activity. Among them, CDs-NH2 had the greatest effect, following by CDs-OH, and CDs-COOH. Besides, molecular docking demonstrated the specific binding site of CDs to pepsin, while the most stable binding energy (-8.10 kcal/mol) was formed between CDs-NH2 and pepsin. Further, CDs formed a nanomaterial-protein crown structure with pepsin. The present study enriches the functional group properties of CDs in the digestion and provides new ideas for the potential human health of NMs.
Collapse
Affiliation(s)
- Chunli Lei
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lanqing Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
8
|
Mao X, Hao C. Recent advances in the use of composite titanium dioxide nanomaterials in the food industry. J Food Sci 2024; 89:1310-1323. [PMID: 38343295 DOI: 10.1111/1750-3841.16968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
Titanium dioxide (TiO2 ) nanomaterials have attracted significant attention due to their good biocompatibility and potential for multifunctional applications. In the last few years, there has been growing interest in the use of TiO2 nanomaterials in the food industry. However, a systematic review of the synthesis methods, properties, and applications of TiO2 nanomaterials in the food industry is lacking. In this review, we provide a summary of the synthesis and properties of TiO2 nanomaterials and their composites, with a focus on their applications in the food industry. We also discuss the potential benefits and risks of using TiO2 nanomaterials in food applications. This review aims to promote food innovation and improve food quality and safety.
Collapse
Affiliation(s)
- Xixi Mao
- School of Marxism, Jiangnan University, Wuxi, Jiangsu, China
| | - Changlong Hao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Abd-Elhakim YM, Hashem MMM, Abo-El-Sooud K, Mousa MR, Soliman AM, Mouneir SM, Ismail SH, Hassan BA, El-Nour HHM. Interactive effects of cadmium and titanium dioxide nanoparticles on hepatic tissue in rats: Ameliorative role of coenzyme 10 via modulation of the NF-κB and TNFα pathway. Food Chem Toxicol 2023; 182:114191. [PMID: 37980978 DOI: 10.1016/j.fct.2023.114191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
This study investigated the effect of oral dosing of titanium dioxide nanoparticles (TNPs) and cadmium (Cd2+) on rat liver and the potential protective role of coenzyme Q10 (CQ10) against TNPs and Cd2+-induced hepatic injury. Seventy male Sprague Dawley rats were divided into seven groups and orally given distilled water, corn oil, CQ10 (10 mg/kg b.wt), TNPs (50 mg/kg b.wt), Cd2+ (5 mg/kg b.wt), TNPs + Cd2+, or TNPs + Cd2++CQ10 by gastric gavage for 60 successive days. The results showed that individual or mutual exposure to TNPs and Cd2+ significantly increased the serum levels of various hepatic enzymes and lipids, depleted the hepatic content of antioxidant enzymes, and increased malondialdehyde. Moreover, the hepatic titanium and Cd2+ content were increased considerably in TNPs and/or Cd2+-exposed rats. Furthermore, marked histopathological perturbations with increased immunoexpression of tumor necrosis factor-alpha and nuclear factor kappa B were evident in TNPs and/or Cd2+-exposed rats. However, CQ10 significantly counteracted the damaging effect of combined exposure of TNPs and Cd2+ on the liver. The study concluded that TNPs and Cd2+ exposure harm hepatic function and its architecture, particularly at their mutual exposure, but CQ10 could be a candidate protective agent against TNPs and Cd2+ hepatotoxic impacts.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed M M Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed M Soliman
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Campus, 6th October City, Giza, 12588, Egypt
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt
| | - Hayat H M El-Nour
- Biology of Reproduction Department, Animal Reproduction Research Institute, Giza 3514805, Egypt
| |
Collapse
|
10
|
Lin Q, Qiu C, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Tian Y, Jin Z. The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Crit Rev Food Sci Nutr 2023; 63:12126-12135. [PMID: 35822304 DOI: 10.1080/10408398.2022.2098687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes is caused by persistently high blood sugar levels, which leads to metabolic dysregulation and an increase in the risk of chronic diseases such as diabetes and obesity. High levels of rapidly digestible starches within foods may contribute to high blood sugar levels. Amylase inhibitors can reduce amylase activity, thereby inhibiting starch hydrolysis, and reducing blood sugar levels. Currently, amylase inhibitors are usually chemically synthesized substances, which can have undesirable side effects on the human body. The development of amylase inhibitors from food-grade ingredients that can be incorporated into the human diet is therefore of great interest. Several classes of phytochemicals, including polyphenols and flavonoids, have been shown to inhibit amylase, including certain types of food-grade nanoparticles. In this review, we summarize the main functions and characteristics of amylases within the human body, as well as their interactions with amylase inhibitors. A strong focus is given to the utilization of nanoparticles as amylase inhibitors. The information covered in this article may be useful for the design of functional foods that can better control blood glucose levels, which may help reduce the risk of diabetes and other diet-related diseases.
Collapse
Affiliation(s)
- Qianzhu Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Sun M, Cai Z, Li C, Hao Y, Xu X, Qian K, Li H, Guo Y, Liang A, Han L, Shang H, Jia W, Cao Y, Wang C, Ma C, White JC, Xing B. Nanoscale ZnO Improves the Amino Acids and Lipids in Tomato Fruits and the Subsequent Assimilation in a Simulated Human Gastrointestinal Tract Model. ACS NANO 2023; 17:19938-19951. [PMID: 37782568 DOI: 10.1021/acsnano.3c04990] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
With the widespread use of nanoenabled agrochemicals, it is essential to evaluate the food safety of nanomaterials (NMs)-treated vegetable crops in full life cycle studies as well as their potential impacts on human health. Tomato seedlings were foliarly sprayed with 50 mg/L ZnO NMs, including ZnO quantum dots (QDs) and ZnO nanoparticles once per week over 11 weeks. The foliar sprayed ZnO QDs increased fruit dry weight and yield per plant by 39.1% and 24.9, respectively. It also significantly increased the lycopene, amino acids, Zn, B, and Fe in tomato fruits by 40.5%, 15.1%, 44.5%, 76.2%, and 12.8%, respectively. The tomato fruit metabolome of tomatoes showed that ZnO NMs upregulated the biosynthesis of unsaturated fatty acids and sphingolipid metabolism and elevated the levels of linoleic and arachidonic acids. The ZnO NMs-treated tomato fruits were then digested in a human gastrointestinal tract model. The results of essential mineral release suggested that the ZnO QDs treatment increased the bioaccessibility of K, Zn, and Cu by 14.8-35.1% relative to the control. Additionally, both types of ZnO NMs had no negative impact on the α-amylase, pepsin, and trypsin activities. The digested fruit metabolome in the intestinal fluid demonstrated that ZnO NMs did not interfere with the normal process of human digestion. Importantly, ZnO NMs treatments increased the glycerophospholipids, carbohydrates, amino acids, and peptides in the intestinal fluids of tomato fruits. This study suggests that nanoscale Zn can be potentially used to increase the nutritional value of vegetable crops and can be an important tool to sustainably increase food quality and security.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zeyu Cai
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Hao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinxin Xu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Hao Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaozu Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Anqi Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Heping Shang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yini Cao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education,Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven 06511, Connecticut, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
| |
Collapse
|
12
|
Ferraris F, Raggi A, Ponti J, Mehn D, Gilliland D, Savini S, Iacoponi F, Aureli F, Calzolai L, Cubadda F. Agglomeration Behavior and Fate of Food-Grade Titanium Dioxide in Human Gastrointestinal Digestion and in the Lysosomal Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1908. [PMID: 37446425 DOI: 10.3390/nano13131908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
In the present study, we addressed the knowledge gaps regarding the agglomeration behavior and fate of food-grade titanium dioxide (E 171) in human gastrointestinal digestion (GID). After thorough multi-technique physicochemical characterization including TEM, single-particle ICP-MS (spICP-MS), CLS, VSSA determination and ELS, the GI fate of E 171 was studied by applying the in vitro GID approach established for the regulatory risk assessment of nanomaterials in Europe, using a standardized international protocol. GI fate was investigated in fasted conditions, relevant to E 171 use in food supplements and medicines, and in fed conditions, with both a model food and E 171-containing food samples. TiO2 constituent particles were resistant to GI dissolution, and thus, their stability in lysosomal fluid was investigated. The biopersistence of the material in lysosomal fluid highlighted its potential for bioaccumulation. For characterizing the agglomeration degree in the small intestinal phase, spICP-MS represented an ideal analytical tool to overcome the limitations of earlier studies. We demonstrated that, after simulated GID, in the small intestine, E 171 (at concentrations reflecting human exposure) is present with a dispersion degree similar to that obtained when dispersing the material in water by means of high-energy sonication (i.e., ≥70% of particles <250 nm).
Collapse
Affiliation(s)
- Francesca Ferraris
- Istituto Superiore di Sanità-National Institute of Health, 00161 Rome, Italy
| | - Andrea Raggi
- Istituto Superiore di Sanità-National Institute of Health, 00161 Rome, Italy
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Douglas Gilliland
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Sara Savini
- Istituto Superiore di Sanità-National Institute of Health, 00161 Rome, Italy
| | - Francesca Iacoponi
- Istituto Superiore di Sanità-National Institute of Health, 00161 Rome, Italy
| | - Federica Aureli
- Istituto Superiore di Sanità-National Institute of Health, 00161 Rome, Italy
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Francesco Cubadda
- Istituto Superiore di Sanità-National Institute of Health, 00161 Rome, Italy
| |
Collapse
|
13
|
Chen X, Huang W, Liu C, Song H, Waiho K, Lin D, Fang JKH, Hu M, Kwan KY, Wang Y. Intestinal response of mussels to nano-TiO 2 and pentachlorophenol in the presence of predator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161456. [PMID: 36640886 DOI: 10.1016/j.scitotenv.2023.161456] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
With the development of industry, agriculture and intensification of human activities, a large amount of nano-TiO2 dioxide and pentachlorophenol have entered aquatic environment, causing potential impacts on the health of aquatic animals and ecosystems. We investigated the effects of predators, pentachlorophenol (PCP) and nano titanium dioxide (nano-TiO2) on the gut health (microbiota and digestive enzymes) of the thick-shelled mussel Mytilus coruscus. Nano-TiO2, as the photocatalyst for PCP, enhanced to toxic effects of PCP on the intestinal health of mussels, and they made the mussels more vulnerable to the stress from predators. Nano-TiO2 particles with smaller size exerted a larger negative effect on digestive enzymes, whereas the size effect on gut bacteria was insignificant. The presence of every two of the three factors significantly affected the population richness and diversity of gut microbiota. Our findings revealed that the presence of predators, PCP, and nano-TiO2 promoted the proliferation of pathogenic bacteria and inhibited digestive enzyme activity. This research investigated the combined stress on marine mussels caused by nanoparticles and pesticides in the presence of predators and established a theoretical framework for explaining the adaptive mechanisms in gut microbes and the link between digestive enzymes and gut microbiota.
Collapse
Affiliation(s)
- Xiang Chen
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Science, Beibu Gulf University, Qinzhou City, China; International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wei Huang
- Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Chunhua Liu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hanting Song
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - James K H Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Kit Yue Kwan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Science, Beibu Gulf University, Qinzhou City, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
14
|
Antonello G, Marucco A, Gazzano E, Kainourgios P, Ravagli C, Gonzalez-Paredes A, Sprio S, Padín-González E, Soliman MG, Beal D, Barbero F, Gasco P, Baldi G, Carriere M, Monopoli MP, Charitidis CA, Bergamaschi E, Fenoglio I, Riganti C. Changes of physico-chemical properties of nano-biomaterials by digestion fluids affect the physiological properties of epithelial intestinal cells and barrier models. Part Fibre Toxicol 2022; 19:49. [PMID: 35854319 PMCID: PMC9297619 DOI: 10.1186/s12989-022-00491-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature—lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)—were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model. Results The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect. Conclusions Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00491-w.
Collapse
Affiliation(s)
- Giulia Antonello
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.,Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy.,Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy
| | - Arianna Marucco
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Elena Gazzano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Panagiotis Kainourgios
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Costanza Ravagli
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | | | - Simone Sprio
- National Research Council, Institute of Science and Technology for Ceramics ISTEC-CNR, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Esperanza Padín-González
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Mahmoud G Soliman
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - David Beal
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Francesco Barbero
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Paolo Gasco
- Nanovector Srl, Headwork, Via Livorno 60, 10144, Turin, Italy
| | - Giovanni Baldi
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | - Marie Carriere
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Costas A Charitidis
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy.
| |
Collapse
|
15
|
Baranowska-Wójcik E, Szwajgier D, Winiarska-Mieczan A. A review of research on the impact of E171/TiO 2 NPs on the digestive tract. J Trace Elem Med Biol 2022; 72:126988. [PMID: 35561571 DOI: 10.1016/j.jtemb.2022.126988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Nanotechnology utilises particles of between 1 and 100 nm in size. In recent years, it has enjoyed widespread application in a variety of areas. However, this has also raised increasing concerns regarding the effects that the use of nanoparticles may have on human health. The nanoparticles of titanium dioxide (TiO2 NPs) are among the most promising nanomaterials and have already found wide use in cosmetics, medicine and, the food industry. A nano-sized (diameter < 100 nm) fraction of TiO2 is present, at a certain percentage, in the E171 ( in the EU) pigment commonly used as an additive in food, whose presence raises particular concerns in terms of its potential negative health impact. The consumption of E171 food additive is increasingly associated with disorders of the intestinal barrier, including intestinal dysbiosis. It may disrupt the normal functions of the gastrointestinal tract (GIT) including: enzymatic digestion of primary nutrients (lipids, proteins, or carbohydrates). The aim of this review is to provide a comprehensive and reliable overview of studies conducted in recent years in terms of the substance's potentially negative impact on human and animal alimentary systems.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, Lublin 20-704, Poland.
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, Lublin 20-704, Poland
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, Akademicka 13, Lublin 20-950, Poland
| |
Collapse
|
16
|
Vitulo M, Gnodi E, Meneveri R, Barisani D. Interactions between Nanoparticles and Intestine. Int J Mol Sci 2022; 23:4339. [PMID: 35457155 PMCID: PMC9024817 DOI: 10.3390/ijms23084339] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The use of nanoparticles (NPs) has surely grown in recent years due to their versatility, with a spectrum of applications that range from nanomedicine to the food industry. Recent research focuses on the development of NPs for the oral administration route rather than the intravenous one, placing the interactions between NPs and the intestine at the centre of the attention. This allows the NPs functionalization to exploit the different characteristics of the digestive tract, such as the different pH, the intestinal mucus layer, or the intestinal absorption capacity. On the other hand, these same characteristics can represent a problem for their complexity, also considering the potential interactions with the food matrix or the microbiota. This review intends to give a comprehensive look into three main branches of NPs delivery through the oral route: the functionalization of NPs drug carriers for systemic targets, with the case of insulin carriers as an example; NPs for the delivery of drugs locally active in the intestine, for the treatment of inflammatory bowel diseases and colon cancer; finally, the potential concerns and side effects of the accidental and uncontrolled exposure to NPs employed as food additives, with focus on E171 (titanium dioxide) and E174 (silver NPs).
Collapse
Affiliation(s)
| | | | | | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| |
Collapse
|
17
|
Behaviour of Titanium Dioxide Particles in Artificial Body Fluids and Human Blood Plasma. Int J Mol Sci 2021; 22:ijms221910614. [PMID: 34638952 PMCID: PMC8509028 DOI: 10.3390/ijms221910614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
The growing application of materials containing TiO2 particles has led to an increased risk of human exposure, while a gap in knowledge about the possible adverse effects of TiO2 still exists. In this work, TiO2 particles of rutile, anatase, and their commercial mixture were exposed to various environments, including simulated gastric fluids and human blood plasma (both representing in vivo conditions), and media used in in vitro experiments. Simulated body fluids of different compositions, ionic strengths, and pH were used, and the impact of the absence or presence of chosen enzymes was investigated. The physicochemical properties and agglomeration of TiO2 in these media were determined. The time dependent agglomeration of TiO2 related to the type of TiO2, and mainly to the type and composition of the environment that was observed. The presence of enzymes either prevented or promoted TiO2 agglomeration. TiO2 was also observed to exhibit concentration-dependent cytotoxicity. This knowledge about TiO2 behavior in all the abovementioned environments is critical when TiO2 safety is considered, especially with respect to the significant impact of the presence of proteins and size-related cytotoxicity.
Collapse
|